RAIRO. INFORMATIQUE THÉORIQUE

I. MARGARIA M. ZACCHI Right and left invertibility in $\lambda - \beta$ -calculus

RAIRO. Informatique théorique, tome 17, nº 1 (1983), p. 71-88 <http://www.numdam.org/item?id=ITA 1983 17 1 71 0>

© AFCET, 1983, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RIGHT AND LEFT INVERTIBILITY IN λ - β -CALCULUS (*)

by I. MARGARIA and M. ZACCHI (1)

Communicated by J. F. PERROT

Abstract. — A characterization of λ -terms having left and/or right inverses in λ - β -calculus is given and the sets of all and only λ -terms left/right invertible are constructed. The above results are obtained using the concept of Böhm tree, so this study is further used to characterize the λ -terms left/right invertible in the graph model \mathbf{P}_{ω} .

Résumé. — Dans ce papier on va caractériser les λ -termes invertibles à droite et/ou à gauche, en donnant les règles pour construire les deux ensembles constitués respectivement par tous les λ -termes ayant un inverse droite ou gauche. Puisque ces résultés ont été obtenus par la notion d'arbre de Böhm on peut utiliser cette étude au fin de caractériser les λ -termes invertibles à droite ou à gauche dans le modèle \mathbf{P}_{ω} .

0. INTRODUCTION

Aim of this paper is the characterization of λ -terms having left and/or right inverses in λ - β -calculus. The semigroup Λ of λ - β - (η) -terms, having the combinator $\mathbf{I} \equiv \lambda x. x$ as identity element and the operation \bullet defined by $X \bullet Y = \mathbf{B}XY$ (where $\mathbf{B} \equiv \lambda xyz. x(yz)$) as composition, has been studied with respect to the left/right invertibility problem in [2], [4], [7, p. 167-168], [8], [9].

In particular in the λ - β -calculus the set of normal forms having at least one left or right inverse has been characterized in [4]. The same paper shows that the combinator I is the only normal form having both left and right inverse.

The present paper tries to give the final solution to the invertibility problem in λ - β -calculus showing the necessary and sufficient conditions under which an arbitrary λ -term possesses a left (right) inverse and characterizing the set of terms for which there exists only one left (right) inverse; for the

^(*) Received in December 1981, revised in June 1982.

^{(&}lt;sup>1</sup>) Istituto di Scienze dell'Informazione, Università degli Studi di Torino, Corso M. D'Azeglio nº 42, Torino.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, 0399-0540/1983/71/\$ 5,00 © AFCET-Bordas-Dunod

other left (right) invertible terms an infinite number of inverses is proved to exist. The basic definitions which the paper relies on are those of direct approximation [11], of Böhm tree [1] and of partial order relation \sqsubseteq on the set of λ - Ω -terms, as stated in [10]. Using these notions it is possible to carry on Λ the relation \sqsubseteq defining a λ -term X less or equal to a λ -term Y (X \sqsubseteq Y) if and only if its direct approximation $\Phi(X)$ is less or equal to the direct approximation $\Phi(Y)$ of $Y(\Phi(X) \sqsubseteq \Phi(Y))$ and to associate with a λ -term X the approximation set as the set of λ - Ω -terms $\Phi(X')$ such that X is β -convertible to X'. Firstly we notice that every left (right) inverse of a λ -term X is a left (right) inverse of all λ -terms Y such that $X \subseteq Y$. Then in order to characterize the set of terms having left inverse, an operation, called terminal extension, is introduced on the set of Böhm trees. Roughly speaking a terminal extension of a Böhm tree A is a Böhm tree A' obtained from A modifying a terminal node of A either introducing in its label the abstraction of a new variable or pushing the head variable down of a level and substituting it by a bound variable. So we can prove that a λ -term X has a left inverse if and only if there exists in the approximation set of X at least one approximation which can be obtained from I applying a sequence of terminal extensions. Moreover it results that every term left invertible, different from I, possesses an infinite number of non-convertible left inverses.

The problem of the right invertibility is approached in a similar way. The operation of adding a son with label Ω to the root of a Böhm tree A to obtain a Böhm tree A' is called initial extension. This allows to assert that a λ -term X has right inverse iff there exists at least one approximation of X which can be obtained from I applying a sequence of initial extensions. Obviously, as a corollary, it results that I is the only λ -term both left and right invertible. Furthermore we can prove that the number of right inverses for a right invertible term X is either one or infinite depending on the form of the term itself.

Finally we notice that the above results about invertibility can be carried on the graph model \mathbf{P}_{ω} [1, p. 467] and we show that the two functions which map an element of \mathbf{P}_{ω} into the set of all its right or left inverses, respectively, are not monotonic, i. e. it is possible to find a left (right) inverse of an element X of \mathbf{P}_{ω} which is not a left (right) inverse of an element Y, whereas $X \equiv Y$ (\equiv is the usual order relation on \mathbf{P}_{ω}).

1. NOTATIONS AND DEFINITIONS

In the sequel we will use the following notions and conventions:

i) λ -calculus means λ - β -calculus, normal form λ - β -normal form, \geq , =, =

denote β -reducibility, α - β -convertibility and modulo α identity, respectively; moreover Λ represents the set of λ -terms;

ii) the word combinator will refer to closed λ -terms, i. e. terms without free variables; the combinators will be indicated by uppercase, boldface characters, for example $\mathbf{B} \equiv \lambda x y z . x(y z)$, $\mathbf{I} \equiv \lambda x . x$, etc.;

iii) we indicate by means of the ordered sequences of λ -terms

$$\langle X_0, X_1, \ldots, X_k \rangle$$

the λ -terms $\lambda z. zX_0X_1...X_k$ where z does not occur free in any $X_i, 0 \le i \le k$ (Church *n*-tuple) [6];

iv) C[] denotes a context, i. e. a λ -term where one subterm is missing; C[X] then denotes the result of filling the missing subterm with X (for a more formal definition see [11]);

v) X [x = Y] indicates the λ -term obtained from a λ -term X by substituting in it the λ -term Y to every free occurrence (if any) of the variable x.

As the concept of approximation of a λ -term [11] and the related one of Böhm tree [1, p. 211] are very useful for this study, we summarize here the principal definitions and conventions about them.

A λ -term X has head normal form if it has the form $\lambda x_1 x_2 \dots x_m . y X_1 X_2 \dots X_n$ where:

 $-x_1, x_2, \ldots, x_m$ are variables and $m \ge 0$;

 $-X_1, X_2, \ldots, X_n$ are λ -terms and $n \ge 0$;

- y is a variable, free or bound (as usual it will be called the head variable of X).

The direct approximation $\Phi(X)$ of a λ -term X is defined as follows:

 $\Phi(X) = \lambda x_1 \dots x_m \cdot y \Phi(X_1) \Phi(X_2) \dots \Phi(X_n)$ if $X = \lambda x_1 \dots x_m \cdot y X_1 X_2 \dots X_n$; $\Phi(X) = \Omega$, where Ω is an extra constant, if X has not a head normal form.

The set $\Phi(\Lambda)$ will be indicated by \mathcal{N} (set of λ - Ω -terms). Inside \mathcal{N} the following partial order relation \sqsubseteq is defined [10]: for any M, N of \mathcal{N} $M \sqsubseteq N$ iff either

i)
$$M \equiv \Omega;$$
 or

$$M \equiv \lambda x_1 x_2 \dots x_n \dots x_j M_0 \dots M_k$$

$$N \equiv \lambda x_1 x_2 \dots x_n \dots x_j N_0 \dots N_k$$
$$M_i \sqsubseteq N_i \quad \text{for any} \quad i \ (0 \le i \le k).$$

and

Given a λ -term X we call approximation set of X : $\mathscr{A}(X)$ the subset of \mathscr{N} so defined:

$$\mathscr{A}(X) = \{ M \in \mathscr{N} \mid M \sqsubseteq \Phi(X) \}.$$

The partial order relation \Box can be carried on Λ as follows: for any X, Y of $\Lambda, X \sqsubseteq Y$ iff $\Phi(X) \sqsubseteq \Phi(Y)$.

We can visualize every element M of \mathcal{N} by means of a suitable tree: the Böhm tree (B. T.) of M. Given an element M of \mathcal{N} , the B. T. of M: BT(M) is

We will refer to \mathcal{B} as to the set of the B. T. of the elements of \mathcal{N} . The nodes of a B. T. will be indicated by strings of natural numbers (included the empty string ε , labelling the root) in the usual way, so that β denotes a successor of α if and only if α is a prefix of β : $\beta = \alpha \gamma$ for some γ . Let A be a B. T. and α be a node with label $\lambda x_1 \dots x_n$, y, in the sequel we will use the following conventions [see 1, p. 218]:

i) A_{α} indicates the subtree of A having as root the node α ;

 $\overline{\alpha}$ indicates the path from the root to the node α ; ii)

iii) $b(\alpha)$ indicates the vector of the bound variables occurring in the label of α , i. e. $b(\alpha) = x_1 x_2 \dots x_n$;

iv) $b(\overline{\alpha})$ indicates the vector of the bound variables occurring in the labels of the nodes of the path $\overline{\alpha}$, inductively defined as follows:

$$- b(\overline{\varepsilon}) = b(\varepsilon) - b(\alpha' \langle k \rangle) = b(\alpha')b(k).$$

By way of example, for the B. T. A of figure 1, if we choose as node α the node $\langle 1 0 \rangle$, we have:

Figure 1. — A Böhm tree A.

By streching the Böhm tree definition, in the sequel sometimes we will refer to the B. T. of an element X of Λ : BT(X), as to the B. T. of its direct approximation.

Obviously any B. T. A of \mathcal{B} will define one and only one term of $\mathcal{N}: M_A$ such that $BT(M_A) = A$ (for example for the B. T. A of figure 1

$$M_{\rm A} \equiv \lambda x_0 x_1 x_2 x_3 \cdot x_3 \Omega(x_0(\lambda x_4 \cdot x_4 x_2) x_6) \lambda x_5 \cdot x_1);$$

hence the order relation \sqsubseteq on \mathcal{N} can be carried on $\mathscr{B}: A \sqsubseteq B$ iff $M_A \sqsubseteq M_B$.

2. RIGHT AND LEFT INVERTIBILITY

Aim of this section is to study the conditions under which an arbitrary λ -term X has right and/or left inverses. In the sequel we use the following notations:

i) $X_R(X_L)$ denotes a right (left) inverse of a λ -term X, i. e.,:

$$\mathbf{B}XX_{R} = \mathbf{I} \qquad (\mathbf{B}X_{L}X = \mathbf{I}).$$

ii) $\mathscr{I}_{R}(X)(\mathscr{I}_{L}(X))$ denotes the set of all the right (left) inverses of a λ -term X.

THEOREM 1: Let X, Y be two λ -terms of Λ for which $X \subseteq Y$, then:

i)
$$\mathscr{I}_{R}(X) \subseteq \mathscr{I}_{R}(Y)$$

ii) $\mathscr{I}_{L}(X) \subseteq \mathscr{I}_{L}(Y)$.

Proof: i) The assertion is trivially true for $\mathscr{I}_{R}(X)$ empty.

If it is not true, we prove that any right inverse X_R of X is also a right inverse for Y. By definition we have:

 $X(X_R y) \ge y$ for any variable y not free in X and X_R .

Since Lévy has proved (th. 5.8, p. 105 of [10]) that if $X \sqsubseteq Y$ then $\mathbb{C}[X] \sqsubseteq \mathbb{C}[Y]$ for any context $\mathbb{C}[$], if we choose as context []($X_R y$) it will be:

 $y \leq X(X_R y) \sqsubseteq Y(X_R y)$ hence $Y(X_R y) \geq y$.

ii) The proof is analogous to the preceding one if we choose as context $X_L([]y)$.

2.1. Left Invertibility

DEFINITION 2.1.1: Let A, A' be two Böhm trees and α a terminal node of A with label $\lambda x_{i_1} x_{i_2} \dots x_{i_h} \cdot x_t$. We say that A' is a terminal extension of A in α if A' results from A by one of the following substitutions:

1) the label of the node α in A is replaced in A' by the label

 $\lambda x_{i_1} x_{i_2} \dots x_{i_k} x_{i_{k+1}} x_i$ (terminal extension of type 1);

2) the subtree A_{α} is replaced in A' by a subtree A'_{α} such that:

a) the label of α is $\lambda x_{i_1} \dots x_{i_h} \dots x_j$, where x_j is a bound variable distinct from x_i ;

b) α has m sons with $m \ge 1$. Each of these sons are terminal nodes, one and only one of them has label x_t , whereas the remaining m-1 have label $\underline{\Omega}$ (see fig. 2) (terminal extension of type 2).

Figure 2. — A terminal extension of type 2.

With every terminal extension e of type 2, we associate the triple

$$\tau(e) = \langle x_j, m, k \rangle,$$

where x_j and *m* are respectively the name of the head variable and the number of sons of the node α in A' and k indicates that the only son of α in A' with label different from Ω is the k-th.

DEFINITION 2.1.2: Let A, A' be two Böhm trees.

We say that A' is a terminal extension of A (A $\xrightarrow[t-ext]{t-ext}$ A') if it is a terminal extension of A in some terminal node.

DEFINITION 2.1.3: We call Left Invertible Term Generator Set the subset $\mathscr{L} \subset \mathscr{N}$ inductively defined as follows:

i) $\mathbf{I} \in \mathscr{L}$

ii) $N \in \mathscr{L}$ and $BT(N) \xrightarrow[t-ext]{t-ext} BT(N') \Rightarrow N' \in \mathscr{L}$.

DEFINITION 2.1.4: Let N be an element of \mathscr{L} . We call history of $N : \mathscr{H}(N)$ a sequence of elements of $\mathscr{L}: \langle N^0, N^1, \ldots, N^h \rangle$ such that $N^0 \equiv \mathbf{I}, N^h \equiv N$ and for any $i, 0 \leq i \leq h-1, BT(N^i) \xrightarrow[t-ext]{t-ext} BT(N^{i+1})$.

LEMMA 2.1.1: Every element N of \mathcal{L} has one and only one history: $\mathcal{H}(N)$. *Proof*: Obvious from definition 2.1.1 and definition 2.1.3.

Figure 3. — Böhm trees of the history of the λ - Ω -term $\lambda x_0 x_1 x_2 x_3 . x_2 (\lambda x_4 . x_3 \Omega x_0) \Omega$.

DEFINITION 2.1.5: Let N be an element of \mathscr{L} . We say that N is a term nonhomogeneous for the variable x_t if in its history $\mathscr{H}(N)$ there are at least two

terminal extensions e, e' of type 2 with $\tau(e) = \langle x_t, m, k \rangle$ and $\tau(e') = \langle x_t, m', k' \rangle$ such that $m \neq m'$ and/or $k \neq k'$.

Figure 4(a) shows the Böhm tree of a term non-homogeneous for the variable x_1 , whereas it is homogeneous for the variable x_2 ; instead the term whose Böhm tree is in figure 4(b) is homogeneous for each variable occurring as head variable; in such a case we say that the term is *homogeneous*.

Figure 4. — Böhm trees of a non-homogeneous (a) and of a homogeneous $\lambda - \Omega$ -term (b).

From lemma 3 of [3] it follows lemma 2.1.2 which has been rewritten and proved (in a simpler way) using the notation of the present work.

LEMMA 2.1.2: Let N be a λ - Ω term of \mathscr{L} , non-homogeneous for a set of variables $\{x_{l_1}, x_{l_2}, \ldots, x_{l_k}\}$. We state that there is a normal combinator

 $C_{[m]}I$ such that the term $N'[x_{l_i}] = C_{[m]}I$, where N' is obtained from N by eliminating the abstraction of x_{l_i} , is non-homogeneous for the set

$$\{x_{l_1}, x_{l_2}, \ldots, x_{l_{i-1}}, x_{l_{i+1}}, \ldots, x_{l_k}\}$$

Proof: Let e_1, e_2, \ldots, e_n be the terminal extensions of type 2, occurring in $\mathcal{H}(N)$ such that the first element of $\tau(e_i)$ is $l_i (1 \le j \le n)$, i. e.:

$$\tau(e_1) = \langle x_{l_i}, m_1, k_1 \rangle$$

$$\tau(e_2) = \langle x_{l_i}, m_2, k_2 \rangle$$

$$\cdot \cdot \cdot$$

$$\tau(e_n) = \langle x_{l_i}, m_n, k_n \rangle.$$

Let $m = \max(m_1, m_2, \ldots, m_n)$. It is easy to prove that the normal combinator $C_{[m]}I \equiv \lambda t_0 t_1 \ldots t_m \cdot t_m t_0 t_1 \ldots t_{m-1}$ satisfies the thesis, because it substitutes the different occurrences of x_{l_i} by different variables.

LEMMA 2.1.3: Every λ -term X of Λ , whose direct approximation is in \mathscr{L} , has at least a left inverse.

Proof: Firstly we prove that every λ -term X, whose direct approximation is a homogeneous element of \mathscr{L} has a left inverse. From definition 2.1.3 it follows that there is one and only one terminal node of BT(X) having label different from $\underline{\Omega}$; let such a node be α and let $b(\overline{\alpha}) = x_0 x_1 \dots x_n, n \ge 0$. We assert that there are n suitable λ -terms $\Psi_1, \Psi_2, \dots, \Psi_n$ such that the sequence $\langle \Psi_1, \Psi_2, \dots, \Psi_n \rangle$ is a left inverse for X. We prove this assertion by induction on the number h of elements of $\mathscr{H}(\Phi(X))$.

$$\begin{array}{ll} h=1, \\ h+1, \end{array} \qquad \qquad X=\mathbf{I} \qquad \qquad X_L=\lambda z \, . \, z\equiv \mathbf{I}. \end{array}$$

Given $\mathscr{H}(\Phi(X)) = \langle N^0, N^1, \dots, N^h, N^{h+1} \rangle$, let $X^i, 0 \leq i \leq h$, be a λ -term such that $\Phi(X^i) = N^i$, let $X^{h+1} = X$ and $A^i = BT(N^i)$. We distinguish two cases either A^{h+1} extends A^h by a terminal extension of type 1 or A^{h+1} extends A^h by a terminal extension of type 2. In the first case we say that a left inverse for X can be obtained by adding to the left inverse of X^h (existing by induction hypothesis) a generic λ -term Ψ_n , i. e.

if
$$X_L^h = \langle \Psi_1^h, \Psi_2^h, \dots, \Psi_{n-1}^h \rangle$$
$$X_L^{h+1} \quad \text{will be} \quad \langle \Psi_1^h, \Psi_2^h, \dots, \Psi_{n-1}^h, \Psi_n \rangle.$$

In fact it follows from the definitions of \mathcal{L} and of terminal extension of type 1 that:

$$(X^{h+1}y) = (X^h y)[y := \lambda x_n \cdot y]$$

and by induction hypothesis:

i. e.:
$$(X^{h+1}y)\Psi_1^h\Psi_2^h\dots\Psi_{n-1}^h \ge \lambda x_n \cdot y$$
$$(\lambda x_n \cdot y)\Psi_n \ge y.$$

In the second case, let $\langle x_j, m, k \rangle$ be the triple associated with the (h+1)-th terminal extension. If x_j occurs as head variable in some terminal extension preceding the (h+1)-th one, from homogeneity hypotesis it follows that the left inverse X_L^h (existing by induction hypothesis) is also a left inverse for X^{h+1} ; otherwise we prove that a left inverse of X^{h+1} can be obtained by substituting in the left inverse X_L^h for the λ -term Ψ_j^h the normal combinator (selector)

$$\mathbf{U}_{k}^{m} = \lambda t_{1} t_{2} \dots t_{m} \cdot t_{k}, \quad \text{i. e.:}$$
$$X_{L}^{h+1} = \langle \Psi_{1}^{h}, \Psi_{2}^{h}, \dots, \Psi_{j-1}^{h}, \mathbf{U}_{k}^{m}, \Psi_{j+1}^{h}, \dots \rangle.$$

It follows from definitions of \mathcal{L} and of terminal extension of type 2, that:

$$(X^{h+1}y) = (X^{h}y)[y] = x_{j}X'_{1}X'_{2} \dots X'_{k-1}yX'_{k+1} \dots X'_{m}]$$

where X'_i are unsolvable terms; then:

$$(X^{h+1}y)\Psi_1^h\Psi_2^h\ldots\Psi_{j-1}^hU_k^m\Psi_{j+1}^h\ldots \geqslant U_k^mX_1'X_2'\ldots X_{k-1}'yX_{k+1}'\ldots X_m'\geqslant y.$$

Now, let us suppose that X has a direct approximation non-homogeneous only for one variable x_i . From lemma 2.1.2 it follows that there exists an integer m such that the term N' $[x_i := \mathbb{C}_{[m]}\mathbf{I}]$, where N' is obtained from $\Phi(X)$ by eliminating the abstraction of x_i , is homogeneous. Let X' be a λ -term of Λ such that $\Phi(X') = N' [x_i := \mathbb{C}_{[m]}\mathbf{I}]$ and let X'_L be its left inverse, existing for the first part of this lemma: $X'_L = \langle \Psi'_1, \Psi'_2, \ldots, \Psi'_n \rangle$. We maintain that the sequence $X_L = \langle \Psi'_1, \Psi'_2, \ldots, \Psi'_{i-1}, \mathbb{C}_{[m]}\mathbf{I}, \Psi'_i, \Psi'_{i+1}, \ldots, \Psi'_n \rangle$ is a left inverse for X. In fact:

$$(X'y)\Psi'_{1}\Psi'_{2}\ldots\Psi'_{i-1}=(Xy)\Psi'_{1}\Psi'_{2}\ldots\Psi'_{i-1}(\mathbf{C}_{[m]}\mathbf{I})$$

$$(Xy)\Psi'_{1}\Psi'_{2}\ldots\Psi'_{i-1}(\mathbf{C}_{[m]}\mathbf{I})\Psi'_{i}\ldots\Psi'_{n}=(X'y)\Psi'_{1}\Psi'_{2}\ldots\Psi'_{i-1}\Psi'_{i}\ldots\Psi'_{n}\geq y.$$

The proof can be generalized in a obvious way to the case of terms nonhomogeneous for more than one variable.

LEMMA 2.1.4: Every λ -term of Λ , distinct from I and having the direct approximation in \mathscr{L} , has an infinite number of non convertible left inverses.

Proof: Let X be a λ -term satisfying the hypothesis of this lemma. If some of the λ -terms of the not empty sequence X_L , obtained by the construction of lemma 2.1.3, are arbitrary we can obtain an infinite number of left inverses choosing them in infinite ways.

Instead if each Ψ_i has been substituted by a suitable combinator, we can obtain an infinite number of left inverses as follows. Let U_k^m be a selector occurring in X_L (from proof of lemma 2.1.3 it is clear that in X_L we have surely some selectors), i. e.:

$$X_L = \langle \Psi_1, \Psi_2, \ldots, \Psi_{i-1}, \mathbf{U}_k^m, \Psi_{i+1}, \ldots, \Psi_k \rangle.$$

It is easy to prove that

 $X'_L = \langle \Psi_1, \Psi_2, \ldots, \Psi_{i-1}, U_k^{m+n}, \Psi_{i+1}, \ldots, \Psi_h, \Phi_1, \ldots, \Phi_n \rangle$

where $\Phi_i (1 \le i \le n)$ are generic λ -terms, is another left inverse for X, nonconvertible to X_L :

 $X'_{L}(Xy) \ge (Xy)\Psi_{1}\Psi_{2} \dots \Psi_{i-1}U_{k}^{m+n}\Psi_{i+1} \dots \Psi_{n}\Phi_{1}\Phi_{2} \dots \Phi_{n} \ge \\ \ge (\lambda t_{1}t_{2} \dots t_{n} y)\Phi_{1}\Phi_{2} \dots \Phi_{n} \ge y.$

DEFINITION 2.1.6: A λ -term X of Λ is of type Σ if the set $\mathscr{A}(X) \cap \mathscr{L}$ is not empty.

Remark 1: For any Böhm tree BT(X) of a λ -term X of type Σ (shortly B. T. of type Σ), there is at least a terminal node σ , such that:

i) the first component of the vector $b(\overline{\sigma})$ occurs as head variable only in the label of σ ;

ii) every head variable in the label of a not terminal node of the path $\overline{\sigma}$, is bound.

The Böhm tree of figure 5 is of type Σ , because the terminal nodes $\langle 2 \rangle$ and $\langle 11 \rangle$ satisfy the conditions of the remark 1.

Figure 5. — A Böhm tree of type Σ .

THEOREM 2.1.1: A λ -term X has at least a left inverse if and only if it is of type Σ .

Proof: If X is of type Σ , there is at least an approximation $N' \subseteq \Phi(X)$ belonging to \mathscr{L} , so for theorem 2.1 and lemma 2.1.3 X has at least a left inverse.

Now, let us suppose, *per absurdum*, that the λ -term X not of type Σ has a left inverse. If X is not of type Σ one of the conditions of remark 1 is not satisfied.

If for any path $\overline{\sigma}$ of BT(X) the condition *i*) of remark 1 does not hold, then in (Xy) the free variable *y*, if it occurs, always occurs applied to a positive number of arguments, which cannot be eliminated using only β -reductions. Instead if for any path for which condition *i*) of remark 1 holds, there is some non-terminal node whose label has as head variable a free variable, then there is no λ -term *Y* such that in Y(Xy) this free variable can be erased to obtain *y*.

2.2. Right Invertibility

DEFINITION 2.2.1: Let A, A' be two B. T., different from $\underline{\Omega}$. We say that A' is an initial extension of A ($A \xrightarrow[i-ext]{i-ext} A'$) if A' results from \overline{A} by adding to its root a son with label Ω (see fig. 6)

Figure 6. — Two Böhm trees A and A' such that A $\xrightarrow[i-ext]{i-ext}$ A'.

DEFINITION 2.2.2: We call *Right Invertible Term Generator Set* the subset $\mathscr{R} \subset \mathscr{N}$ inductively defined as follows:

i) $\mathbf{I} \in \mathcal{R}$

ii) $N \in \mathscr{R}$ and $BT(N) \xrightarrow[i-ext]{i-ext} BT(N') \Rightarrow N' \in \mathscr{R}$.

LEMMA 2.2.1: Every λ -term X of Λ , whose direct approximation $\Phi(X)$ is in \mathcal{R} has one and only one right inverse X_R .

Proof: "One" part. Let X be $\lambda x. xX_1X_2...X_h$, with $X_i(1 \le i \le h)$ unsolvable; we take as X_R the λ -term $\mathbf{U}_1^{h+1} \equiv \lambda x_0 x_1...x_h.x_0$. It's trivial that $X(X_R y) \ge y$, so X_R is a right inverse for X.

" Only one" part. Let us suppose, per absurdum, that $X = \lambda z \cdot z X_1 \dots X_h$,

with $X_i (1 \le i \le h)$ unsolvable, has a right inverse $X'_R = \lambda x_0 x_1 \dots x_n \dots x_j Y_1 Y_2 \dots Y_t$ distinct from $X_R = \lambda x_0 x_1 \dots x_h \dots x_0$.

Since, from the definition of right inverse,

$$(X'_R y)X_1 \ldots X_h \ge y$$

we must have $n \leq h$, otherwise we cannot eliminate the n - h initial abstractions.

Since from theorem 2.1.1 it follows that X'_R is of type Σ , the head variable x_j of X'_R must be exactly x_0 if t=0, different from x_0 and bound if $t \neq 0$. In the first case we must have n=h, otherwise y remains applied to a positive number of λ -terms, which cannot be eliminated to give y, hence $X'_R = X_R$, contrary to the hypothesis. In the second case, we should have, for some X_j unsolvable:

$$X_j Y_1' \ldots Y_t' X_{n+1} \ldots X_h \geqslant y,$$

where:

$$Y'_i = Y_i[x_0 := y, x_1 := X_1, \dots, x_n := X_n]$$
 for $1 \le i \le t$

and this is an absurdum.

DEFINITION 2.2.3: We say that a λ -term X of Λ is of type Ξ if the set $\mathscr{A}(X) \cap \mathscr{R}$ is not empty.

Example: The λ -terms whose B. T. is shown in figure 7 are of type Ξ , because they have as approximation the λ - Ω -term $\lambda x_0 \cdot x_0 \Omega \Omega \Omega$.

Figure 7. — A Böhm tree of λ -terms of type Ξ .

Remark 2: If X is of type Ξ , it has the form $\lambda x \cdot xX_1 \cdot \cdot \cdot X_h$.

THEOREM 2.2.1: A λ -term X has at least a righ inverse if and only if it is of type Ξ .

Proof: If X is a λ -term of type Ξ , $\mathscr{I}_R(X)$ is not empty from lemma 2.2.1 and theorem 2.1. Now let us suppose X not of type Ξ ; then X can have in its head more than one abstraction: $X = \lambda x_0 x_1 \dots x_n . x_i X_1 \dots X_h$ and/or X can have as head variable a free variable $X = \lambda x_0 x_1 \dots x_n . y X_1 \dots X_h$. In the first case the n+1 initial abstractions cannot be eliminated using β -reductions; in the second case the free variable cannot be erased.

COROLLARY: The only λ -term having left and right inverse is the combinator I.

DEFINITION 2.2.4: We say that a λ -term X is Ω -like if either:

i) X is unsolvable, or

ii) X is solvable and its head variable is free.

We say X not Ω -like on the contrary.

LEMMA 2.2.2: Let X be a λ -term:

i) if X is Ω -like, for any λ -term Y, the application (X Y) is also an Ω -like term.

ii) if X is Ω -like, for any variable y different from the head variable of X, if any, there are no $h \lambda$ -terms Y_1, Y_2, \ldots, Y_h such that:

 $X Y_1 Y_2 \ldots Y_h \geqslant y$

iii) if X is not Ω -like there are $h \lambda$ -terms Y_1, Y_2, \ldots, Y_h such that:

$$X Y_1 Y_2 \ldots Y_h \ge \mathbf{I}.$$

Proof: Both assertions *i*) and *ii*) are trivially true for X unsolvable. Let us suppose X solvable with head variable free: $X = \lambda x_1 x_2 \dots x_k . aX_1 \dots X_h$, then the head variable *a* cannot be eliminated using only β -reductions, so (XY)is solvable with head variable *a*, moreover it is impossible to reduce X to a free variable y different from *a*.

To prove assertion *iii*), let us suppose $X = \lambda x_1 x_2 \dots x_k \dots x_j X_1 \dots X_s$, with x_j bound. If we choose h = k, $Y_i = \Psi_i$, where Ψ_i is a generic λ -term, for $1 \le i < j$ and $j < i \le h$, and $Y_j = \mathbf{U}_{s+1}^{s+1}$, where $\mathbf{U}_{s+1}^{s+1} \equiv \lambda x_0 x_1 \dots x_s \dots x_s$, it is trivially true that $X Y_1 \dots Y_h \ge \mathbf{I}$.

THEOREM 2.2.2: Let X be a λ -term of type $\Xi: X = \lambda z. zX_1 \dots X_h$. If every X_i is Ω -like, then X has one and only one right inverse, else X has an infinite number of right inverses.

Proof: Let us suppose $X = \lambda z. zX_1 ... X_h$ with $X_i (1 \le i \le h)$ Ω -like. We

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

84

must prove that X has only the right inverse given in the proof of lemma 2.2.1: $X_R = \lambda x_0 \dots x_h x_0$.

The existence of another inverse X'_{k} should cause an *absurdum*, in fact being $X'_{k} = \lambda x_{0}x_{1} \dots x_{n} \cdot x_{j}Y_{1} \dots Y_{h}$ of type Σ because of theorem 2.1.1, its head variable must be bound and different from x_{0} (see proof of lemma 2.2.1), then we should have, for some X_{i} Ω -like and some $Z_{1}, Z_{2}, \dots, Z_{k}$:

$$X_i Z_1 \ldots Z_k \ge y$$

and this is an absurdum because of lemma 2.2.2, case ii).

Now let us suppose that at least one λ -term X_i is not Ω -like. For lemma 2.2.2, case *iii*), there exist $h \lambda$ -terms Y_1, Y_2, \ldots, Y_h such that:

$$X_i Y_1 Y_2 \ldots Y_h \ge \mathbf{I}.$$

Let $\mathscr{S}(X)$ be the set inductively defined as follows:

i) $X_R = \lambda x_0 \dots x_h \cdot x_0$ is in $\mathscr{S}(X)$

ii) if Y is in $\mathscr{S}(X)$ and Y' is a term obtained by substituting in the BT(Y) to the terminal node x_0 the subtree:

then Y' is in $\mathscr{S}(X)$.

It is obvious that $\mathscr{S}(X)$ has an infinite number of elements, which are all right inverses of X.

3. LEFT AND RIGHT INVERTIBILITY IN THE GRAPH MODEL P_{in}

H. Barendregt [1, p. 496-500], reformulating in terms of Böhm trees the Hyland's characterization of the equality in the graph model P_{ω} , has shown that

$$\mathbf{P}_{\omega} \models X = Y \iff BT(X) = BT(Y).$$

So we can say that the above results about invertibility on \mathcal{N} (or \mathcal{B}) can be carried on \mathbf{P}_{ω} . Now let f and g be the following functions

$$f: \mathbf{P}_{\omega} \to 2^{\mathbf{P}_{\omega}} \qquad f(X) = \mathscr{I}_{L}(X)$$
$$g: \mathbf{P}_{\omega} \to 2^{\mathbf{P}_{\omega}} \qquad g(X) = \mathscr{I}_{R}(X),$$

since both \mathbf{P}_{ω} and $2^{\mathbf{P}_{\omega}}$ are complete lattices [1, p. 19], it is of some interest to investigate whether f and g are monotonic functions, i. e.

whether $\mathscr{I}_L(X) \subseteq \mathscr{I}_L(Y)$ whenever $X \sqsubset Y$ and whether $\mathscr{I}_R(X) \subseteq \mathscr{I}_R(Y)$ whenever $X \sqsubset Y$,

being \sqsubseteq the order relation on P_{ω} . H. Barendregt [1, p. 228-240, 496-500] has shown that

$$\mathbf{P}_{\omega} \models X \sqsubseteq Y \Leftrightarrow BT(X)\eta_{\Box}BT(Y),$$

where η_{-} is the order relation defined as it follows.

DEFINITION 3.1: Let A be a B. T. and α one of its nodes having label $\lambda x_1 \ldots x_n . y$. The B. T. A' is an η -expansion of A at α if it results from A by replacing the subtree A_{α} , which has the form

by the subtree A'_{α} having the form

In the sequel if α is the root of A, we call the η -expansion at α head η -expansion, if α is a terminal node of A we call it terminal η -expansion.

DEFINITION 3.2: Let A, A' be two Böhm trees. A' is a (possibly) infinite η -expansion of A (shortly $A \leq_{\eta} A'$) if it results from A by the application of a (possibly infinite) sequence of η -expansions.

DEFINITION 3.3: Let A, A' be two Böhm trees. $A \eta \sqsubseteq A'$ if there exists a Böhm tree B, which is a (possibly) infinite η -expansion of A, such that $B \sqsubseteq A'$, i. e. $A \leq_{\eta} B \sqsubseteq A'$.

In the sequel if $A \eta_{\Box} B$, i. e. $A \leq_{\eta} A' \sqsubseteq B$ for some A', and no terminal (head) η -expansion is applied to A in order to obtain A', we say that B results from A without terminal (head) η -expansions.

LEMMA 3.1: Let X, Y be two λ -terms for which $BT(X)\eta \sqsubseteq BT(Y)$ and let X be of type Ξ . Y is of type Ξ if and only if BT(Y) results from BT(X)without head η -expansions.

Proof: Obvious.

THEOREM 3.1: The function g is not monotonic.

Proof: Let X be a λ -term of type Ξ and let Y be a λ -term for which $BT(X)\eta_{\Box}BT(Y)$. If BT(Y) results from BT(X) by some head η -expansion, from lemma 3.1 it follows that $\mathscr{I}_R(Y)$ is empty so $\mathscr{I}_R(X) \notin \mathscr{I}_R(Y)$, being $\mathscr{I}_R(X)$ not empty.

Notice that also in the case in which BT(Y) results from BT(X) without head η -expansions we can have $\mathscr{I}_R(X) \notin \mathscr{I}_R(Y)$. For example if

$$X = \lambda x_0 \cdot x_0 (\lambda x_1 \cdot x_1)$$
 and $Y = \lambda x_0 \cdot x_0 (\lambda x_1 x_2 \cdot x_1 x_2)$,

we have that $X_R = \lambda t_0 t_1 \cdot t_1 t_0$ is a right inverse for X but not for Y.

LEMMA 3.2: Let X, Y be two λ -terms for which $BT(X) \leq_{\eta} BT(Y)$ and let X be of type Σ . Y is of type Σ if and only if there exists $A \in \mathscr{A}(X) \cap \mathscr{L}$ such that BT(Y) results from BT(A) without terminal η -expansions.

Proof: Obvious.

THEOREM 3.2: The function f is not monotonic.

Proof: Obvious from lemma 3.2.

Notice that also in the case in which Y is of type Σ as X, we can have $\mathscr{I}_L(X) \notin \mathscr{I}_L(Y)$. For example if

 $X = \lambda x_0 x_1 x_2 \cdot x_1 (x_2 x_0)$ and $Y = \lambda x_0 x_1 x_2 \cdot x_1 (\lambda x_3 \cdot x_2 x_0 x_3)$

we have that $X_L = \lambda z \cdot z \mathbf{I} \mathbf{I}$ is a left inverse for X but not for Y.

REFERENCES

- 1. H. P. BARENDREGT, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981.
- 2. J. BERGSTRA and J. W. KLOP, Invertible Terms in the Lambda Calculus, Theor., Comp. Sci., vol. 9, 1980, p. 27-38.
- 3. C. BÖHM, Alcune proprietà delle forme β - η -normali nel λ -k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968.
- C. BÖHM and M. DEZANI-CIANCAGLINI, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., nº 14, 1974, p. 185-199.
- 5. A. CHURCH, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333.

- 6. A. CHURCH, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941.
- 7. H. B. CURRY and R. FEYS, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958.
- 8. M. DEZANI-CIANCAGLINI, Pattern-Matching Problems inside λ - β - η calculus, Proceedings Informatica 76, Bled, 1976.
- 9. M. DEZANI-CIANCAGLINI, Characterization of normal forms possessing inverse in the λ - β - η calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337.
- 10. J. LÉVY, An algebraic interpretation of the λ - β -k-Calculus and an application of a labelled λ -Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114.
- 11. C. P. WADSWORTH, The relation between computational and denotational properties for Scott's D_{∞} -models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521.