RAIRO. INFORMATIQUE THÉORIQUE

I. MARGARIA
 M. Zacchi

Right and left invertibility in $\lambda-\beta$-calculus

RAIRO. Informatique théorique, tome 17, $\mathrm{n}^{\mathrm{o}} 1$ (1983), p. 71-88
http://www.numdam.org/item?id=ITA_1983__17_1_71_0
© AFCET, 1983, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

RIGHT AND LEFT INVERTIBILITY IN λ - β-CALCULUS (*)

by I. Margaria and M. Zacchi (${ }^{1}$)

Communicated by J. F. Perrot

Abstract

A characterization of λ-terms having left and/or right inverses in λ - β-calculus is given and the sets of all and only λ-terms left/right invertible are constructed. The above results are obtained using the concept of Böhm tree, so this study is further used to characterize the λ-terms left/right invertible in the graph model \mathbf{P}_{ω}.

Résumé. - Dans ce papier on va caractériser les λ-termes invertibles à droite et/ou à gauche, en donnant les règles pour construire les deux ensembles constitués respectivement par tous les λ-termes ayant un inverse droite ou gauche. Puisque ces résultés ont été obtenus par la notion d'arbre de Böhm on peut utiliser cette étude au fin de caractériser les λ-termes invertibles à droite ou à gauche dans le modèle \mathbf{P}_{ω}.

0. INTRODUCTION

Aim of this paper is the characterization of λ-terms having left and/or right inverses in λ - β-calculus. The semigroup Λ of $\lambda-\beta-(\eta)$-terms, having the combinator $\mathbf{I} \equiv \lambda x . x$ as identity element and the operation \circ defined by $X \circ Y=\mathbf{B} X Y$ (where $\mathbf{B} \equiv \lambda x y z . x(y z)$) as composition, has been studied with respect to the left/right invertibility problem in [2], [4], [7, p. 167-168], [8], [9].
In particular in the λ - β-calculus the set of normal forms having at least one left or right inverse has been characterized in [4]. The same paper shows that the combinator I is the only normal form having both left and right inverse.
The present paper tries to give the final solution to the invertibility problem in λ - β-calculus showing the necessary and sufficient conditions under which an arbitrary λ-term possesses a left (right) inverse and characterizing the set of terms for which there exists only one left (right) inverse; for the

[^0]other left (right) invertible terms an infinite number of inverses is proved to exist. The basic definitions which the paper relies on are those of direct approximation [11], of Böhm tree [1] and of partial order relation \sqsubseteq on the set of λ - Ω-terms, as stated in [10]. Using these notions it is possible to carry on Λ the relation $\check{~ d e f i n i n g ~ a ~} \lambda$-term X less or equal to a λ-term $Y(X \sqsubseteq Y)$ if and only if its direct approximation $\Phi(X)$ is less or equal to the direct approximation $\Phi(Y)$ of $Y(\Phi(X) \sqsubseteq \Phi(Y))$ and to associate with a λ-term X the approximation set as the set of λ - Ω-terms $\Phi\left(X^{\prime}\right)$ such that X is β-convertible to X^{\prime}. Firstly we notice that every left (right) inverse of a λ-term X is a left (right) inverse of all λ-terms Y such that $X \sqsubseteq Y$. Then in order to characterize the set of terms having left inverse, an operation, called terminal extension, is introduced on the set of Böhm trees. Roughly speaking a terminal extension of a Böhm tree A is a Böhm tree A^{\prime} obtained from A modifying a terminal node of A either introducing in its label the abstraction of a new variable or pushing the head variable down of a level and substituting it by a bound variable. So we can prove that a λ-term X has a left inverse if and only if there exists in the approximation set of X at least one approximation which can be obtained from I applying a sequence of terminal extensions. Moreover it results that every term left invertible, different from I, possesses an infinite number of non-convertible left inverses.

The problem of the right invertibility is approached in a similar way. The operation of adding a son with label $\underline{\Omega}$ to the root of a Böhm tree A to obtain a Böhm tree A^{\prime} is called initial extension. This allows to assert that a λ-term X has right inverse iff there exists at least one approximation of X which can be obtained from I applying a sequence of initial extensions. Obviously, as a corollary, it results that \mathbf{I} is the only λ-term both left and right invertible. Furthermore we can prove that the number of right inverses for a right invertible term X is either one or infinite depending on the form of the term itself.

Finally we notice that the above results about invertibility can be carried on the graph model \mathbf{P}_{ω} [1, p. 467] and we show that the two functions which map an element of \mathbf{P}_{ω} into the set of all its right or left inverses, respectively, are not monotonic, i. e. it is possible to find a left (right) inverse of an element X of \mathbf{P}_{ω} which is not a left (right) inverse of an element Y, whereas $X \sqsubseteq Y$ ($\check{\sim}$ is the usual order relation on \mathbf{P}_{ω}).

1. NOTATIONS AND DEFINITIONS

In the sequel we will use the following notions and conventions:
i) λ-calculus means λ - β-calculus, normal form λ - β-normal form, $\geqslant,=, \equiv$
denote β-reducibility, α - β-convertibility and modulo α identity, respectively; moreover Λ represents the set of λ-terms;
ii) the word combinator will refer to closed λ-terms, i. e. terms without free variables; the combinators will be indicated by uppercase, boldface characters, for example $\mathbf{B} \equiv \lambda x y z \cdot x(y z), \mathbf{I} \equiv \lambda x . x$, etc.;
iii) we indicate by means of the ordered sequences of λ-terms

$$
\left\langle X_{0}, X_{1}, \ldots, X_{k}\right\rangle
$$

the λ-terms $\lambda z . z X_{0} X_{1} \ldots X_{k}$ where z does not occur free in any $X_{i}, 0 \leqslant i \leqslant k$ (Church n-tuple) [6];
iv) C[] denotes a context, i. e. a λ-term where one subterm is missing; $\mathrm{C}[X]$ then denotes the result of filling the missing subterm with X (for a more formal definition see [11]);
v) $X[x:=Y]$ indicates the λ-term obtained from a λ-term X by substituting in it the λ-term Y to every free occurrence (if any) of the variable x.

As the concept of approximation of a λ-term [11] and the related one of Böhm tree [1, p. 211] are very useful for this study, we summarize here the principal definitions and conventions about them.

A λ-term X has head normal form if it has the form $\lambda x_{1} x_{2} \ldots x_{m} . y X_{1} X_{2} \ldots X_{n}$ where:

- $x_{1}, x_{2}, \ldots, x_{m}$ are variables and $m \geqslant 0$;
- $X_{1}, X_{2}, \ldots, X_{n}$ are λ-terms and $n \geqslant 0$;
- y is a variable, free or bound (as usual it will be called the head variable of X).

The direct approximation $\Phi(X)$ of a λ-term X is defined as follows:
$\Phi(X)=\lambda x_{1} \ldots x_{m} \cdot y \Phi\left(X_{1}\right) \Phi\left(X_{2}\right) \ldots \Phi\left(X_{n}\right)$ if $X=\lambda x_{1} \ldots x_{m} \cdot y X_{1} X_{2} \ldots X_{n} ;$ $\Phi(X)=\underline{\Omega}$, where $\underline{\Omega}$ is an extra constant, if X has not a head normal form.

The set $\Phi(\Lambda)$ will be indicated by \mathscr{N} (set of λ - Ω-terms). Inside \mathscr{N} the following partial order relation \sqsubseteq is defined [10]: for any M, N of $\mathscr{N} M \sqsubseteq N$ iff either

$$
M \equiv \underline{\Omega} ; \quad \text { or }
$$

$$
\begin{equation*}
M \equiv \lambda x_{1} x_{2} \ldots x_{n} \cdot x_{j} M_{0} \ldots M_{k} \tag{ii}
\end{equation*}
$$

$$
N \equiv \lambda x_{1} x_{2} \ldots x_{n} \cdot x_{j} N_{0} \ldots N_{k}
$$

and $\quad M_{i} \sqsubseteq N_{i}$ for any $i(0 \leqslant i \leqslant k)$.
Given a λ-term X we call approximation set of $X: \mathscr{A}(X)$ the subset of \mathscr{N} so defined:

$$
\mathscr{A}(X)=\{M \in \mathscr{N} \mid M \sqsubseteq \Phi(X)\} .
$$

The partial order relation \subseteq can be carried on Λ as follows: for any X, Y of $\Lambda, X \subseteq Y$ iff $\Phi(X) \subseteq \Phi(Y)$.

We can visualize every element M of \mathscr{N} by means of a suitable tree: the Böhm tree (B. T.) of M. Given an element M of \mathcal{N}, the B. T. of $M: B T(M)$ is the labelled tree so defined:
i) if $M \equiv \Omega \quad$ вт $(M) \equiv \Omega$

We will refer to \mathscr{B} as to the set of the B. T. of the elements of \mathscr{N}. The nodes of a B. T. will be indicated by strings of natural numbers (included the empty string ε, labelling the root) in the usual way, so that β denotes a successor of α if and only if α is a prefix of $\beta: \beta=\alpha \gamma$ for some γ. Let A be a B. T. and α be a node with label $\lambda x_{1} \ldots x_{n} \cdot y$, in the sequel we will use the following conventions [see 1, p. 218]:
i) A_{α} indicates the subtree of A having as root the node α;
ii) $\bar{\alpha}$ indicates the path from the root to the node α;
iii) $b(\alpha)$ indicates the vector of the bound variables occurring in the label of α, i. e. $b(\alpha)=x_{1} x_{2} \ldots x_{n}$;
$i v) b(\bar{\alpha})$ indicates the vector of the bound variables occurring in the labels of the nodes of the path $\bar{\alpha}$, inductively defined as follows:

$$
\begin{aligned}
& -b(\bar{\varepsilon})=b(\varepsilon) \\
& -b\left(\alpha^{\prime}\langle k\rangle\right)=b\left(\alpha^{\prime}\right) b(k) .
\end{aligned}
$$

By way of example, for the B. T. A of figure 1 , if we choose as node α the node $\langle 10\rangle$, we have:

$$
\begin{aligned}
& b(\alpha)=x_{4} \\
& b(\bar{\alpha})=x_{0} x_{1} x_{2} x_{3} x_{4} \\
& \mathbf{A}_{\alpha} \equiv \lambda \times_{\mathbf{4}} \cdot x_{\mathbf{4}}
\end{aligned}
$$

Figure 1. - A Böhm tree A.
By streching the Böhm tree definition, in the sequel sometimes we will refer to the B. T. of an element X of $\Lambda: B T(X)$, as to the B. T. of its direct approximation.

Obviously any B. T. A of \mathscr{B} will define one and only one term of $\mathscr{N}: M_{A}$ such that $B T\left(M_{A}\right)=A$ (for example for the B. T. A of figure 1

$$
\left.M_{\mathrm{A}} \equiv \lambda x_{0} x_{1} x_{2} x_{3} \cdot x_{3} \underline{\Omega}\left(x_{0}\left(\lambda x_{4} \cdot x_{4} x_{2}\right) x_{6}\right) \lambda x_{5} \cdot x_{1}\right) ;
$$

hence the order relation \sqsubseteq on \mathcal{N} can be carried on $\mathscr{B}: A \sqsubseteq B$ iff $M_{A} \sqsubseteq M_{B}$.

2. Right and left invertibility

Aim of this section is to study the conditions under which an arbitrary λ-term X has right and/or left inverses. In the sequel we use the following notations:
i) $X_{R}\left(X_{L}\right)$ denotes a right (left) inverse of a λ-term X, i. e.,:

$$
\mathbf{B} X X_{R}=\mathbf{I} \quad\left(\mathbf{B} X_{L} X=\mathbf{I}\right) .
$$

ii) $\mathscr{I}_{R}(X)\left(\mathscr{I}_{L}(X)\right)$ denotes the set of all the right (left) inverses of a λ-term X.

Theorem 1: Let X, Y be two λ-terms of Λ for which $X \sqsubseteq Y$, then:

$$
\begin{aligned}
& \text { i) } \mathscr{I}_{\mathrm{R}}(X) \subseteq \mathscr{I}_{\mathrm{R}}(Y) \\
& \text { ii) } \mathscr{I}_{L}(X) \subseteq \mathscr{I}_{L}(Y) \text {. }
\end{aligned}
$$

Proof: i) The assertion is trivially true for $\mathscr{I}_{R}(X)$ empty.
If it is not true, we prove that any right inverse X_{R} of X is also a right inverse for Y. By definition we have:
$X\left(X_{R} y\right) \geqslant y$ for any variable y not free in X and X_{R}.
Since Lévy has proved (th. 5.8, p. 105 of [10]) that if $X \sqsubseteq Y$ then $\mathbf{C}[X] \sqsubseteq \mathbf{C}[Y]$ for any context $\mathbf{C}\left[\right.$], if we choose as context [] $\left(X_{R} y\right)$ it will be:

$$
y \leqslant X\left(X_{R} y\right) \sqsubseteq Y\left(X_{R} y\right) \text { hence } Y\left(X_{R} y\right) \geqslant y .
$$

ii) The proof is analogous to the preceding one if we choose as context $X_{L}([\quad] y)$.

2.1. Left Invertibility

Definition 2.1.1: Let A, A^{\prime} be two Böhm trees and α a terminal node of A with label $\lambda x_{i_{1}} x_{i_{2}} \ldots x_{i_{h}} . x_{t}$. We say that A^{\prime} is a terminal extension of A in α if A^{\prime} results from A by one of the following substitutions:

1) the label of the node α in A is replaced in A^{\prime} by the label

$$
\left.\lambda x_{i_{1}} x_{i_{2}} \ldots x_{i_{h}} x_{i_{h+1}}, x_{t} \quad \text { (terminal extension of type } 1\right) ;
$$

2) the subtree A_{α} is replaced in A^{\prime} by a subtree A_{α}^{\prime} such that:
a) the label of α is $\lambda x_{i_{1}} \ldots x_{i_{n}} \cdot x_{j}$, where x_{j} is a bound variable distinct from x_{t};
b) α has m sons with $m \geqslant 1$. Each of these sons are terminal nodes, one and only one of them has label x_{t}, whereas the remaining $m-1$ have label $\underline{\Omega}$ (see fig. 2) (terminal extension of type 2).

Figure 2. - A terminal extension of type 2.

With every terminal extension e of type 2, we associate the triple

$$
\tau(e)=\left\langle x_{j}, m, k\right\rangle,
$$

where x_{j} and m are respectively the name of the head variable and the number of sons of the node α in A^{\prime} and k indicates that the only son of α in A^{\prime} with label different from Ω is the k-th.

Definition 2.1.2: Let A, A^{\prime} be two Böhm trees.
We say that A^{\prime} is a terminal extension of $A\left(A \underset{t-\mathrm{ext}}{\longrightarrow} A^{\prime}\right)$ if it is a terminal extension of A in some terminal node.

Definition 2.1.3: We call Left Invertible Term Generator Set the subset $\mathscr{L} \subset \mathscr{N}$ inductively defined as follows:
i) $\mathbf{I} \in \mathscr{L}$
ii) $N \in \mathscr{L}$ and $B T(N) \underset{t-\text { ext }}{\longrightarrow} B T\left(N^{\prime}\right) \Rightarrow N^{\prime} \in \mathscr{L}$.

Definition 2.1.4: Let N be an element of \mathscr{L}. We call history of $N: \mathscr{H}(N)$ a sequence of elements of $\mathscr{L}:\left\langle N^{0}, N^{1}, \ldots, N^{h}\right\rangle$ such that $N^{0} \equiv \mathbf{I}, N^{h} \equiv N$ and for any $i, 0 \leqslant i \leqslant h-1, B T\left(N^{i}\right) \xrightarrow[t-\mathrm{ext}]{\longrightarrow} B T\left(N^{i+1}\right)$.

Lemma 2.1.1: Every element N of \mathscr{L} has one and only one history: $\mathscr{H}(N)$.
Proof: Obvious from definition 2.1.1 and definition 2.1.3.

Figure 3. - Böhm trees of the history of the λ - Ω-term $\lambda x_{0} x_{1} x_{2} x_{3} \cdot x_{2}\left(\lambda x_{4} \cdot x_{3} \underline{\Omega} x_{0}\right) \underline{\Omega}$.

Definition 2.1.5: Let N be an element of \mathscr{L}. We say that N is a term nonhomogeneous for the variable x_{t} if in its history $\mathscr{H}(N)$ there are at least two
terminal extensions e, e^{\prime} of type 2 with $\tau(e)=\left\langle x_{t}, m, k\right\rangle$ and $\tau\left(e^{\prime}\right)=\left\langle x_{t}, m^{\prime}, k^{\prime}\right\rangle$ such that $m \neq m^{\prime}$ and/or $k \neq k^{\prime}$.

Figure $4(a)$ shows the Böhm tree of a term non-homogeneous for the variable x_{1}, whereas it is homogeneous for the variable x_{2}; instead the term whose Böhm tree is in figure $4(b)$ is homogeneous for each variable occurring as head variable; in such a case we say that the term is homogeneous.

Figure 4. - Böhm trees of a non-homogeneous (a) and of a homogeneous λ - Ω-term (b).

From lemma 3 of [3] it follows lemma 2.1.2 which has been rewritten and proved (in a simpler way) using the notation of the present work.

Lemma 2.1.2: Let N be a $\lambda-\underline{\Omega}$ term of \mathscr{L}, non-homogeneous for a set of variables $\left\{x_{l_{1}}, x_{l_{2}}, \ldots, x_{l_{k}}\right\}$. We state that there is a normal combinator
$\mathbf{C}_{[m]} \mathbf{I}$ such that the term $N^{\prime}\left[x_{l_{\mathrm{i}}}:=\mathbf{C}_{[m]} \mathbf{I}\right]$, where N^{\prime} is obtained from N by eliminating the abstraction of $x_{l_{i}}$, is non-homogeneous for the set

$$
\left\{x_{l_{1}}, x_{l_{2}}, \ldots, x_{l_{i-1}}, x_{l_{i+1}}, \ldots, x_{l_{k}}\right\} .
$$

Proof: Let $e_{1}, e_{2}, \ldots, e_{n}$ be the terminal extensions of type 2 , occurring in $\mathscr{H}(N)$ such that the first element of $\tau\left(e_{j}\right)$ is $l_{i}(1 \leqslant j \leqslant n)$, i. e.:

$$
\begin{aligned}
& \tau\left(e_{1}\right)=\left\langle x_{l_{i}}, m_{1}, k_{1}\right\rangle \\
& \tau\left(e_{2}\right)=\left\langle x_{l_{i}}, m_{2}, k_{2}\right\rangle \\
& \cdot \cdot \\
& \tau\left(e_{n}\right)=\left\langle x_{l_{i}}, m_{n}, k_{n}\right\rangle .
\end{aligned}
$$

Let $m=\max \left(m_{1}, m_{2}, \ldots, m_{n}\right)$. It is easy to prove that the normal combinator $\mathbf{C}_{[m]} \mathbf{I} \equiv \lambda t_{0} t_{1} \ldots t_{m} \cdot t_{m} t_{0} t_{1} \ldots t_{m-1}$ satisfies the thesis, because it substitutes the different occurrences of $x_{l_{i}}$ by different variables.

Lemma 2.1.3: Every λ-term X of Λ, whose direct approximation is in \mathscr{L}, has at least a left inverse.

Proof : Firstly we prove that every λ-term X, whose direct approximation is a homogeneous element of \mathscr{L} has a left inverse. From definition 2.1.3 it follows that there is one and only one terminal node of $B T(X)$ having label different from $\underline{\Omega}$; let such a node be α and let $b(\bar{\alpha})=x_{0} x_{1} \ldots x_{n}, n \geqslant 0$. We assert that there are n suitable λ-terms $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}$ such that the sequence $\left\langle\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}\right\rangle$ is a left inverse for X. We prove this assertion by induction on the number h of elements of $\mathscr{H}(\Phi(X))$.

$$
\begin{array}{ll}
h=1 . & X=\mathbf{I} \\
h+1 .
\end{array} \quad X_{L}=\lambda z . z \equiv \mathbf{I} .
$$

Given $\mathscr{H}(\Phi(X))=\left\langle N^{0}, N^{1}, \ldots, N^{h}, N^{h+1}\right\rangle$, let $X^{i}, 0 \leqslant i \leqslant h$, be a λ-term such that $\Phi\left(X^{i}\right)=N^{i}$, let $X^{h+1}=X$ and $A^{i}=B T\left(N^{i}\right)$. We distinguish two cases either A^{h+1} extends A^{h} by a terminal extension of type 1 or A^{h+1} extends A^{h} by a terminal extension of type 2 . In the first case we say that a left inverse for X can be obtained by adding to the left inverse of X^{h} (existing by induction hypothesis) a generic λ-term Ψ_{n}, i. e.
if

$$
\begin{aligned}
& X_{L}^{h}=\left\langle\Psi_{1}^{h}, \Psi_{2}^{h}, \ldots, \Psi_{n-1}^{h}\right\rangle \\
& X_{L}^{h+1} \quad \text { will be }\left\langle\Psi_{1}^{h}, \Psi_{2}^{h}, \ldots, \Psi_{n-1}^{h}, \Psi_{n}\right\rangle
\end{aligned}
$$

In fact it follows from the definitions of \mathscr{L} and of terminal extension of type 1 that:

$$
\left(X^{h+1} y\right)=\left(X^{h} y\right)\left[y:=\lambda x_{n} \cdot y\right]
$$

vol. $17, \mathrm{n}^{\circ} 1,1983$
and by induction hypothesis:
i. e.:

$$
\begin{aligned}
& \left(X^{h+1} y\right) \Psi_{1}^{h} \Psi_{2}^{h} \ldots \Psi_{n-1}^{h} \geqslant \lambda x_{n} \cdot y \\
& \left(\lambda x_{n} \cdot y\right) \Psi_{n} \geqslant y
\end{aligned}
$$

In the second case, let $\left\langle x_{j}, m, k\right\rangle$ be the triple associated with the $(h+1)-$ th terminal extension. If x_{j} occurs as head variable in some terminal extension preceding the $(h+1)$-th one, from homogeneity hypotesis it follows that the left inverse X_{L}^{h} (existing by induction hypothesis) is also a left inverse for X^{h+1}; otherwise we prove that a left inverse of X^{h+1} can be obtained by substituting in the left inverse X_{L}^{h} for the λ-term Ψ_{j}^{h} the normal combinator (selector)

$$
\begin{aligned}
\mathbf{U}_{k}^{m} & =\lambda t_{1} t_{2} \ldots t_{m} \cdot t_{k}, \quad \text { i. e.: } \\
X_{L}^{h+1} & =\left\langle\Psi_{1}^{h}, \Psi_{2}^{h}, \ldots, \Psi_{j-1}^{h}, \mathbf{U}_{k}^{m}, \Psi_{j+1}^{h}, \ldots\right\rangle
\end{aligned}
$$

It follows from definitions of \mathscr{L} and of terminal extension of type 2, that:

$$
\left(X^{h+1} y\right)=\left(X^{h} y\right)\left[y:=x_{j} X_{1}^{\prime} X_{2}^{\prime} \ldots X_{k-1}^{\prime} y X_{k+1}^{\prime} \ldots X_{m}^{\prime}\right]
$$

where X_{i}^{\prime} are unsolvable terms; then:
$\left(X^{h+1} y\right) \Psi_{1}^{h} \Psi_{2}^{h} \ldots \Psi_{j-1}^{h} \mathbf{U}_{k}^{m} \Psi_{j+1}^{h} \ldots \geqslant \mathbf{U}_{k}^{m} X_{1}^{\prime} X_{2}^{\prime} \ldots X_{k-1}^{\prime} y X_{k+1}^{\prime} \ldots X_{m}^{\prime} \geqslant y$.
Now, let us suppose that X has a direct approximation non-homogeneous only for one variable x_{i}. From lemma 2.1.2 it follows that there exists an integer m such that the term $N^{\prime}\left[x_{i}:=\mathbf{C}_{[m]} \mathbf{I}\right]$, where N^{\prime} is obtained from $\Phi(X)$ by eliminating the abstraction of x_{i}, is homogeneous. Let X^{\prime} be a λ-term of Λ such that $\Phi\left(X^{\prime}\right)=N^{\prime}\left[x_{i}:=\mathbf{C}_{[m]} \mathbf{I}\right]$ and let X_{L}^{\prime} be its left inverse, existing for the first part of this lemma: $X_{\mathrm{L}}^{\prime}=\left\langle\Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \ldots, \Psi_{n}^{\prime}\right\rangle$. We maintain that the sequence $X_{L}=\left\langle\Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \ldots, \Psi_{i-1}^{\prime}, \mathbf{C}_{[m]} \mathbf{I}, \Psi_{i}^{\prime}, \Psi_{i+1}^{\prime}, \ldots, \Psi_{n}^{\prime}\right\rangle$ is a left inverse for X. In fact:

$$
\begin{aligned}
& \left(X^{\prime} y\right) \Psi_{1}^{\prime} \Psi_{2}^{\prime} \ldots \Psi_{i-1}^{\prime}=(X y) \Psi_{1}^{\prime} \Psi_{2}^{\prime} \ldots \Psi_{i-1}^{\prime}\left(\mathbf{C}_{[m]} \mathbf{l}\right) \\
& (X y) \Psi_{1}^{\prime} \Psi_{2}^{\prime} \ldots \Psi_{i-1}^{\prime}\left(\mathbf{C}_{[m]}\right] \Psi_{i}^{\prime} \ldots \Psi_{n}^{\prime}=\left(X^{\prime} y\right) \Psi_{1}^{\prime} \Psi_{2}^{\prime} \ldots \Psi_{i-1}^{\prime} \Psi_{i}^{\prime} \ldots \Psi_{n}^{\prime} \geqslant y .
\end{aligned}
$$

The proof can be generalized in a obvious way to the case of terms nonhomogeneous for more than one variable.

Lemma 2.1.4: Every λ-term of Λ, distinct from I and having the direct approximation in \mathscr{L}, has an infinite number of non convertible left inverses.

Proof: Let X be a λ-term satisfying the hypothesis of this lemma. If some of the λ-terms of the not empty sequence X_{L}, obtained by the construction of lemma 2.1.3, are arbitrary we can obtain an infinite number of left inverses choosing them in infinite ways.

Instead if each Ψ_{i} has been substituted by a suitable combinator, we can obtain an infinite number of left inverses as follows. Let \mathbf{U}_{k}^{m} be a selector occurring in X_{L} (from proof of lemma 2.1 .3 it is clear that in X_{L} we have surely some selectors), i. e.:

$$
X_{L}=\left\langle\Psi_{1}, \Psi_{2}, \ldots, \Psi_{i-1}, \mathbf{U}_{k}^{m}, \Psi_{i+1}, \ldots, \Psi_{k}\right\rangle
$$

It is easy to prove that

$$
X_{L}^{\prime}=\left\langle\Psi_{1}, \Psi_{2}, \ldots, \Psi_{i-1}, \mathbf{U}_{k}^{m+n}, \Psi_{i+1}, \ldots, \Psi_{h}, \Phi_{1}, \ldots, \Phi_{n}\right\rangle
$$

where $\Phi_{i}(1 \leqslant i \leqslant n)$ are generic λ-terms, is another left inverse for X, nonconvertible to X_{L} :
$X_{L}^{\prime}(X y) \geqslant(X y) \Psi_{1} \Psi_{2} \ldots \Psi_{i-1} \mathbf{U}_{k}^{m+n} \Psi_{i+1} \ldots \Psi_{n} \Phi_{1} \Phi_{2} \ldots \Phi_{n} \geqslant$

$$
\geqslant\left(\lambda t_{1} t_{2} \ldots t_{n} \cdot y\right) \Phi_{1} \Phi_{2} \ldots \Phi_{n} \geqslant y .
$$

Definition 2.1.6: A λ-term X of Λ is of type Σ if the set $\mathscr{A}(X) \cap \mathscr{L}$ is not empty.

Remark 1: For any Böhm tree $B T(X)$ of a λ-term X of type Σ (shortly B. T. of type Σ), there is at least a terminal node σ, such that:
$i)$ the first component of the vector $b(\bar{\sigma})$ occurs as head variable only in the label of σ;
ii) every head variable in the label of a not terminal node of the path $\bar{\sigma}$, is bound.

The Böhm tree of figure 5 is of type Σ, because the terminal nodes $\langle 2\rangle$ and $\langle 11\rangle$ satisfy the conditions of the remark 1 .

Figure 5. - A Böhm tree of type Σ.

Theorem 2.1.1: A λ-term X has at least a left inverse if and only if it is of type Σ.

Proof: If X is of type Σ, there is at least an approximation $N^{\prime} \subseteq \Phi(X)$ belonging to \mathscr{L}, so for theorem 2.1 and lemma 2.1.3 X has at least a left inverse.

Now, let us suppose, per absurdum, that the λ-term X not of type Σ has a left inverse. If X is not of type Σ one of the conditions of remark 1 is not satisfied.

If for any path $\bar{\sigma}$ of $B T(X)$ the condition i) of remark 1 does not hold, then in $(X y)$ the free variable y, if it occurs, always occurs applied to a positive number of arguments, which cannot be eliminated using only β-reductions. Instead if for any path for which condition i) of remark 1 holds, there is some non-terminal node whose label has as head variable a free variable, then there is no λ-term Y such that in $Y(X y)$ this free variable can be erased to obtain y.

2.2. Right Invertibility

Definition 2.2.1: Let A, A^{\prime} be two B. T., different from Ω. We say that A^{\prime} is an initial extension of $A\left(A \underset{i-\text { ext }}{\longrightarrow} A^{\prime}\right)$ if A^{\prime} results from \bar{A} by adding to its root a son with label $\underline{\Omega}$ (see fig. 6)

Figure 6. - Two Böhm trees \mathbf{A} and \mathbf{A}^{\prime} such that $\mathbf{A} \xrightarrow[i-\mathrm{ext}]{ } \mathbf{A}^{\prime}$.
Definition 2.2.2: We call Right Invertible Term Generator Set the subset $\mathscr{R} \subset \mathscr{N}$ inductively defined as follows:
i) $\mathbf{I} \in \mathscr{R}$
ii) $N \in \mathscr{R}$ and $B T(N) \xrightarrow[i-\mathrm{ext}]{ } B T\left(N^{\prime}\right) \Rightarrow N^{\prime} \in \mathscr{R}$.

Lemma 2.2.1: Every λ-term X of Λ, whose direct approximation $\Phi(X)$ is in \mathscr{R} has one and only one right inverse X_{R}.

Proof: " One " part. Let X be $\lambda x \cdot x X_{1} X_{2} \ldots X_{h}$, with $X_{i}(1 \leqslant i \leqslant h)$ unsolvable; we take as X_{R} the λ-term $\mathbf{U}_{1}^{h+1} \equiv \lambda x_{0} x_{1} \ldots x_{h}$. x_{0}. It's trivial that $X\left(X_{R} y\right) \geqslant y$, so X_{R} is a right inverse for X.
" Only one" part. Let us suppose, per absurdum, that $X=\lambda z . z X_{1} \ldots X_{h}$,
with $X_{i}(1 \leqslant i \leqslant h)$ unsolvable, has a right inverse $X_{R}^{\prime}=\lambda x_{0} x_{1} \ldots x_{n} \cdot x_{j} Y_{1} Y_{2} \ldots Y_{t}$ distinct from $X_{R}=\lambda x_{0} x_{1} \ldots x_{h}, x_{0}$.

Since, from the definition of right inverse,

$$
\left(X_{R}^{\prime} y\right) X_{1} \ldots X_{h} \geqslant y
$$

we must have $n \leqslant h$, otherwise we cannot eliminate the $n-h$ initial abstractions.
Since from theorem 2.1.1 it follows that X_{R}^{\prime} is of type Σ, the head variable x_{j} of X_{R}^{\prime} must be exactly x_{0} if $t=0$, different from x_{0} and bound if $t \neq 0$. In the first case we must have $n=h$, otherwise y remains applied to a positive number of λ-terms, which cannot be eliminated to give y, hence $X_{R}^{\prime}=X_{R}$, contrary to the hypothesis. In the second case, we should have, for some X_{j} unsolvable:

$$
X_{j} Y_{1}^{\prime} \ldots Y_{t}^{\prime} X_{n+1} \ldots X_{n} \geqslant y
$$

where:

$$
Y_{i}^{\prime}=Y_{i}\left[x_{0}:=y, x_{1}:=X_{1}, \ldots, x_{n}:=X_{n}\right] \quad \text { for } \quad 1 \leqslant i \leqslant t
$$

and this is an absurdum.
Definition 2.2.3: We say that a λ-term \bar{X} of Λ is of type Ξ if the set $\mathscr{A}(X) \cap \mathscr{R}$ is not empty.

Example: The λ-terms whose B. T. is shown in figure 7 are of type Ξ, because they have as approximation the λ - $\underline{\text {-term }} \lambda x_{0} \cdot x_{0} \underline{\Omega \Omega}$.

Figure 7. - A Böhm tree of λ-terms of type Ξ.

Remark 2: If X is of type Ξ, it has the form $\lambda x . x X_{1} \ldots X_{h}$.
Theorem 2.2.1: A λ-term X has at least a righ inverse if and only if it is of type Ξ.

Proof: If X is a λ-term of type $\Xi, \mathscr{I}_{R}(X)$ is not empty from lemma 2.2.1 and theorem 2.1. Now let us suppose X not of type Ξ; then X can have in its head more than one abstraction: $X=\lambda x_{0} x_{1} \ldots x_{n} \cdot x_{i} X_{1} \ldots X_{h}$ and/or X can have as head variable a free variable $X=\lambda x_{0} x_{1} \ldots x_{n} \cdot y X_{1} \ldots X_{h}$. In the first case the $n+1$ initial abstractions cannot be eliminated using β-reductions; in the second case the free variable cannot be erased.

Corollary: The only λ-term having left and right inverse is the combinator I.

Definition 2.2.4: We say that a λ-term X is Ω-like if either:
i) X is unsolvable, or
ii) X is solvable and its head variable is free.

We say X not Ω-like on the contrary.
Lemma 2.2.2: Let X be a λ-term:
i) if X is Ω-like, for any λ-term Y, the application $(X Y)$ is also an Ω-like term.
ii) if X is Ω-like, for any variable y different from the head variable of X, if any, there are no $h \lambda$-terms $Y_{1}, Y_{2}, \ldots, Y_{h}$ such that:

$$
X Y_{1} Y_{2} \ldots Y_{h} \geqslant y
$$

iii) if X is not Ω-like there are $h \lambda$-terms $Y_{1}, Y_{2}, \ldots, Y_{h}$ such that:

$$
X Y_{1} Y_{2} \ldots Y_{h} \geqslant \mathbf{I}
$$

Proof: Both assertions i) and ii) are trivially true for X unsolvable. Let us suppose X solvable with head variable free: $X=\lambda x_{1} x_{2} \ldots x_{k} \cdot a X_{1} \ldots X_{h}$, then the head variable a cannot be eliminated using only β-reductions, so ($X Y$) is solvable with head variable a, moreover it is impossible to reduce X to a free variable y different from a.

To prove assertion iii), let us suppose $X=\lambda x_{1} x_{2} \ldots x_{k}, x_{j} X_{1} \ldots X_{s}$, with x_{j} bound. If we choose $h=k, Y_{i}=\Psi_{i}$, where Ψ_{i} is a generic λ-term, for $1 \leqslant i<j$ and $j<i \leqslant h$, and $Y_{j}=\mathbf{U}_{s+1}^{s+1}$, where $\mathbf{U}_{s+1}^{s+1} \equiv \lambda x_{0} x_{1} \ldots x_{s} \cdot x_{s}$, it is trivially true that $X Y_{1} \ldots Y_{h} \geqslant \mathbf{I}$.

Theorem 2.2.2: Let X be a λ-term of type $\Xi: X=\lambda z . z X_{1} \ldots X_{h}$. If every X_{i} is Ω-like, then X has one and only one right inverse, else X has an infinite number of right inverses.

Proof: Let us suppose $X=\lambda z . z X_{1} \ldots X_{h}$ with $X_{i}(1 \leqslant i \leqslant h) \Omega$-like. We
must prove that X has only the right inverse given in the proof of lemma 2.2.1: $X_{R}=\lambda x_{0} \ldots x_{h}, x_{0}$.

The existence of another inverse X_{R}^{\prime} should cause an absurdum, in fact being $X_{R}^{\prime}=\lambda x_{0} x_{1} \ldots x_{n} \cdot x_{j} Y_{1} \ldots Y_{h}$ of type Σ because of theorem 2.1.1, its head variable must be bound and different from x_{0} (see proof of lemma 2.2.1), then we should have, for some $X_{i} \Omega$-like and some $Z_{1}, Z_{2}, \ldots, Z_{k}$:

$$
X_{i} Z_{1} \ldots Z_{k} \geqslant y
$$

and this is an absurdum because of lemma 2.2.2, case $i i$).
Now let us suppose that at least one λ-term X_{i} is not Ω-like. For lemma 2.2.2, case $i i i$), there exist $h \lambda$-terms $Y_{1}, Y_{2}, \ldots, Y_{h}$ such that:

$$
X_{i} Y_{1} Y_{2} \ldots Y_{h} \geqslant \mathbf{I}
$$

Let $\mathscr{S}(X)$ be the set inductively defined as follows:
i) $X_{R}=\lambda x_{0} \ldots x_{h} \cdot x_{0}$ is in $\mathscr{S}(X)$
ii) if Y is in $\mathscr{S}(X)$ and Y^{\prime} is a term obtained by substituting in the $B T(Y)$ to the terminal node x_{0} the subtree:

then Y^{\prime} is in $\mathscr{S}(X)$.
It is obvious that $\mathscr{S}(X)$ has an infinite number of elements, which are all right inverses of X.

3. LEFT AND RIGHT INVERTIBILITY IN THE GRAPH MODEL \mathbf{P}_{ω}

H. Barendregt [1, p. 496-500], reformulating in terms of Böhm trees the Hyland's characterization of the equality in the graph model \mathbf{P}_{ω}, has shown that

$$
\mathbf{P}_{\omega} \vDash X=Y \Leftrightarrow B T(X)=B T(Y) .
$$

So we can say that the above results about invertibility on \mathscr{N} (or \mathscr{B}) can be carried on \mathbf{P}_{ω}. Now let f and g be the following functions

$$
\begin{array}{ll}
f: \mathbf{P}_{\omega} \rightarrow 2^{\mathbf{P}_{\omega}} & f(X)=\mathscr{I}_{L}(X) \\
g: \mathbf{P}_{\omega} \rightarrow 2^{\mathbf{P}_{\omega}} & g(X)=\mathscr{I}_{R}(X),
\end{array}
$$

since both \mathbf{P}_{ω} and $2^{\mathbf{P}_{\omega}}$ are complete lattices [1, p. 19], it is of some interest to investigate whether f and g are monotonic functions, i. e.
whether

$$
\begin{array}{llll}
\text { whether } & \mathscr{I}_{L}(X) \subseteq \mathscr{I}_{L}(Y) & \text { whenever } & X \sqsubseteq Y \\
\text { and whether } & \mathscr{I}_{R}(X) \subseteq \mathscr{I}_{R}(Y) & \text { whenever } & X \sqsubseteq Y,
\end{array}
$$

being $\check{\approx}$ the order relation on \mathbf{P}_{ω}. H. Barendregt [1, p. 228-240, 496-500] has shown that

$$
\mathbf{P}_{\omega} \vDash X \check{\approx} Y \Leftrightarrow B T(X) \eta_{\sqsubseteq} B T(Y),
$$

where η_{\subseteq} is the order relation defined as it follows.
Definition 3.1: Let A be a B. T. and α one of its nodes having label $\lambda x_{1} \ldots x_{n} \cdot y$. The B. T. A^{\prime} is an η-expansion of A at α if it results from A by replacing the subtree A_{α}, which has the form

by the subtree A_{α}^{\prime} having the form

In the sequel if α is the root of A, we call the η-expansion at α head η-expansion, if α is a terminal node of A we call it terminal η-expansion.

Definition 3.2: Let A, A^{\prime} be two Böhm trees. A^{\prime} is a (possibly) infinite η-expansion of A (shortly $A \leqslant_{\eta} A^{\prime}$) if it results from A by the application of a (possibly infinite) sequence of η-expansions.

Definition 3.3: Let A, A^{\prime} be two Böhm trees. $A \eta_{\sqsubseteq} A^{\prime}$ if there exists a Böhm tree B, which is a (possibly) infinite η-expansion of A, such that $B \sqsubseteq A^{\prime}$, i. e. $A \leqslant_{\eta} B \sqsubseteq A^{\prime}$.

In the sequel if $A \eta_{\sqsubseteq} B$, i. e. $A \leqslant_{\eta} A^{\prime} \sqsubseteq B$ for some A^{\prime}, and no terminal (head) η-expansion is applied to A in order to obtain A^{\prime}, we say that B results from A without terminal (head) η-expansions.

Lemma 3.1: Let X, Y be two λ-terms for which $B T(X) \eta_{\sqsubseteq} B T(Y)$ and let X be of type $\Xi . Y$ is of type Ξ if and only if $B T(Y)$ results from $B T(X)$ without head η-expansions.

Proof: Obvious.
Theorem 3.1: The function g is not monotonic.
Proof: Let X be a λ-term of type Ξ and let Y be a λ-term for wnus $B T(X) \eta_{\sqsubseteq} B T(Y)$. If $B T(Y)$ results from $B T(X)$ by some head η-expansion, from lemma 3.1 it follows that $\mathscr{I}_{R}(Y)$ is empty so $\mathscr{I}_{R}(X) \nsubseteq \mathscr{I}_{R}(Y)$, being $\mathscr{I}_{R}(X)$ not empty.

Notice that also in the case in which $B T(Y)$ results from $B T(X)$ without head η-expansions we can have $\mathscr{I}_{R}(X) \nsubseteq \mathscr{I}_{R}(Y)$. For example if

$$
X=\lambda x_{0} \cdot x_{0}\left(\lambda x_{1} \cdot x_{1}\right) \quad \text { and } \quad Y=\lambda x_{0} \cdot x_{0}\left(\lambda x_{1} x_{2} \cdot x_{1} x_{2}\right)
$$

we have that $X_{R}=\lambda t_{0} t_{1} \cdot t_{1} t_{0}$ is a right inverse for X but not for Y.
Lemma 3.2: Let X, Y be two λ-terms for which $B T(X) \leqslant_{\eta} B T(Y)$ and let X be of type $\Sigma . Y$ is of type Σ if and only if there exists $A \in \mathscr{A}(X) \cap \mathscr{L}$ such that $B T(Y)$ results from $B T(A)$ without terminal η-expansions.

Proof: Obvious.
Theorem 3.2: The function f is not monotonic.
Proof: Obvious from lemma 3.2.
Notice that also in the case in which Y is of type Σ as X, we can have $\mathscr{I}_{L}(X) \nsubseteq \mathscr{I}_{L}(Y)$. For example if

$$
X=\lambda x_{0} x_{1} x_{2} \cdot x_{1}\left(x_{2} x_{0}\right) \quad \text { and } \quad Y=\lambda x_{0} x_{1} x_{2} \cdot x_{1}\left(\lambda x_{3} \cdot x_{2} x_{0} x_{3}\right)
$$

we have that $X_{L}=\lambda z . z \mathbf{I I}$ is a left inverse for X but not for Y.

REFERENCES

1. H. P. Barendregt, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981.
2. J. Bergstra and J. W. Klop, Invertible Terms in the Lambda Calculus, Theor., Comp. Sci., vol. 9, 1980, p. 27-38.
3. С. Вӧнм, Alcune proprietà delle forme β - η-normali nel λ - k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968.
4. C. Böhm and M. Dezani-Ciancaglini, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., ${ }^{\circ}$ 14, 1974, p. 185-199.
5. A. Church, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333.
6. A. Church, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941.
7. H. B. Curry and R. Feys, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958.
8. M. Dezani-Ciancaglini, Pattern-Matching Problems inside $\lambda-\beta-\eta$ calculus, Proceedings Informatica 76, Bled, 1976.
9. M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the $\lambda-\beta-\eta$ calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337.
10. J. J. Lévy, An algebraic interpretation of the $\lambda-\beta-k$-Calculus and an application of a labelled λ-Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114.
11. C. P. Wadsworth, The relation between computational and denotational properties for Scott's \mathbf{D}_{∞}-models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521.

[^0]: $\left(^{*}\right)$ Received in December 1981, revised in June 1982.
 $\left({ }^{1}\right)$ Istituto di Scienze dell'Informazione, Università degli Studi di Torino, Corso M. D'Azeglio $n^{\circ} 42$, Torino.

