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THE SEPARABILITY OF FORMAL LANGUAGES (*)

by R. PINZANI (*) and R. SPRUGNOLI (2)

Communicated by J. F. PERROT

Abstract. — We introducé the concept of a separator, a concept voeaker than aparser or a recognizer;
however a separator can be usedvery conveniently when speedis important andaprecise error recovery
is not mandatory. We distinguish between internai and external séparation criteria and show hom a set
of these criteria isforming a hierarchy of more and more complex separators.

Résumé. — On introduit Ie concept de séparateur, qui est plus faible que celui d'analyseur ou de
reconnaisseur; un séparateur peut être très commode lorsqu'il s'agit d'aller vite et que l'on ne demande
pas de diagnostics d erreurs très précis. On distingue les critères de séparation internes et externes et on
montre comment certains de ces critères forment une hiérarchie de séparateurs de plus en plus
complexes.

INTRODUCTION

Given a language L and its définition by means of a phrase structure grammar,
aparserfor L is a procedure which^or any word w, builds the syntactic tree for w
ïïwe L, and signais some error (or never stops) if w $ L. A weaker concept than a
parseris & recognizer, that is a procedure which answers "yes"ifu;eLand "no"
otherwise (see [1]).

Most Systems for syntax directed translation require parsers, but some
Systems may use recognizers especially when they perform transformations
throughstringpatternmatching(e. g. see [2, 3, 4, 5]). As a simple example, let us
consider the FORTRAN statement:

DO 12/3 = 4.7; (1)
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14 R. PINZANI, R. SPRUGNOLI

a system of thefirst kind will build the subtree corresponding to this assignaient
statement; a system of the second kind will match the statement against some
patterns, e.g.

DO( label > < identifier > = < initial-value > , < test-value > , (2)

< identifier > = < expression > ; (3)

when a successful match isfound, some transformations will be performed, as the
translation of the statement into machine code. For Systems of this second kind,
a concept weaker than a recognizer can be useful to improve its performance;
intuitively, in the example above, without using any syntactic recognizer, we can
remark that:

DO in (1) marches DO in (2);
12 in (1) is the only subword which can match <label) in (2);
13 in (1) is the only subword which can match (identifier) in (2);
= in (1) matches " = " in (2);
4 in (1) is the only subword which can match <initial-value);

in (1) does not match ' V in (2),
so that the entire matching process fails.

A sépara tor for a language L is a procedure which finds out the only (or the
longest, shortest) subword of a given word w, which starts at a predefmed
position in w and possibly belongs to L. Obviously, a parser or a recognizer are
also separators; however, this last concept it useful if the procedure of séparation
for a language L (in a given pattern) is simpler and faster than the procedure of
récognition of parsing. In genera! separators can be used only to show that a
word does not match a given pattern, but there are cases in which separators can
be used directly instead of recognizers; for example, sometimes programming
language s have two compilers: a fast and inefficiënt compiler to set up programs,
and a slow but efficient compiler to get optimized code of correct programs; this
latter compiler can profitably use separators instead of recognizers, since
programs are supposed to be syntactically correct. In the conclusions we shall
give a list of applications in which the concept of a separator has been used very
conveniently.

In this paper we present some topics about separators as they have been
developed during the implementation of APS (Algorithmic Programming
System); APS (see [5]) is a system based on string pattern matching, designed to
define formally the operational semantics of programming languages and to
solve problems of non-numerical nature. However, the results obtained are
independent of any particular system; they have been applied also in otherfields
and rely only on the concept of string pattern matching.

R.AXR.O. Informatique théorique/Theoretical Informaties



THE SEPARABILITY OF FORMAL LANGU AGES 15

1. PRELIMBNARIES

The définitions, conventions and properties listed below will be used
throughout the paper without any other référence.

A. Gêneralities

(1) JV is the set of natural (non négative integer) numbers;

(2) Z is the set of integer numbers;
(3) an alphabet is any finite set A\
(4) any aeA is a letter or character;
(5) (A*, . ) is the free monoid generated by A\
(6) the opération " . " is called concaténation and is denoted by simple

juxtaposition of its arguments;
(7) any weA* is a word or string on A; f

(8) the identity in (A*9 . ) is the empty word denoted by £;
(9) the number of éléments in A is denoted by #(A).

B. Homomorphisms

(1) (JV, +) , (Z, + ), (.4*, .) are monoids;
(2) a (monoid) homomorphism is a function f:M-*N (M, N two monoids

withidentities^M)£iV)such that ƒ (xy) =f(x)f (y), Vx, yeM, and f (^M) = e_N\
(3) the composition of two homomorphisms is a homomorphism;
(4) a homomorphism ƒ : A* -> M is defined when the image ƒ (a), for every

a e A, is defined;
(5) the length | w \ of a word w e A * is the image of w under the homomorphism

of ^4* onto N defined by \a\ =1 , VûeA;
(6) let a e ̂ 4; the homomorphism / a : ,4*->{a}*is defined by fa {a) = a, and

fa{x) = e_, VxeA and x#a ;
(7) #a(w)= \fa(w)\ is a homomorphism of A* onto N;

C. Languages

(1) a language on A is any subset L ^ * ;
(2) if D_ is a set of languages on A, and B a possibly infinité set of symbols, a

naming for L is any function u : B -> D_;
(3) if KeJS andu(X) = LeL, then K is a rcame of L;

vol, 16, n° 1, 1982



16 R. PINZANI, R. SPRUGNOLI

(4) in gênerai, we shall not distinguish between a language and any one of its
names;

(5) if aeA, "a" will be considered conventionally as a name of the
language { a } ;

(6) E={e};

(7) a language L is _e-free iff _e $L ;
(8) a language L is prefix-free iff for every words x, yeL, and every word

weA*, we have

D. Opérations (Z,, M any two languages)

(1) L.M = LM= {xy\xeL AyeM} (product);

(2) the product of languages is associative, not commutative, distributive with
respect to union and intersection;

(3) product will have precedence over union and intersection;
(4) 0L = L0 = 0;
(5) EL = LE = L;

(6) L° = E;

(7) Ln = LL . . . L (« times), that is Ln = LLn~Y\
00

(8) L*= U Ln (star opération);
n = 0

(9) L+= U Ln

«=i

E. Word relations and languages (x, y, z any words on A)

(1) yH^x iff 3zeA*, x — yz (y is a Zzead or prefix of x);

(2) y T x iff 3zeA*, x = zy (y is a tail or sw ï̂x of x);

(3) yWx iff 3z l s z2e^4*5 x = z1>
iz2 (y is a subword of x);

(4) y H x, y Tx, y Wx iflf yJtf x, y Tx, yWx, respectively, and x ^ j>;

(5) H(L;m)= {weA*\ \w\ =mA(3xeL, wH_x)} ;

(6) T(L;m)= {weA*\ \w\ =mA(3xeL, wTx)};

(7) W(L;m)= {weA*\ \w\ =mA(3xeL,wWx)};

(8) H(L) = H(L; 1) the leftmost characters in L;
(9) T(L)=T(L; 1) the rightmost characters in L;

(10) W(L)=W(L; 1) the characters in L;
(11) H(L;0)=T(L; 0)=W(L; 0) = £;
(12) W'(L\m)=W(U\m) whereL'= {we,4* | 3xeL, wHx}.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



THE SEPARABILITY OF FORMAL LANGU AGES 17

F. Special languages

(1) T={anbncn\n^\}\

(2) D = ab\aDb\DD (context-free-like définition);
(3) Q = ab | a Db (context-free-like définition);

(4) for every m, neN_, m, n not both zero, there are defined:

(5) L(m;n) = (z+ax . . . am + n_1z
+ a2 . . . am + „ ) * z + ax . . . am;

(6) M(m;n) = am + X ...am+nz
+;

(7) N(m; l) = z+ a2 ... am + nz
+ ax ... am;

(8) N ( m ; n ) = am+1 ... am + n _ 1 z + a2 ... am + n z + ax . . . a m ( « > l ) .

2. STRING PATTERN MATCfflNG

Let L be a set of languages over an alphabet A, and B a set of names for the
languages in fl_:

2.1 . DÉFINITION: A subscripted language name or c t e symbol is any element
(L, n)eBf = BxN_; the couple (L, «) will be written Ln or simply L whenever
n = 0. Any element in A u B ' will be called a symbol and a (string)pattern is any
finite séquence of symbols.

In the sequel, the term class will be used to mean either a language or a
language name, according to convention C4.

2.2. DÉFINITION: Let v — v{v2 • • -vk be a pattern (v( a symbol,

V /= 1, 2, . . . , k) and let IÜ be a word on ^4; then w matches v iff there exists a
décomposition w = wow1 . . . wkwk + 1 (WiJVw, Vz' = O, 1, . . . , £ + 1 ) such that:

(51) ï£ vt = Vj then w^w^ VÏ",J = 1, 2, . . . , £;

(52) i f ' ^ e ^ then u;—'^, VÏ = 1, 2, . . . , £ ;
(53) if üf = L„ then lü^eu^) , Vi = l , 2 , . . . , fc .

We remark that the matching is of some subwords wu w2, . . .,wk of w
against the pattern v; however, to every pattern v it can be associated the
languages of all the words w matching f in the restricted sensé that the whole
word w matches v; this is the language defined by the pattern (see [7]). The
following theorem lists some simple conséquences of the définition.

2.3. THEOREM: Let V be a pattern and w a word on A; then:

(a) characters of A in the pattern match equal characters in the word;

(b) iftwo class symbols are equal both as names of languages and as subscripts,
then they match equal subwords ofw;

vol. 1 6 , n o l , 1982



18 R. PINZÂNI, R. SPRUGNOLI

(c) if two class symbols are different either as names of languages and/or as
subscripts, then they can match either equal or different subwords ofw.

Proof: Obvious from définition 2.1.
As an example, let "x" be a name of the language of the (finite représentations

of the) real numbers; then the pattern "x + x" marches the word "12+12", but
not the word "11 + 3", while the two words are both matched by the pattern
"*! + x2"; this pattern, however, can match a word, e. g. "12+12", in several
ways, as "12 +12", "2+12", "12 + 1", "2 + 1"; we can define an order in the set
of all the possible décompositions of a word:

2.4. DÉFINITION: Let w = wow1 . . . wkwk+1 and WQW^ . . . w'kwk+1=w be
two décompositions of the word w into k + 2 subwords; thefirst décomposition
précèdes the second one iff:

(PI) there exists Of^i<k such that wj = w/
j, Vy</, a nd \WA < Iw'i I ° r

(P2) if w~w'i9 Vz = O, 1, . ..,Jfc-l, then |iüft| >\w'k\.
Furthermore,if v^v1 v2 . . • 'vkis anypattern,thecanonicalv-decompositionof

a word M; is the first décomposition of w into k + 2 subwords [in the order defmed
by (PI) and (P2)] satisfying the conditions (SI), (S2), (S3).

Continuing the example above, the canonical u-decomposition of the word
"12 + 12" according to the pattern "x1 + x2" is "12 + 12" (with "12" matching
both x1 and x2); actually, we scan the word w from left to right looking for the
longest subword of w matching the pattern at a minimum cost, that is taking the
first k subwords as short as possible.

2.5. THEOREM: There exist(n+k+Y) \/n !(fe+l) ! décompositions of a wordw
with | w | — n, into k + 2 subwords; furthermore, ifv is a pattern, the languages of
which are all recursive, then there exists a recursive procedure whichfinds out the
canonical v-decomposition of any word w.

Proof: Obvious with classical arguments.
The problem of finding the canonical u-decomposition of a word w, according

to some pattern v, has a combinatorial nature and the solution given by the
second part of the theorem 2.5 has only a theoretical interest; in [6] we give a
procedure which improves greatly this solution and the present paper is devoted
to the theory underlying that procedure as well as to further improvements
thereof.

Obviously, we can suppose that a pattern v is preceded by a symbol q not
belonging to Bi which is a name of the (regular) language A *; thus, without any
loss of generality, we can look for a matching of a prefix w' of a word w against the
pattern qv. Because of that, if v = v0 vx . .. vk is a pattern and w is any word, the

R.A.I.R.O. Informatique théorique/Theoretical Informaties



THE SEPARABILITY OF FORMAL LANGUAGES 19

problem of the (string) pattern matching can be stated in a recursive way: we look
at some prefix w'o of w matching v0; then, if we have w = wf

0 w", we look at some
prefix w\ oiw" matching vx and so on, trying to satisfy the conditions (SI), (S2),
(S3) and (PI ), (P2). At any moment in the process of pattern matching we have a
word w and a pattern v'^v^", where v" is a suffix of the original pattern v; if
vteA, the first character in w must be vt, by (S2); if vt = L n and the couple L n

appeared in the prefix of v already considered, then, by (SI), the prefix of w must
equal the word which matched L n. The interesting case is 'v{ = L n {L e B) and L n

not considered so far; our attention will be confmed to this case, so we shall
consider patterns of the form v = Lnv' and look for préfixes of words w which
possibly belong to the language u(L).

2.6. DÉFINITION: Let v = Lnv' be a pattern; a séparation criterion for L
(relative to v) is any rule which will fmd out, given any word we A* and any
prefix w' oîw such that w = w' w", that w" cannot matchV. A separator is any
procedure realizing a given séparation criterion.

This définition reflects the négative nature of a séparation criterion, that is its
ability to tell that a pattern does not match a given string; as remarked before, a
separator is a too weak procedure for deciding that a pattern does match a string.
On the other hand, we can use séparation criteria to find the shortest (or the
longest or even the only) prefix of a word w which possibly belongs to L and
allows a matching of the rest of the word with the rest of the pattern.

We shall distinguish between two classes of séparation criteria: internai and
external, according to the fact that they depend only on the structure of the
language L or also on the rest of the pattern.

2.7. DÉFINITION: A language L has an internai séparation criterion (ISC) iff
the following condition holds: let v = L n v" be any pattern and let w be any word
matching v according to the canonical u-decomposition w = w1w2 w3 (w1 eL,w2

matching v"); then if w' = w1 w" is any word matching the pattern v' = L k v, the
canonical u'-decomposition of w' is w' = w1w2w'3. A séparation criterion which
is not internai will be called external.

The set 5 of séparation criteria can be partially ordered:

2.8. DÉFINITION: F C1 and C2 are two séparation criteria, then Cx is weaker
then C2(C1^C2) iff whenever a language L can be separated by Cx then it can be
also separated by C2; Cx is properly weaker than C2 (C1 < C2) iff Cx ^ C2 and
there exist a language L and a pattern v such that L is separable in v by C2 but not
by Cx.

vol. 16, n° 1, 1982



20 R. PINZANI, R. SPRUGNOLI

3. INTERNAL SEPARATION

We can think of an ISC as a process which is going on un til the end of the prefix
of the word w corresponding to the language L has been found.

3.1. THEOREM'.LetLbean ejree language; then L has an ISC ifandonly ifL is
prefix-free.

Proof: If L is not prefix-free, there exist x, yeL such that x = yz, for some
ze A*; if we consider the pattern v = L, the canonicalu-decomposition of x is
wx w2, where w1=x and w2 =£', on the other hand, if we consider the pattern
v' = Lz, in the canonical V-decomposition ofx, Lis matched by y, which
contradicts the définition 2.7. Now, let us suppose that there exists no ISC
for L; by définition 2.7 there exist a pattern v — Lnv

n and a word w, the
canonical u-decomposition of which isw = w1w2w3 and wxeL; moreover, there
exist a pattern v' = L k v and a word wf = w1 vo'\ the canonical ü'-decomposition
of which is w' = w[ w2w'3, where w[ eLbut vo'^vo^ thus, we must have w1Hw[
or w[ Hwly contradicting the hypothesis on L.

This is an important characterization of the languages having an ISC; as
possible examples we have the languages Q, T and L (m; 0), Vm>0; on the
contrary, the languages L (m; n) for n>0 do not have any ISC.

The theorem 3.1 suggests also a separator for all the recursive prefix-free
languages L ; infact, we can successively analyze all the préfixes of a word w\ the
first prefix belonging to L is the only subword matching L. However, from our
point of view, this procedure is completely useless, since it makes use of some
syntactic recognizer fqr the language L instead of giving an alternative to it.
Thuss we have to follow other ways for our research. According to our
expérience, there are three important classes of languages with an ISC:

(a) fixed length languages;
(b) right closed languages;
(c) parenthetized languages.

Fixed length languages arefinite languages, the éléments of which all have the
same length; important examples are character languages (subsets of A, as
letters, digits, operators and so on) and some codified information languages
(pièces of information occupying one or seveaal fixed length fields in a record). A
separator for these languages can be implemented by simply counting the
characters in the word w.

For what concerns right closed languages, let us begin by considering the
languages L (m; 0); an ISC for them is given by:

R.A.I.R.O. Informatique théorique/Theoretical Informaties



THE SEPARABILITY OF FORMAL LANGU AGES 21

3.2. THEOREM: For the language L ~L (m; 0), m ^ l , we have:

(•) T(L;m)nW'(L;rn) = 9.

Proof: We remember that W'(L; m) is the set of the subwords of the éléments
in L, which have length m and are not suffixes of words in L ; thus, condition (•)
means that a word of length m, which is the suffix of some word in L, can never
be found inside any word in L. In our case we have:

T(L(m;0)\m)={a1a2...an}

and by définition ala2 ... am is never contained in any word in L.

Many constructs in the définition of programming languages satisfy the
condition (•); for example, statements ending with a semicolon or labels ending
with a colon; thus we have:

3.3. DÉFINITION: A language L for which there exists a n m ^ l such that

condition (•) holds is called Wright closedlanguage; the same condition is an ISC

for L and will be denoted by C_(m; 0).

We can dérive a simple separâtor for any ISC (^(m; 0):

3.4. PROCEDURE: Let us consider the finite set T {L ; m):

(a) let w be the prefix of w of length m;
(b) if w G T {L ; m) then the procedure is over;
(c) otherwise, drop the first character from w and go to step {a).

The ISC's C_(m; 0) constitute a sort of hierarchy:

3.5. THEOREM: For every m<m' we have C_(m; 0)<C(m'; 0).

Proof: Let us proceed by induction on m; first of all C(0; 0 ) < C ( l ; 0) since

C(0; 0) cannot be defined; then we have:

T(L;m+l)nW'{L;m+l)

^W(L)T(L; m)nW(L)W(L; m)

= W(L)(T{L;m)nW'(Lim))=W(L)Q = Q,

so that C_(m; 0 ) ^ C ( m + l ; 0) by the induction hypothesis; moreover,

L (m+1; 0) has C ( m + 1 ; 0) as ISC by the theorem 3.2, but:
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22 R. PINZANI, R. SPRUGNOLI

is a non-suffix subword of the éléments in L (m+1; 0) so that C(m; 0) is properly

weaker than C_(m+1; 0).

In the next section we shall see that the ISC's C (m; 0) are a particular case of

séparation criteria (^(rn; n).

For what concerns parenthetized languages, let us first consider the
language g:

3.6. LEMMA: Let a, beA and let us define thefunction F : A* -> Z;

F(w)=#a(w)-#b(w), VweA*;

then F is a monoid homomorphism.

Proof: The proof is immédiate.

Now let us consider the restriction of F to Q :

3.7. THEOREM: Let us call F again the restriction F\Q; then VweQ.we have
= OandF(x)>Q,VxHw.

Proof: The proof is obtained by induction on the définitions of D and Q, using
lemma 3.6.

From this theorem, it follows that any procedure computing the function F
constitutes a separator for Q ; in fact, we can have a counter (initially set to zero)
to which we add one whenever we find a "6"; when we reach zero, without
having obtained any négative number and found any extraneous character, we
have separated the only prefix (possibly) belonging to Q. The importance of the
language Q sterns from the following considérations:

3.8. DÉFINITION: A homomorphism h has the closureproperty relative to a

language L iff h (a) ̂ e_, V aeT (L ). A language L is a parenthetized language iff

there exists a homomorphism h : L -> Q with the closure property relative to L.

Now, we can find a separator for any parenthetized language:

3.9. THEOREM: Let L be a parenthetized language and h the homomorphism
h : L —> Q of définition 3.8; then the following procedure is a separator for L
(w any word on A):

(a) set a counter to zero;

(b) let x be the homomorphic image of the first character in w;

(c) if x is empty go to step (b); else begin the scanning of x;

(d) ifthefirst character in x is "a" add 1 io the counter; ifit is "b'% subtract 1
from the counter;

R.AXR.O. Informatique théorique/Theoretical Informaties



THE SEPARABIUTY OF FORMAL LANGUAGES 23

(e) if the counter is zero and the scanning of x is over, then we havefound the
prefix of w with the required proper ty;

(ƒ) if the counter is less than or equal to zero, then the procedure is over with a
négative answer;

(g) if the counter is greater than zero then:
— if the scanning of x is over, drop a char ac ter fr om w and go to (b);
— else, drop a char ac ter fr om x and go to step (d).
Proof: Let w1 be the separated head of w; we must show that if w2 H w and

w2 # w1 then w2 $ L. If w2 H wx, by construction we have F (h (w2)) >Q,sow2£L
by theorem 3.7; on the other hand, if w1Hw2, w2eL, then h(w1)Hh{w2),
because h has the closure property relative to L (the last character in w2 is not
mapped inej; thus, h(w2) has a proper prefix wx such that FQiiw^ — O^ which
contradicts the assertion of theorem 3.7.

There are many examples of parenthetized languages in every programming
language; as a non-standard example we mention here procedure headings and
procedure calls in, e. g., Algol 60.

The three classes above do not exhaust the set of prefix-free languages, that is
the set of languages with some ISC; it is a simple exercise to show that, although
the language T is a parenthetized language, the language 7\ = { an bn an | n ̂  1}
and the language of the prefix Polish expressions on a set of operators Q £ A and
a set of symbols X^A, X nQ = ty (with at least one operator in Q with arity
greater than 1) do not fall in any one of the three classes aböve. However,
following [8] we define:

3.10. DÉFINITION: A deterministic push-down transducer with final states
(abbreviated ptf) is an 8-tuple M—(A,-B, C, S, F, s0, z0, u) where:

A is our basic input alphabet;
B is the output alphabet;
C is the alphabet of push-down characters;
S is the set of states;
F g 5 is the set offinal states;
s0 e S is the start state;
zoeC is the start push-down character;
u : S x(A u E) x C -• S x C* x 5* is the transition function.
If u(s, a, c) = (t, w, y) then at configuration (s, axl:> cx2) with xt eA, x2eC,

the ptf goes to the state t, writes w on the push-down tape and emit the word y as
output.

A detailed description of how a ptf opérâtes can be deduced by [8]; we are only
interested in ptfs*which translate a language L into Q, so that B= {a, b} .
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24 R. PINZANI, R. SPRUGNOU

3.11. DÉFINITION : A ptf M has the closure proper ty relative to a language L iff
t h e r e is n o u(s, a, c) = (t, w, y) s u c h t h a t aeT(L), teF a n d y = e_.

This property allows us to give the following:

3.12. THEOREM: Let M be aptfwhich translates a language Linto Q; ifhï has
the closure property relative to L then a separatorfor L is given by the procedure of
the theorem 3.9 in which step (e) has been changea to:

(ef) if the counter is zero, the scanning ofx is over and the ptf M has reached a
final state, then we havefound the prefix of w with the requiredproperty.

Proof: This is analogous to the proof of theorem 3.9.
We remark the following faef: a ptf can be considered as a push-down

transducer with a push-down acceptor associated to it, as they are defined in [8];
thus, it may be argued that if L is a CFL (context-free language) the ptf
translating L would be a syntactic recognizer for L\ this may be not necessarily
true, since the ptf (or the pda which can be defined from it) does not, in gênerai,
recognize L, but some CFL containing L ; this should be clear also from what
follows.

The approach to ISC's by means of ptf s is rather gênerai:

3.13. THEOREM: IfL is afixed length language, or a right closed language or a
paren the tized language, then there exists aptfM translating L into Q andhaving
the closure property relative to L.

Proof: For a fixed length language L such that \w\ ~n,^fweL, the ptf outputs
an "a" at the beginning, passes through n different states and finally outputs a
"6" passing to a final state (the associated pda recognizes A "). For right closed
languages, the ptf outputs an "a" at the beginning, starts a recognizing
procedure for the tails (which are in a finite number) and finally outputs a "6"
when a tail has been found. For parenthetized languages, we remark that a
homomorphism with the closure property relative to L is a particular ptf with the
closure property relative to L such that Z — { z0 }, S = F= {s0} and we write
h(a) = y instead of u(s0, a, zo) = {so, z0, j;).

A simple exercise is the construction of ptf s with the required properties and
relative to T1 and to the language of the prefix Polish expressions, as quoted
before.

4. EXTERNAL SEPARATION

For the moment, let us consider only j?-free languages.
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If we have a pattern _u = Tfv', where T= { an bn cn \ n ̂  1} and ƒ e A, a simple
way of separating the prefix wl of any word w which possibly belongs to Tis to
find the first character ƒ in w,

This procedure may be much faster than any ISC for T, though it can give less
information.

4.1. DÉFINITION: Let v = LpMqv
f be a pattern; L is separable in v by the

C(0; 0) external séparation criterion (ESC) iff:

W{L)nW(M) = 9.

A separator which realizes this condition will simply scan the word w in order
to find a character not belonging to W{L ); if it belongs to W{M) the séparation is
successfull, otherwise there is no prefix of w which possibly belongs to L and
allows the rest of the word to match the rest of the pattern.

In reality, we can require that W(L) be disjoint from the set of leftmost
characters of M, so that we are led to the following:

4.2. DÉFINITION: Let v = L p Mq v' be a pattern; L is separable in v by the ESC
C(m;n)9 m^O, « ^ 1 , iff:

T{L; m)H(M;n)nW(L;m + n) = Q.

If m = 0 and n= 1, we have T {L ; 0) = E so that the ESC C(0; 1) can be given
by the relation:

in the example above, Tis separable in'v_ by both criteria C(0; 0) and (7(0; 1).

4.3. THEOREM: If L is separable inv = LpMqv
f by the ESC C(m; n)9 m^O,

n ^ l , then the following procedure constitutes a separator for L (w being any
word):

(a) let us call y the prefix of w of length m + n;
(b) ifye W(L\ m + n) then drop the first character from w and go to step (a);
(c) otherwise the prefix ofw, we are looking for, isformed up by the scanned

characters and the first m characters in y.

Proof: by the relation in définition 4.2.

Up to now, we have introduced criteria C_{n; 0), C(0; 0), and C_{m; n), m^0,
n ̂  1 ; they are related among them to form a peculiar structure in the partially
ordered set S^:
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4.4. LEMMA: Let L be any language, then Vm^O we have:

T(L; m+l)<^W{L)T(L; m),

H(L;m+l)^H(L;rn)W(L),

W(L;m+l)^W(L)JY{L;m),

W{L\

Proof: Let us consider the first relation; a suffix xAx2 . . . xmxm + 1 can be
thought of as the concaténation of xx e W{L ) and a suffix x2 . . . xmxm + 1 of
length m; however, equality may not hold, because some characters may or may
not occur in a spécifie position. The other relations are proved analogously.

This helps us to prove:

4.5. THEOREM: Thefollowing relations

( • • ) Çim] n)<C_{m; w + 1).

Proof: Let us show that C^(m; n)^C_(m+l; n)\ if:

T(L;

then by lemma 4.4 we have:

T(L; m + l)H{M; n)nW{L;

= W{L){T{L; m)H(M; n)nW(L; m + n))=W(L)9 = 9.

Analogously, we can prove that Q(m; rc)^(T(m; n+1):

T(L; m)H(M; n + l)nW(L;

cJ(L; m)H (Af; n) W(M)n W(L; m + n) W{L)

^T(L; m)H(M; n)W{LKjM)nW(L; rn + n)W{L uAf)

= (T(L; m)H(M; n)nW(L; m + n))W(L

Now to complete our proof, let us show spécifie examples in which the
relations (•) and ( • • ) hold properly. In the pattern:

v = L (m+1; « ) M ( m + l ; n),
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L (m+1; n) is separable by C_{m+1; n) because:

T(L (m+1; n); m + l)H(M { }

and this word is not a subword of any element in L (m + 1 ; n); on the contrary

L (m+1; n) is not separable by (^(m; n) because:

T{L(m+l;n); m)H(M(m+l ; »); «)= {a2 . . . a m + 1flm + 2 . . . am + n + 1 } ,

which is a subword of the éléments in L (m + 1 ; n).

In a similar way we can show that in the pattern:

v = L (m; n + l ) M ( m ; « + l ) s

L (m; «H-1) is separable by C (m; «+1 ) but not by ^(m; n).

Now let us consider the ISC's C_(mi 0):

4.6. THEOREM: For eferj; m > 0

C(m;0)<C(m; n).

Proof: It is sufficient to show that C_{m; 0)<C(m; 1). Since:

if we suppose that C(m; 0) holds, we have:

m ) n r ( L ; m))W{L uM) =

which proves C(m; 0)^C(m; 1). Now, considering the pattern:

v = L(m; l)M(m; 1)

we can show that the relation holds properly.

Finally, for the criterion (T(0; 0):

4.7. THEOREM: The ESC C(0; 0) cannot be comparée with Cd: 0) hut-

(•) Ç(0;0)<Ç(0;l).

Proof: To show that C(0; 0)^C(0; 1) let us remark that:

H (M) n W{L ) g W(L ) n W{M) = 9;
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then, if N is the language of nurnerals and I the language of identifiers, in the
pattern'v = NI9 N is separable by C_(0; 1), because an identifier must begin by a
letter, but not by C(0; 0) since W(I) n W{N) is the set of digits.

Now, if L is the set of the letters, in the pattern v = NL, N is separable by
C_(0; 0), but not by C (1; 0), because it has no ISC; on the contrary, in the pattern
v = L (1; 0)2, L (1; 0) has the ISC C(l; 0) but it is
W(L(l;0))nW(z)={z}*9.

We can make a picture of the situation:

C(0;0)

C( l ;0) C(0; 1)

i
C(2;0) C(l; 1) C(0; 2)

"i\ i\ *
C(3;0) C(2; 1) C(l; 2) C(0; 3)

(ISC's) (ESC's)

and show that there exist no relations among criteria being on the same line (i. e.
m + n = constant).

4.8. THEOREM: The criterion C_(m; n) is not comparable with any
C_(m+k; n—k), k^0,for which the criterion exists,

Proof: The statement "the criterion exists" means m+k^Q and n— k^0; so,
there exist the languages L (m + k; n—k) and M(m+k; n—k), also. However, it
is simple to show that in the pattern v ~ L (m; n) M (m; «), the language L (m; n)
is separable by C_{m\n) but not by C_(m+k; n— k) (see the proof of
theorem 4.5), and in the pattern v' = L (m+A:; n—k)M(m + k\ n—k) the
language L (m+k; n—k) is separable by C_{m + k; n-k) but not by C_(m; n).

Obviously, there exist patterns and languages which cannot be separated in
these patterns by any séparation criteria; for example, in the pattern v = Nt N2,
where N is the language of numerals, N cannot be separated, because it has no
ISC and

T(N; m)H(N; n)nW(N; m + n)= W(N;
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In practice, such cases are very rare and some C_(m; n) or ISC will always be
successfull; however, the C_(m; n) criteria require the construction of larger and
larger tables as m and n grow; our expérience has led us to consider only, for
practical applications, C(l; 0) and C(l; 1).

In fact, by the theorem 4.7, C(0; 0) is properly contained in C_{\\ 0) and
cannot be realized much more easily. C(0; 1) is applicable to languages, the
éléments of which are delimiters and with some definite set of characters;
however, in gênerai, it is more convenient to use explicitly such characters in the
définition of a pattern; e.g., it is better.to define the language S of Algol 60
statements without the ending semicolon and consider patterns of the form
v = v1S;v2.

The criteria C(l; 0) and C_(l; 1) can be implemented easily; we remark that
the ESC C(l; 1) has to be used to separate the représentation of real numbers
within arithmetic expressions in programming languages as FORTRAN and
Algol 60 (see [6]).

Till now, we have considered only ê -free languages [in reality, something more
is required whenever we try to apply an ESC C (m; n)]; now we wish to extend our
results to languages, which po&sibly contain the empty word.

4.9. LEMMA: If L and M are any two ianguages, then:

(i) H(L) = H(L\E) (£={£});
(ii) H(L KJM) = H(L)UH{M);

(iii) H(LM) = H(L) if L is e_-jrree;

(iv) H(LM) = H(L)uH(M)if^eL.

Proof: Obvious.

For languages defined by patterns:

4.10. THEOREM: Let L =Li
n

1
t
)L%).. . L^ and Iet h be the smallest index for

which L^ is £-free, or h^k; then we have:

Proof: By induction on h, using lemma 4.9.

Now we can generalize the ESC C^(m\ n) to not e-free languages:

4.11. DÉFINITION: Let v = Lnv'o be a pattern and let us call v'o also the
language defined by the pattern v'0\ then L is separable in v by the G_(m; n)
external séparation criterion iff:

T{L; m)H(v'o; n)nW(L;
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For the ESC G (m; n) we must consider all the languages in the subpattern v'Oi

but all the considérations made for Ç(m; n) also apply. The ESC's G (0; 1) and

( J ( 1 ; 1) worth a particular mention; let us suppose that

v = L „ v'o = L „ L < |> L [2
2

 ) . . . L <*> and there exists a smallest index h for which L <*>

is not £-free.

4.12. THEOREM: L is separatie in v ty the ESC G(0; 1) iff:

W(L)n[JU1H

L is separatie in v ty the ESC G(l; 1) iff:

Proof: From the définition 4.11 and the theorem 4.10.
From these relations two separators can be easily designed; for what concerns

our expérience, they provide an almost gênerai solution to the practical problem
of external séparation.

5. CONCLUSIONS

In this paper we presented the concept of a separator, a weaker form of a
recognizer or a parser. We developed a theory of separators, distinguishing
between internai and external séparation criteria and showing how the set of
separators isforming a hierarchical structure of more and more complex criteria.

As we mentioned in the introduction, separators were first used in the
implementation of APS, a system for the formai définition of the operational
semantics of programming languages and other non-numerical problems.

However, the concept of language separability was proved to be usefull in
many other fields ; we mentioned already the construction of optimized compilers
for (supposedly) correct programs; the use of separators instead of parsers may
improve considerably the speed of compilation.

Another area of application is ''interprétation", in a wide sense of this word;
whenever we are faced to an interpretive solution of a problem, the speed of
interprétation is crucial and may overcome the need of a précise error recovery.
For example, we mention interpretive programming languages and query
processing in data base management Systems (DBMS).

Also related to DBMS's are two other applications of separators:
(i) the input of records in the data base; the séparation criteria are used to

distinguish the various fields inside the record;
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(ii) the use of quasi-natural languages in queries and data; in this case
separators may be used to isolate terms and recognize some simple grammatical
structures and syntactic constructs.
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