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FPOL SYSTEMS GENERATING
COUNTING LANGUAGES (#)

by A. EHRENFEUCHT (*) and G. ROZENBERG (2)

Communicated by W. Brauer

Abstract. — Counting languages are the languages of the form {an
xa\.. .an

t\ t^2, n^ 1} where
au ..., atare letters no two consécutive ofwhich are identical. They possess a "clean structure" in the
sensé that if an arbitrary wordfrom such a language is eut in t subwords ofequal length then no two
consécutive subwords contain an occurrence of the same letter, It is shown that whenever an FPOL
system G is such that Us language contains a "dense enough" subset of a counting language then the
whole language ofG cannot have such a clean structure.

Résumé. — Les langages « comptants » sont les langages de la forme { a" a\. . . a" \t ^ 2, n ̂  1} , où
au ..., at sont des lettres, et deux lettres consécutives étant différentes. Ils possèdent une « bonne
structure », en ce sens que si un mot quelconque d'un tel langage est divisé en t facteurs de même
longueur, alors deux facteurs consécutifs ne contiennent pas d'occurrence d'une même lettre. On montre
que, si un System FPOL G est tel que son langage contient un sous-ensemble d'un langage comptant qui
est « assez dense » alors le langage de G complet ne peut pas avoir cette « bonne structure ».

i. INTRODUCTION

One of the important research areas within formai language theory is the
investigation of the combinatorial structure of a single language within a given
language family. Hère one aims at a resuit of the form "if K is a language from a
given language family X, then if K contains a string ot satisfying a property W1

then K also contains a set of strings A satisfying a property W2" or in more
gênerai form "if K contains a subset K1 satisfying a property W1 then K also
contains a subset K2 satisfying a property W2". A classical example of this kindis
the celebrated "pumping lemma" for context free languages: it says that if a
context free language K contains a "long enough" word a then it also contains
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162 A. EHRENFEUCHT, G. ROZENBERG

an infinité subset A related in a very spécifie way to a. Results of this form shed
some light on the generating abilities (restrictions) of grammars defming a given
class of languages. They are simply "trade-off" results: if some "structure" is
present in a language then also another structure must be present in the same
language.

In this paper we establish a resuit a resuit in this direction for the class of
languages generated by OL Systems without erasing productions and with finite
axiom sets (cailed FPOL Systems). One of the most popular types of languages
(serving as examples of strict inclusions of some classes of languages in others) in
formai language theory are r-counting languages (which form a subclass of the so
cailed bounded languages). Those are languages of the form {a\ a\... an

t \ n ̂  1}
where t ̂  2 and al9 . . . , at are letters no two consécutive of which are identical.
They possess a ' 'clean structure" in the sensé that if an arbitrary word from such
a language is eut into t subwords of equal length then no two consécutive
subwords share an occurrence of a common letter. We demonstrate that if an
FPOL System G is such that its language contains a "dense enough" subset of a
counting language, then the whole language cannot have such a clean structure
(or even a structure "approximating" it ). Thus again a resuit in this line: if
certain words are in the language from the given class, then other words must
also be in the same language.

Certainly there are very few results like this for the class of FPOL languages
and we believe that this resuit together with its proof sheds some new light on the
structure of dérivations in FPOL Systems. Since t-counting languages are
obviously EPOL languages, our main resuit points out a special rôle (that of a
"garbage collector") that the mechanism of nonterminals plays in defming
languages of L Systems.

Perhaps it is also worthwhile to mention that results like this are especially
valuable in the theory of L forms where one is really interested in the structure of
"ail sentential forms" that a given System can generate. In particular our resuit is
used in [3].

IL PRELIMINAIRES

We assume the reader to be familiar with rudiments of formai language theory
and in particular with the rudiments of the theory of L Systems (see, e. g., [2]). We
use a rather standard terminology and perhaps only the following notation
requires an explanation.

(1) N, N+ and N(t) dénote the set of nonnegative integers, positive integers
and positive integers larger than t, respectively.

R.A.LR.O. Informatique théorique/Theoretical Informaties



FPOL SYSTEMS GENERATING COUNTING LANGU AGES 163

(2) For a fmite set Z, #Z dénotes its cardinality.
(3) If oc is a word over E then alph a dénotes the set of all letters from E that

occur in a, prefk (a) dénotes the prefix of a of the length k and sufk (a) dénotes the
suffix of a of the length k. | a | dénotes the length of a and # a oc dénotes the number
of occurrences of the letter a in ot.

(4) If K is a language then:

alphK=\J alpha, ALPH(K) = {alp/i a\aeK}
aeK

and

lessqK=#{\a\ | aeK and |a | % q}.

(5) In our notation we often identify a singleton set with its element.
To establish the basic notation for this paper we recall now the définition of an

FPOL systern.

DÉFINITION: (1) An FPOL system is a construct G=(E, P, A) where E is a fmite
nonempty alphabet, P is a fmite set of productions, each of the form a -> a with

Ly a eE + satisfying the condition:

-* a is in P].

A is a fmite nonempty set (of axioms), A^H+.
(2) Given words x, y e E + we say that x directly dérives y in G if x = at... at and

— ax.. .at where ax -* al5 . . . , at -• at are productions from P. We write then

(3) For a positive integer m we say that x dérives y in m steps if there exist
xu . . . , xm such that:

x0 => xl9 xt => x25 . . . 3 xTO_1 => xm and xm = y.
G G G

m m

We dénote it by x => j^. If x = y or there exists an m such that x=> y then we say
G G

that x dérives y in G and dénote itby x=>y.
G

(4) The language ofG, denoted as L{G), is defmed by:

L(G)={aeIl
+\(3w)Â[w^a]}. G

vol. 15, n°2, 1981



164 A. EHRENFEUCHT, G. ROZENBERG

DÉFINITION: Let G = (L, P, A) be an FPOL system.
(1) Let a e l + . Then Ga = (Z, P, a).
(2) Let n e N + . Then

Ln(G)={aeL(G) : (3w)A[w£>a]} and L"(G, a)^Ln(GJ.
G

(3 ) m/ G g E where a e inf G if and only if {oc e L (G) : a e alph a } is infinité;
éléments of inf G are called infinité letters {in G).

(4) fin G = I\infG; éléments of^n G are called fi ni te letters (in G).
(5) malt G g inf G where aemult G if and only if:

(Vn)N+(3a)£(G)[#aa>n];

éléments of muit G are called multiple letters (in G).
(6) copy G = {meN+ |(3ot)ï+ [<xmeL(G)]}.
(7) The growth relation ofG, denoted as fGi is a fonction from N+ into finite

subsets of N+ defined by fG(n)= { | oc | | aeL(nyG)}.
(7.1 ) If there exists a polynomial d> such that:

then we sày that fG is of polynomial type; otherwise fG is exponential.
(7.2) If there exists a constant C such that:

(VnV(3m)fG(n)[m<q,

then we can say that fG is limited.
(7.3) If (V n)N+ [# fG(n) — 1], then we can say that fG is deterministic. D

III. AUXILIARY RESULTS

In this section we investigate certain aspects of dérivations in FPOL Systems in
gênerai and in the so called t-balanced FPOL Systems in particular.

DÉFINITION: Let Z be a finite alphabet.
(1 ) Let a e S + and let t be a positive integer t^l.A t-disjoint décomposition of

aisavectorCoe!, . . . , a()such that a l s . . . , a , e l + , a 1 . . .at = ocand,forevery i
in { 1, . . . , t —1}, alph di^alph a i+1=Ç).

(2 ) Let X g l + and let t be a positive integer, t > 2. We say that K is t-balanced

if there exist positive rational numbers cl9 ..., ct with £ cf = 1 and a positive

R.A.I.R.O. Informatique théorique/Theoretical Informaties



FPOL SYSTEMS GENERATING COUNTING LANGUAGES 165

integer d such that for every a in K there exists a f-disjoint décompo-
sition (ocls . . . , ocr) of a such that, for every i e { 1 , . . . , * } ,
ct. | a | — d S I otj | S ct. I a | + d. In such a case we also say that K is (v, d)-balanced
and that (ocls . . . , a , ) is a (v, d)-balanced décomposition of oc, where
v = (cu . . . , c t ) .

(3) An FPOL System G is t-balanced if L(G) is t-balanced. D

The following three lemmas describe the basic property of growth relations of

t-balanced FPOL Systems.

LEMMA 1; If G = (£, F, A) is a t-balanced FPOL systemwith t ^ 3 , then there
exists a positive integer k0 such that, for every a in Z and for every positive integer
n, # fGa(n)<k0.

Proof: Clearly it suffices to show that for every a in E there exists a positive
integer ka such that, for every positive integer n, # fGa(n)<ka.

Let v = (cu . . . , c t ) and d be such that L(G) is (u, ^)-balanced. Let
cmin = min{c1, . . . , ef}.Ifae£theneitheraew/Goraefin G.Wewillconsider
these cases separately.

(i) Let aeinfG.
In this case we will prove the result by contradiction. Thus let us assume that:
there does not exist a positive integer ka such that» for every positive integer n9

#foa(n)<K. (•)

Then we proceed as foliows.
(i. 1 ) There exist a positive integer n0, a positive integer r larger than # S and

words w1, . . . , wr in Ln° (G ) such that, for every nn { 1, , . . , t} and for every/ in
{ 1 , ...,r-l}yci\wj+1\>ci\wj\+2d.

This is proved as folio ws.
Clearly it suffices to show (L1) with ct replaced by cmin.
Let us take an arbitrary n and let fGa(n)= {xl5 . . . , xs} where éléments

xl5 . . . , xs are arranged in the increasing order. Let xit, .. ., x,-r be the longest
subsequenceofx1? . . . , Xsdefmedasfollowsrx^x^andfor l g j g r — ljj+1 is
the smallest index with the property that:

2d
x, —xf > .

cmin

If r ̂  # S then s ̂  # S (2 d/cmin). Since n was arbitrary, if we set fea equal to the
smallest positive integer larger than ( # X (2 d/cmin)) +1 then we get that, for every
positive integer n, # /G (n)<kai which contradicts (•).

vol. 15, n°2, 1981



166 A. EHRENFEUCHT, G. ROZENBERG

(i. 2) Let a = a 1 a a 2 b e a word in L (G) that is long enough, meaning that, for
every ie{ 1, . . ., t}, |oc|c£>3 \wr\ +5d wnereu^, . . . , wr is a séquence (in the
order of increasing length) from (i. 1) for some fixed n0 and r. Let:

P1=51iü1öt2eLII«'(G,a),

[G, a),

where âl9 a2 are some fixed words such that:

âi) and a2eL"°(G, a2).

Let, for each ie{î, . . . , r } , (p* [1], . . . , P J [£]) be a {v, d)-balanced
décomposition of p^.

Since | p ; | ̂  | a | and t ̂  3 the condition on the length of a assures us that either
wt is contained in the word resulting from P, by cutting off its prefix (p. [1])
ti>ref\wr\+2d($i t2!)) o r wt is contained in the word resulting from pf by cutting off
its suffix (suflWrl+2d(^i[t — l]))(Pf[t]). Because these two cases are symmetrie we
assume the first one.

Since, for each f e { 1, . . . , r — 1},

K l K i I P l I P l ^

Consequently | p / + 1 [1]| - | p. [1] | > 0 and so pi + 1 [1] results from pf [1] by
catenating to p.[l] a nonempty prefix of Pf [2]. Also:

-(c1(\*1*2\ + |w

Thus in constructing consecutively p2 [1], P3 [1], . . . , Pr [1] we use nonempty
sub words of a prefix of px [2] and we ne ver reach the occurrence of w1 indicated
by the equality px =â1 wx â2. However r > # E and so at least two nonempty
subwords used in the process of constructing p2 [1], P3 [1], . . ., pr [1] contain an
occurrence of the same letter. This implies that there exists a j in { 2, . . . , r — 1}
such that:

which contradicts the fact that (P7- [1], . . . , P ; - [t]) is a (v, d)-balanced
décomposition of p^.

R.A.I.R.O. Informatique théorîque/Theoretical Informaties
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Thus we have shown that (*) does not hold.

(ii) Let aejinG.

Let Z be the set of all words ot such that alph a c infG and there exists a word (3
in L(G) such that p => a and a/p/i P nfinG ^ Ç). Note that Z is a finite set and so if
we set: '

s = max{|ot|

r= # { $eL(G)\alph pn/in G^Ç)} + # Z ,

and

/c = max {/cb | b e infG},

then # /Gü (n) < 1 + r + /cs for every n ̂ 0 . D

LEMMA 2 : Le£ G be a t-balanced FPOL system with t ^ 3 and let a e muit G.
Then fG is de terminis tic.

Proof: Let G = (E5 P, ̂ 4). Clearly there exists a letter b in E which for any m can
dérive a word P such that # fl P > m. So let fc0 be the constant from the statement
of lemma 1 and let P be a word such that b dérives P(in some e steps) and

Now we prove the lemma by contradiction as foliows. If the lemma is not true
then there exist a positive integer n0 and words ocls ot2 in Ln° (Ga) such that
I a i I # I a21. But then the number of words of different lengths that P can dérive in
n0 steps is larger than k0 and consequently # fGb{e + n0)> k0, which contradicts
lemma 1. D

LEMMA 3: Let G be an FPOL system such that fG is deterministic and copy G is
an infinité set. Then jG is exponential.

Proof: Let G = (£, P, A), let P be a set of productions containing precisely one
production for every a e E such that P g P and let CD G A. Consider the DOL
system G=(Z, P, ©). Since fG is deterministic,/G = ̂ . Note that there are
arbitrarily large integers m dividing all numbers^(n) provided that n^nm for
suitably thosen m.

The lemma follows now by the following easy to prove property of DOL
growth fonctions. Assume that a DOL growth function/not identically zero has
the following property. For every positive integer m, there are integers mo^m
and n0 such that m0 divides/(M) wherever n^n0. Then ƒ is not of polynomial
type. D

vol. 15, n°2, 1981



168 A. EHRENFEUCHT, G. ROZENBERG

After we have established the basic properties of growth relations of
t-balanced FPOL Systems we move to investigate the structure of t-balanced
FPOL Systems the languages of which contain counting languages. Those
counting languages are defined now.

DÉFINITION: Let t be a positive integer, tg:2. A language M over X is called a
t - c o u n t i n g l a n g u a g e i f M = { a \ a ^ . .. a n

t \ n ^ l } , w h e r e f o r i e { l , . . . , t } ,

ate!L and aj¥
iaj+1 for j e { 1 , . . . , t — 1 } . We also say that a} and aj+i are

neighbors in M. •

To prove our main theorem we need the following transformation of an FPOL
system.

DÉFINITION: Let G = (S, P, A) be an FPOL system and k a positive integer. The
k-decomposition of G is a set & = {Gl9 . . . , G k ) of FPOL Systems (called
components) such that, for every ie{ 1, . . . , k}, Gt = ÇL, P \ At) where AX=A
and i4 i ={a | aeL l ' ~ 1 (G)} for i e{2 , . . . , k}9 and (ö->oc)ePfc if and only if

fc
<z=> a. •

If follows directly from the above définition that L(G)~ \J L{Gi), where

^ = { G l s . . . , G k } i s a /c-decomposition of G.

A particular kind of décomposition will be useful for our purposes. It is defmed
as follows. Let G = (Z, h9 A) be an FPOL System. We say that G is well-sliced if:

(1) for every a in S and every k, / ^ 1,

ALPH (Lk (G J ) - ALPH (L' (GJ)

and moreover if x is a word such that | x | ̂  2 and # a/p/i x = 1 then xeLk (GJ if
and only there exists a word y such that | y | ̂  2, a/p/i x = alph y and )> e L1 (Ga);

(2) for every a in Z if U Ln(Ga) is finite then

U L»(Gfl)={a|fl=>a}.

The proof of the following resuit is rather standard (see, e. g., [1]) and so it is
omitted. (By a well-sliced décomposition of an FPOL system we understand a
décomposition each component of which is well-sliced.)

LEMMA 4: For every FPOL system there exists a well-sliced décomposition. D

We are ready now to prove the main resuit of this paper.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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THEOREM 1: Let t ^ 3, M be a t-counting language, Gbe a t-balanced FPOL
system and K = M nL (G). There exists a constant C such that lessg K^C. log2 q
for ever y positive integer q.

Proof: Let G=(£ , P, A) and A^alph M. By lemma 4 there exists a well-sliced
décomposition of G and since it suffices to prove the theorem for a single
component of such a décomposition let us assume that G is well-sliced.

Since the result holds trivially when K is finite, let us assume that K is infinité.

(1) For every letter b in À there exists a multiple letter a and a word a in { b }*
+

such that a => a. This is obvious.

+

(2) If aemult G, beà, as{b}+ and a=>a then:

(i) fGa is either constant or exponential,
(ii) fGh is either constant or exponential, and

(iii) fG is constant if and only if fGb is constant.

We prove (2) as folio ws.

By Lemma 2, fGa is deterministic and because G is well-sliced, for every positive
integer n, lsfGa (n) if and only if bleLn(Ga),

Let x = b \ W\ ... be such that i ; = fGa (j).

If t contains infïnitely many different words then Ga satisfies the assumptions
of lemma 3 and so fGa is exponential.

Otherwise, because G is well-sliced,/G is a constant function.

Thus (i) is proved. But a dérives strings "through" b and so a and b must have
the same type of growth. Consequently (i) implies (ii) and (iii).

(3) Either, for every b in A, fGb is a constant function, or, for every b in A, fGh is
exponential.

This is proved as foliows.

Let b € À. From (1 ) and (2) it follows that fGb is either constant or exponential.
Now let a be a neighbor of b (in M). Then if we take a word a from K of the form
. . . a" bn... (or symmetrically . . . bn an... ) and will dérive in G words from it in
such a way that each occurrence of ft in a will produce the same subtree, then if b
is not of the same type as a, we obtain a word P in L(G) that is not t-balanced; a
contradiction. Consequently any two neighbors in M must have the same type of
growth and (3) holds.

(4) It is not true that fGa is constant for every a in A. We prove it by showing
that if fGa is constant for every a in A then the fact that K is infinité leads to a
contradiction.
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170 A. EHRENFEUCHT, G. ROZENBERG

Since K is infinité we can choose a in K which is arbitrarily long, e. g., so long
that each dérivation graph for a in G is such that on each path in it there exists a
label that appears at least twice. In a dérivation graph corresponding to a
dérivation of a from a in A we choose a path p-eOi eu . . . as foliows:

e0 is an occurrence in œ such that no other occurrence in (Ù contributes a longer
subword to oc,

ei + 1 is a direct descendant of et such that no other direct descendant of et

contributes a longer subword to a.

Now, on p we choose the first (from e0) label cr that repeats itself on p. Then we

take the first répétition of a on p (and we let p, p to be the words such that the

contribution of the first a on p to the level on which the first répétition

of a on p occurs is pa(3 where the indicated occurrence of a is the occurrence of a
on p).

The situation is illustrated by the following figure:

Now we proceed as folio ws.

(i) PP*À.

We prove it by contradiction. To this aim assume that Pp = A.
+

(i. 1) Then every label p on p that repeats itself must be such that p => 8pS

implies 88 = A.

This is seen as folio ws.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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p^ and p => jipji for some words Ç, Ç, \i, \iSince G
such that

Then:

a
a
a

is well-sliced, a =>

alph [i\i = alph 88.

=> a =>
=> CJ =>

a, 0

a
0

for some words Ç(1)
5 Ç

(1), Ç(2), Ç<2)
5 . . . , ^i(1), ^(1), ^i(2), ^t(2), . . . where all the

words fi(1) ji(1), |i(2) fi(2), . . . are nonempty if SÔ is nonempty. Consequently if

88^À then there exists a positive integer /, such that # fGo(l)>k0, which

contradicts lemma 1 (where k0 is the constant from the statemeht of lemma 1).

Thus(i , l)holds.

But (i. 1 ) implies that a cannot be longer than a fixed a priori constant; since a
was an arbitrary word in K this contradicts the fact that K is infinité.

Thus indeed PP ^ À and (i) holds.

(ii) Since G is well-sliced, <r => yay for some words y, y such that alph yy = alph

PP and a => % for some t t € d + . Since we have assumed that fGg is constant for

every a in A, fGn îs constant.

Then:

0

0 =>

0 => y

0 => y0y =>

y0y => y{

y(DT

jyyd)

1 5 => 7 t ( 2 )

(D^yd) ^

^ (2) y ( l ) n

=> 7C(3) *

j(2)n(l) y(2)

,ayy(l)y(2)

where ail yy, y(1)y(1), . . . , w, TC(1)
S . . . are nonempty words.

Since fGn is constant, the above implies that there exists a positive integer / such
that # fGa (l)>k0 which contradicts lemma 1 (where k0 is the constant from the
statement of lemma 1).

vol. 15, n°25 1981



172 A. EHRENFEUCHT, G. ROZENBERG

Consequently it cannot be true that fG is constant for every a in A, and so (4)
holds.

(5) fGh is exponential for every b in A. This follows directly from (3) and (4).
(6) There exists a positive integer constant s0 such that in every dérivation
without répétitions (in its trace) of a word from le, already after s0 steps an
intermediate word contains an occurrence of a multiple letter a for which there

exist b in A and a in {b}+ such that a=> a. This is obvious.

(7) Now we complete the proof of the theorem as follows: lessq K S Ux + U29

where Ux is the number of all the words from K of length not larger than q that
are obtained by a dérivation without a répétition which does not take more than
s0 steps, and U2 is the number of all the words from K of length not larger than q
that are obtained by a dérivation without a répétition which takes more than s0

steps.
The following graphie represents the situation:

where s is the number of steps (in dérivations without répétitions) required to
dérive a word in K and l is the length of a word in K [so that the point (Ï, j) is on
the graphie if in i steps one can dérive a word from K of length j],

From (2), (5) and (6) it follows that for i>s0 all the points (ij) are above the
exponential line wsfor some constant u> 1. But then lemma 1 implies that there
exists a constant h0 such that (note that sq=\ogu q):

les$q K£ Ul + U2^hQs0 + h0 logug.

R.A.l.R.O. Informatique théorique/Theoretical Informaties
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Since logu q = \og2 q/\og2 u,

lessq KSho.so + ho log2 q/log2 u^CAog2 q

for a suitable constant C. .
Thus the theorem holds. D
As a corollary of the above theorem we get the following result which turns out

to be useful in the theory of EOL forms (see [3]).

COROLLARY 1: Let G be an FPOL System such that L (G) contains {an bn

c" | n ^ 1}. Thenfor nofinite language F, L{G)\F is 3-balanced.

Proof: Directly from theorem 1. D
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