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RELATIONAL MORPHISMS AND OPERATIONS
ON RECOGNIZABLE SETS (*)

by Howard STRAUBING (*)

Communiqué par J.-F. PERROT

Abstract. — Relational morphisms betweenfinite monoids (a notion due to Tilson) are used to study
the effect certain opérations on recognizabie sets have on the syntactic monoids ofthose sets. This leads
to concise proofs ofa number ofknown results concerning the product opération, and a new resuit
concerning the star opération.

Résumé. — On utilise les morphismes relationnels (dus à Tilson) pour étudier F effet que certaines
opérations sur les langages reconnaissables produisent sur les monoïdes syntactiques de ces langages.
On obtient ainsi des démonstrations simples pour plusieurs résultats déjà connus sur Vopération de
produit et un résultat nouveau sur Vopération étoile.

1. INTRODUCTION

Some recent research in the theory of automata has been devoted to describing
the effect various opérations on recognizabie sets have on the syntactic monoids
of the sets involved. A particularly simple example of such a description (this one
treating the opération of intersection) is the following: If E is a fmite alphabet and
A and B are recognizabie subsets of E* (the free monoid on S), then
M (An B)<M (A ) x M (B) [Hère M (X) dénotes the syntactic monoid of X, and
Mj <M2 means Mx divides M2 — that is, Mx is a quotient of a submonoid of
M2.] (See Eilenberg [1] for a detailed explanation of the terminology of this
paper.) More complex examples treat the product opération (Schützenber-
ger [8]), unambiguous product (Schützenberger [9]), the shuffle product (Perrot
[2]), n-fold products (Straubing [11]), and images under length-preserving
morphisms from one free monoid to another (Reutenauer [7], Straubing [12],
Pin [5]).

(*) Reçu février 1980.
0 ) Reed College, Portland, Oregon 97202, U.S.A.
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150 H. STRAUBING

This paper présents a gênerai method for studying such questions. The
method uses relational morphisms between fmite monoids, a concept introduced
by Tilson [13].

Relational morphisms are discussed in section 2. The method is applied in
section 3 to give new, brief proofs of a number of known results concerning the
product opération. In section 4 I use it to prove a new resuit, which concerns the
opération A -> A* in the case that A* is a pure submonoid of £*.

2. RELATIONAL MORPHISMS

Let Mt and M2 be finite monoids. À relation p : Mx -+ M 2 is a map from M1

into âP (M2) (the power set of M2). If m G MX then m p dénotes the image of m
under this map. The graph of p, denoted # p, is the set
{(ml9 m2)eM1 xM2\m2eml p}. The inverse of p, denoted p"1 , is the unique
relationr\ :Mt-+M2 such that #r) = {(m2, m1)eM2 xM1\(m1, m2)e #p} .
The domain of p, denoted domp, is the set {meM1 |mp#Ç)}.

A relation p : Mx -*• M2 is said to be a relational morphism if the following two
conditions hold:

(i) # p is a submonoid of Mt x M2;
(ii) domp = M1(

Condition (i) is equivalent to:
(i)' 1 e 1 p and for ail m, m' e Mly(m p) (m' p)ç(mm') p. [Hère (m p) (mr p) is the

usual product of subsets of M2 ; (m p) (mf p) = {st e M21 s e m p, t e m'p}.]
An ordinary morphism (p : Mt -> M2 is just a relational morphism that is also

a function from Mx into M2. Such a morphism will sometimes be called a
functional morphism for clarity.

A relation p ; Mx -* M2 is said to be surjective if \J m p = M2 and injective if

m p n m'p = 0 for any pair of distinctéléments m and m' ofMt. If p :Ml -^M2is
a surjective relational morphism, then p" 1 : M2 -» Mj is a relational morphism.

If p : M1 ~» M2 and r\ : M2 -*• M3 are relations, then pr\ : Mx -> M3 is the
relation defined by m(pî\)= U m'r| for ail meM^ It is easy to check that

m'emp

(ptl)"1 = T|~i p" 1 , and that if p and *n are relational morphisms, then pr\ is a
relational morphism.

To each relational morphism p : M1.-*M2 there is associated a functional
morphism p : # p -» M2 defined by (miy m2)p = m2 for ail {mt, m2)e #p . MA

itself isthe image of # p under the functional morphism n : # p ̂  Mx defined by
(m1? m2) 71 = ̂ ! for ail (m1? m2)e #p . Observe that p — ît"1 p.
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RELATIONAL MORPHISMS AND OPERATIONS 151

Let V be a collection of fini te semigroups. A functional morphism \|/ :

M1 -+ M 2 will be called & functional V-morphism if for each idempotent e e M 2 ,

the semigroup evj/"1 is a member of V. Similarly, a relational morphism p :

Mt -• M2 will be called a relational V-morphism if for each idempotent e e M 2 ,

the semigroup e p ~* is a member of _K. The collection _F is said to be an S-variety

if ̂ i s closed under division and finite direct products. (Similarly, a collection V

of finite monoids closed under division and finite direct products is called an

M-variety.)

LEMMA 1: Let V be an S-variety:

(a) if p : Mi -> M2 is a relational V-morphism, then p : # p - > M 2 is a

functional V-morphism;

(b) ify\f : M -> M 2 ÏS a functional V-morphism, and M^M, then there is a

relational V-morphism p : Mx -• M2 .

Froo/; (a) let ^ e M 2 be idempotent. Then e p " 1 = # p n ( M 1 x { e } ) . The
projection n : # p -> Mx is injective when restricted to e p " 1 , so
ep~1={ep~1)nis isomorphic to e p " 1 . Since e p ~1 is, by assumption, a member
of V, it follows that e p " 1 e V, Thus p is a functional J^-morphism. (b) Let e e M 2

be idempotent. By assumption, e \|/~x e_F. Since M2 -<M, there is a submonoid
M' of M and a surjective functional morphism q> : M' -> M t . Let p — cp"1 v(/.
Then ep~1=(e^~1)<p. Now ( e v l / " 1 ) ^ ^ ^ ^ " 1 , since (^v|/"1)9 is the image of
ev)/"1 n M ' under the functional morphism cp. Since e\|/~1 e ^ it follows that
ep~leV. Thus p is a relational ^-morphism. •

In this paper I will be concerned with ^-morphisms for two particular choices

of theS-variety V.

The variety Ap of aperiodic semigroups consiste of all finite semigroups which
contain no nontrivial groups. Equivalently, SeAp if and only if for each seS,
sn = sn+1 for all sufficiently large positive integers n. Relational ^p-morphisms
and functional Ap-morphisms will be called aperiodic relational morphisms and
aperiodic functional morphisms, respectively.

The variety D of generalized-definite semigroups consiste of all finite aperiodic
semigroups all of whose idempotents lie in the unique minimal ideal.
Equivalently, SeD if and only if for all sufficiently large positive integers n,

s,ru . . . , r B , tu . . . , tneS

implies:
r1...rnst1...tn = r1...rnt1...tn.
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152 H. STRAUBING

(See Eilenberg [1], Capters V and VIIL) Relational B-morphisms and func-
tional B-morphisms will be called generalized-definite relational morphisms and
generalized-definite functional morphisms, respectively.

3. THE PRODUCT OPERATION

Let A and B be subsets of E*, the free monoid generated by a fmite alphabet E.
The product AB is defined by:

Let M (A), M (B) and M (AB) dénote the syntactie monoids of A, B and AB
respectively.

THEOREM 2; There is an aperiodic relational morphism:

p : M{AB)-*M(A)xM{B).

The proof will be given shortly. Theorem 2 is due, in a somewhat different
form, to Schützenberger [8], He showed, given two imite monoids Mt and M2,
how to construct a finite monoid Mx O M2 (the Schützenberger product of Mx

and M2) with the following property: If A and B are recognizable subsets of E*
then:

M(AB)<M(A)OM(B).

As it turns out, there is an aperiodic functional morphism from Mx 0 M2 onto
Mt xM2, Theorem 2 now follows from these facts and lemma 1 (b),

The proof of theorem 2 which I give below avoids the construction of M10 M2

altogether, Recall that the syntactic monoid M(A) of a subset A of E* is the
quotient of E* by the congruence ~ , where w1 ~ w2 if and only if:

A A

UWXVÇLA O UW2VGA

for all u, ueE*. Let r\A : Y,*^>MA dénote the morphism induced by this
congruence.

Proof of theorem 2: Define a (functional) morphism:

by w(p—(wr)At wr\B) for all weE*. (Put otherwise, (p = T|Axr|B). Define a
relational morphism:

<p : M(AB)-+M(A)xM(B)
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RELATIONAL MORPHISMS AND OPERATIONS 153

by p = y\AB cp. [Observe that the fact that r i^ is surjective is needed to insure
that the domain of p is M(AB).]

M(AB) ? * M(A)xM(B)

I will show that p is an aperiodic relational morphism. Let eeM(A) xM(B)
be idempotent. Then e — (e\ e"), where e' and e" are idempotents in M (A) and
M(B), respectively. Let seep'1. Then there exists w e l * such that:

w r\AB = 5, w r\A = e' and w r\B — e".

I will show that u?3 ~ w*.Supposeuw3 v e AB for some u, vel,*.Then uw3 v = xy>
AB

where x e A and y e B. Then either x = uwx\ where x' y ~ w2 v, or y — y' wv where
xyf = uw2. In the first case, since e' = wr\A is idempotent, w ~ w2\ thus uwx'eA

A

implies uw2 x' e A. Thus uw* v = uw2 x' y e AB. In the second case, since e" = w r\B

is idempotent, w ~ w2, and it follows again that uw4veAB. Thus, uw3veAB
B

implies uw4veAB. Conversely, suppose uw*veAB. Then uw*v = xy, where
xeA and yeB. Either x = uw2x\ where x'y — w2v or y — y'w2v and xy' = uu;2.
In the first case, since w ~ w2, uw1 x'eA implies uwx'eA. In the second case,

A

since w ~ w2, y'w2veB implies y'wveB. In either case, uw3veAB. Thus
B

uw3veABouw*veAB, so M;3 ^ u;4, and s3~w3 r\AB = wA'r\AB = s4. Since this

holds for all s in e p" 1 , e p " 1 is aperiodic. •

The product 4̂B is said to be of bounded ambiguity if there exists a positive
integer k such that any w e AB admits at most k distinct factorizations of the form
w^xy, where x e A, yeB. AB is unambiguous is there is only one such
factorization for each we AB. For example, if either A or B is finite, AB is of
bounded ambiguity. On the other hand, if A = B is the set of ail words in E* of
even length, then AB is of unbounded ambiguity.

Unambiguous products and products of bounded ambiguity were studied by
Schiitzenberger [9]. He showed, using an adaptation of the MX§M2
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154 H. STRAUBING

construction, that if AB is of bounded ambiguity, then there exists a monoid M'
such that M(AB)<M\ and a generalized-definite functional morphism
cp ; M' -+ M (A) xM(B). By Lemma 1 (b), this is equivalent to;

THEOREM 3: If AB is of bounded ambiguity, then there is a generalized-definite
relational morphism p ; M{AB) -+ M (A) xM(B).

Proof: As in the proof of theorem 2, let P = T\ÂB 9' where 9 = 1X4 xr\B. Let
e=(e', ^")6M(y4)xM(B) be idempotent, and let r, 5, feep"1 . I will show
rst = rt; in particular, ep" 1 is generalized-defimta.

Since r, s, teep"1 there exist w, x, yeZ* such that:

Thus w ~ w2 ~ x ~ x2 ~ y ~ y2 and M; ~ u;2 ~ x ~ x2 ~ J; ~ J/2. NOW suppose
A A A A A B B B B B

uwyveAB for some «, ue l* . Then either uwzfeA, ztfeB and z V = yu, or
Z"J;Î;6B5 z'€i4, and Z'Z" = WM;. In the first case,
uwzf'e A => uwwz' s A => uwxz' e A. In the second case,
z/'yueB=>z/'3;};î;6B=>z"x3;i?eB. In either case, uwxyveAB, thus
uwyv EAB=> uwxyv sAB.

Conversely, suppose uwxyveAB. There are three possibilities: (i) uwxz'e A,
z" € B and z' z" = }?Î;; (ii) z' e A, z" xyveB, and z' z" = uw; (iii) uwz' G A, z" jt; e B,
and z' z" = x, In case (i), uvoxz' eA=> uw1 z'eA=> uwz' eA, and thus uwyv e AB,
Case (ii) is identical. Thus in either of these cases, uwxyv e AB^=> uwyveAB,
I will now show that case (iii) cannot arise:
uwz' eA=> uw2 z' eA=> uwxz' e A = > . . . = > uwxn z'eA for any nonnegative

integer n. Similarly, z" yveB=> z" xnyveB for any nonnegative integer n. Now
the word uwxnyv can befactored in n distinct ways:

uwx
n yv=(uwz')(z'f x""1 yv)=(uwxzf)(z" xn~2 yv)= . . . ={uwxn~l z')(zu yv\

where in each factorization, the left-hand factor is in A and the right-hand factor
is in B. This contradicts the assumption of bounded ambiguity—thus case (iii)
cannot arise. (It is conceivable that x = 1, the empty word of E*, in which case the
above argument does not yield n distinct factorizations. Ho wever, if x = 1, then
5=1, so rst = rt trivially.)

It has been shown that uwxyveAB<=> uwyveAB, Thus wy ~ wxy, so
AB

rst = (wxy) r\AB=(wy) r\AB = rt. This complètes the proof. •
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Before proceeding to the star opération, I will mention, without giving the
proof, another application of this technique to the product opération. In [11], I
used a generalized version of the Shützenberger product to study the n-fold
product A1.. .An of n recognizable sets Au . . . , An. A principal resuit of that
paper can be stated as follows: There exists a relational ZJ-morphism
p : M(A1.. .An) -• M(Ax) x . . . x M ( i J , where LJ_is the S -̂variety consisting
of those fini te semi-groups S such that for each idempotent e e S, the monoid e S e
is J-trivial. A different proof of this theorem can be given using the methods of
theorems 2 and 3: One forms the relational morphism:

and shows that it is an LJ-morphism.

4. THE STAR OPERATION

Let ^4çX*. A* dénotes the submonoid of E* generated by A. If A is
recognizable, then A* is as well, however there is no simple description of the
effect of the star opération on syntactic monoids. This is because M (A*) may be
arbitrarily complicated even when M (̂ 4) has a very simple structure. Indeed, Pin
[4] has shown that if M is any finite monoid, then there exists zfinite subset A of
E*, for some alphabet E, such that M<M(A*). However, some meaningful
results are possible if one places some restrictions on when the star opération is to
be appiied. A submonoid Tof E* is said to be pure if for every well* and positive
integer n,wneT implies weT.

THEOREM 4: Let A <= E* be recognizable. IfA* is a pure submonoid of E*, then
there is an aperiodic relational morphism p : M (̂ 4*) -> M (A).

This generalizes some previous results: Restivo [6] showed that if A* is pure
and M (̂ 4) is aperiodic, then M (A*) is aperiodic. Perrot [2] extended this to show
that if H is any M-variety consisting exclusively of groups, and if every group in
M(A) belongs to H, then every group in M{A*) belongs to H, provided A* is
pure.

The proof of theorem 4 is an adaptation of an argument in [1] (theorem
X.5.2). I require a preliminary lemma.

LEMMA 5 : Let B^ E* be recognizable, and let we E*. Suppose there exists a
positive integer k such that for all u, ueE*, uwkveB=>uwk+1 veB. Then

ws ~ ws+1 for all sufficiently large s.
B
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156 H. STRAUBING

Proof: Since B is recognizable, M (B) is finite. Thus there exist positive integers
s'and r such thatif meM(B) and s ̂  s', then ms+r = ms. Let s^max { s', fe}. If M,

, then:

uwsveB => uwkws~kveB => uu;* + 1uj s~kt?e5 => ww;s+

By the same argument;

uws+iveB => uws + 2vsB =>...=> uws + rveB.

Now since u;sTiB = (w;r|B)s = (u?r|B)5+r = «;s+''r|B, w s~u? s + r, and thus
B

uws+r v e B => uws v e B. Thus uwsveBouws+1 veB, so ws ~ws+i. M
B

Proof of theorem 4: Let p = rj;»l
rr| A : M(A*)^>M(A). Let eeM(A) be

idempotent. I will show that e p~1 is an aperiodic semigroup. That is, sk + 1 —sk

for ail s e e p" * and ail sufïiciently large fe. Let s e e p~1 . Then there exists it?el*
such that wr\A* = s and w r\A = e. By lemma 5, it is sufficient to show that there is a
positive integer k such that:

(•) uwkveA* => uwk+xveA* for ail «, ue£*.

Let k>\w\ (the length of the word u>) and suppose uwkveA*. Then
uwk v = at... am, where af e ̂  — {1} for each i. Let 1 ̂  r ̂  k; I will say that the rth
occurrence ofw is eut if for somej, 1 Sj è m> uw"'1 is an initial segment oîai... ap

and aït. .üjis & proper initial segment of uwr. (That is, ̂  . . .aj€uwr~l Z*, and
uwreal. . .fl;2! + .)

w

There are now two cases to consider:

Case 1: £t;ery occurrence ofw is eut. Then for each r, 1 grg/c , there exists j r ,
l^jrèm, such that ax . . .aheuwr~x E* and uwreai.. .aJrZ

 + . Thus:

V brcr = w

for r = l , . . . , k.
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Now there are k occurrences of w altogether, and \w\<k factorizations of w of
the form w = bc, where beE*, c e Z + . Thus some pair b, c must appear twice in
( • • ) —that is, br = br,y cr = cr,, with r^r'. This yields:

where r ^ l , O^s, O^t, r + s + t + l = /c, and bc = w.
Now cwsb-c(bc)sb=(cb)s+i. Since cwsbe A*, and since A* is pure, cbeA*.

Thus:

uwk+1 v^uwr'x wws www1 v = {uwr~1 b)(cwsb){cb){cwlv)

Thus (•) holds in this case.

Case 2: Some occurrence ofw is not eut. If the rth occurrence of w is not eut,
then:

ax.. .aj__lc = uwr~1,

baJ+1...am = w*v,

where b, ceE*, t ^ l , and r-ht + g— l—k. Since w ~ u;2, and since t^l>

Since CM/fee,4, it follows that cwt+1 beA. Thus:

uwk+1v = a1.. .aj_lcwï+1baj+1.. .am

so (•) holds in this case as well. •
Theorem 4 provides a connection between the opération A-+ A* when A* is

pure, and the product opération. Let V be an M-variety. V is said to be closed
under produc t if for any finite alphabet Z and recognizable subsets A and B of S *,
M(/l)e_FandM(E)e_Fimplies M(AB)eV. Vis said to be closed under inverse
images ofaperiodic morphisms if for any finite monoids M and M', if M' e _F and
q> : M -* M' is an aperiodic functional morphism, then MeV. In [10] I showed
that a nontri vial M-variety (that is, an M-variety which contains a monoid with
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158 H. STRAUBING

more than one element) is closed under product if and only if it is closed under
inverse images of aperiodic morphisms. Now suppose V is a nontrivial M-variety
closed under product. Let £ be a finite alphabet, A a recognizable subset of 2*,
and M (A) e V. If A* is pure, then by theorem 4, there is an aperiodic relational
morphismp : M{A*) -• M (A). By lemma l,M{A*)<#p9 and p : #p->M(i4)
is an aperiodic functional morphism. By the theorem just cited, V is closed under

inverse images of aperiodic morphisms, s o # p e ^ , and thus M(A*)e_F. This
proves:

THEOREM 6: V be a nontrivial M-variety closed under product. If A^I,*
is a recognizable set, M (A)eV, and A* is pure, then M (A*)eV.

Put otherwise, nontrivial M-varieties closed under product are also closed
under the opération A -• A* when A* is pure. It would be interesting to know if
the converse is true: that is, if _Fis closed under the opération A -> A* when A* is
pure, must V be closed under product?
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