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SOME REMARKS ON ENTROPIC DISTANCE,
ENTROPIC MEASURE OF CONNEXION

AND HAMMING DISTANCE {*)

by Silviu GUIASU (X) and Corina REISCHER (2)

Abstract. — The relationship between entropie distance, entropie measure of connexion or
interdependence and Hamming distance is investigated. Some applications to the classification ofthe
families of curves are also given.

Résumé. — On étudie la relation entre la distance entropique, la mesure entropique de connexion ou
interdépendance et la distance de Hamming, avec quelques applications à la classification de familles de
courbes.

1. INTRODUCTION

Using Shannon's conditional entropy, it is possible to define an interesting
global entropie distance on the set of fmite probability spaces (see Horibe [3]).
On the other hand Watanabe [7] has introduced an entropie measure of
connexion or interdependence between finite probability spaces, extending
Shannon's information rate from communication theory. Finally, Hamming
distance between veetors is an important tool in algebraie coding theory. In the
present paper we intend to establish some connexions between these three
concepts. In the second paragraph the relationship between entropie distance
and entropie measure of interdependence is analysed. In the third paragraph
both entropie measure of interdependence and entropie distance are used for
classifying the families of curves. Any such family may be classified according
either to the monotony ofthe curves or to the values taken on by these curves. In
the fourth paragraph the relationship between entropie distance and Hamming
distance is investigated. Some advantages of entropie distance for coping with
insertions and deletions of symbols during transmission or for synchronization
are underlined.

(*) Reçu juin 1978.
(') Faculty of Mathematics, University of Bucharest, Romania.
(2) Dept. of Mathematics, University of Québec at Trois-Rivières, Canada.
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396 S. GUIA§U, C. REISCHER

2. ENTROPIC DISTANCE AND ENTROPIC MEASURE OF CONNEXION

By X, F, Z we dénote fmite probability spaces and H {X) is the entropy of the
finite probability space X. The entropie distance (Shannon's metric) between X
and F is (according to Horibe [3]):

p(X, Y) = H(X\Y) + H(Y\X). (1)

Aeeording to Watanabe [7], the entropie measure of connexion or
interdependence between X and Y is

W(X®Y;X, Y) = H(X) + H{Y)-H{X®Y)t (2)

where X® Y dénotes the product probability space. For brevity, we shall write
H(X, Y)<indW(X! F)insteadofH(X® F) and W(X® Y; Xf Y) respectively.

The connexion between the entropie distance and the entropie measure of
interdependence is given by the following proposition:

PROPOSITION 1: We have
p(X, Y) = H(X, Y)-W(X, F). (3)

Proof: From the well-known property of the entropy of product probability
spaces we have

H(X\ Y) = H(X, Y)-H (Y), (4)

H(Y\X) = H{X, F)-H(X), (5)

where H(X\Y) is thè entropy oî X conditioned by F. Introducing these
equalities into (1) and taking into account (2) we get (3).

QJB.D*

REMARK: According to proposition 1, the entropie distance between X and F
shows us how many uncertainty we still have on the product probability space
X® F (or on the product probabilistic experiment X® F) if we remove the
interdependence (i. e. the connexion) between X and F.

PROPOSITION 2: We have
(6)

Proof: From (4) and (5) we have

H(X\ Y)£H{X, F), H(Y\X)SH(X, F),
and then

) , H(Y\X)}£H(X$ Y)£H(X) + H{Y). (7)

R.A.LR.O. Informatique théorique/Theoretical Informaties



ENTROPIC DISTANCE, ENTROPIC MEASURE AND HAMMING DISTANCE 397

Also, because
W(X, Y) = H(X)-H(X\ Y) = H{Y)-H(Y\X),

we get
, F)^maxfff(X), H (F)}.

Therefore (6) holds, where the second inequality becomes equality if X and F are
independent.

QJE.D.

REMARKS: 1) if for any elementary e vent x of X there is an elementary e vent yx

of Fsuch that p(yx|x) = l, then H{Y\X) = 0,
and

p{X, Y) = H{X, Y)-W(X, Y) =

2) if X and F are independent then

H(X, Y) = H(X) + H(Y), W(X, F) = 0,
which implies

3. CLASSIFICATION OF FAMILIES OF CURVES

We may apply the entropie measure of connexion for classifying the families of
curves with respect to their interaction. If a family of curves is given we may study
their interactions and classify them according to: (a) monotony; (b) vertical
connexion. (or Riemann interaction); (c) horizontal connexion (or Lebesgue
interaction).

For giving an example let us take a family of four curves, defmed by the
foliowing fonctions: for the curve ek the corresponding function is

3; = (_1)"{7^2-2^+ 1>-[x-(2r+l)r2-< f c + 1>]2}1 / 2
ï (9)

if
(10)

where r = 0, 1,2, . . ., 2 * - l ; fc=l, 2, 3 , 4

Of course, each function has a period equal to the half of the period of the
previous function {sQvfig. 1). Thus, the curve ek has the period T2~ik~1).

{a) Classification according to the monotony.

We shall take into account the partition of the interval [0, T] generated by the
centers and the extremities of the 16 semicircles of the curve e4. This partition
contains 32 intervals of length T2~5. Taking into account the monotony of the

vol. 13, n° 4, 1979
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functions ek(k~l,2,3, 4), on these intervals we obtain the table I, where we put
0 if the function ek increase and 1 if the function ek decreases on the respective
interval of the partition. Now, each curve {ek} may be considered as a fmite
probability space with two elementary events (0 and 1) whose probabilities are
the corresponding relative frequencies which may be computed without any

TABLE I

e2...
e3...
eA...

e2...
e3...

1

o
 

o
 

o
 

o

17

o
 o

 o
 

o

2

0
0
0
1

18

0
0
0
1

3

0
0
1
0

19

0
0
1
0

4

0
0
1
1

20

0
0
1
1

5

0
1
0
0

21

0
1
0
0

6

0
1
0
1

22

0
1
0
1

7

0
1
1
0

23

0
1
1
0

8

0
1
1
1

24

0
1
1
1

9

1
0
0
0

25

1
0
C
0

10

1
0
0
1

26

1
0
0
1

11

1
0
1
0

27

1
0
1
0

12

1
0
1
1

28

1
0
1
1

13

1
1
0
0

29

1
1
0
0

14

1
1
0
1

30

1
1
0
1

15

1
1
1
0

31

1
1
1
0

16

1 -
1
1
1

32

1
1
1
1

difficulty from the table I. The product probability space {eit e,} has four
elementary events, namely the four columns

0 0 1 1

0 1 0 1

whose relative frequencies may be computed from the rows e(- and ej of the
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table I. Similarly for the product probability spaces {e;, ejt ek} and {e1} e2,
e3, e4}. We get

H({eit e . } ) = log24 = 2 (1.7=1. 2, 3, 4; i

H{{eit e7,.e»}) = log28 = 3 ( i j . fc=l. 2, 3, 4; i

i> e2, e3, e4})

e„ ej, ek}) = 0;

, {ek}, {er}) = 0; W({ei}, {e2}, {e3}, {e4}) = 0.

We obtain hère a family of curves which is totally independent. Accordingly, the
same analysis may be maid taking k > 4 in (9). With respect to the monotony we
have here no interdependence at all bet ween any disjoint sets of curves. This
compilation gives a justification to the conjecture formulated by Greek
mathematician and philosopher Pythagoras according to which the perfect
harmony may be obtained by a set of oscillating strings for which each oscillating
string has its wave-length equal to the half of the wave-length of other oscillating
string, like in our example. In such a case we have no interférence between
oscillating strings. The classification is given in figure 2.

l i ï J
{e,} {e2} {e3} {e,}

Figure 2

(b) Classification according to the vertical connexion.

Returning to our example, we may classify the family of four curves according
to the values taken on by the respective curves in the points determined by the
ends of the intervals (10) of the partition considered above. We have 32 such
points. Let us dénote

h = T2~2;

k = T2~3;

= T2~4; n=

vol. 13, n° 4, 1979



400 S. GUIA§U, C. REISCHER

Taking into account the equalities (9), the values taken on by these four functions
in the ends of the intervals (10) are given in the table II. The values of the
entropies and of interdependences between different subsets of curves are given
in the column R of the table III. Now, for classifying our family of curves we
adopt the following natural strategy underlined by Watanabe [7] (see also

TABLE II

e
e
e,

*4

e
e„

e,

e

e,

0

0
0
0
0
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e
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0
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0
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0
0
0

3

c
a
l
— n

14

b
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0
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4
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k
0
0
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27
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— a
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21

— e

J

n

32

o
 o

 o
 

o
Guia§u [1]): At each step of the décomposition of a set of curves into disjoint
subsets we piek up the décomposition characterized by the smaliest amount of
interconnexion between selected subsets. In this way the connexion between the
curves belonging to the same selected subset is the largest one. In our case, the
classification is given in the figure 3. The total connexion between all curves of
the family is given by the amount

, {e2}, {e3}, , e2, e3, e^e,}, {e2}, {e3}, {e4})

= £ H{{et})- H{{elt e2, e3, e4}) = 6.0345.

The three branching points of the décomposition given in figure 3 are
characterized by the smaliest amounts of interconnexion between selected
subsets. Of course, in this case only the first branching point is "economie",
being characterized by a small quantity of interaction between selected subsets.
Thus, a natural classification has to stop at this step of the décomposition. Of
course, this classification dépends on the given partition of the interval [0, T] on

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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TABLE III

U}
ff({e2})
*({«,})
*({««}>
H{{eve2})
#({<?„* ,} )
H{{eveA})
H({eve3})
H({e»e4})
H{{e3ie4})

H({elteve3})
H({el9eve4})
H({el9eve4})
H({evei9e,})
H ({ ev e2, e3, e4 })

*({*>}.{*,})
W({ex}9{e4})

W(U}.U})
W({e2}9{e4})

W(UMO)
W({ex},{eve3})

4.0637
3.1162
2.2395
1.4838
4.8687
4.7537
4.5237

0.8343
1.6457
1.3216
0.8343

W{{e2},{el9e4}).

3.8572
3.8572
2.7235
4.8687
4.8687
4.7537
3.8572
4.8687
2.3112
1.5495
1.0238
1.4985
0.7428
0.9998
3.0522
3.0522
2.0335
3.0012
2.7712

0275
7804
3216
2051
9698
3216
5869

2.3516
1.7804
2.2051
2.5869
0.4525
0.3755
0.3470
0.7622
0.5102
0.8343
0.4525
0.4525
0.3755
1.0745
0.6157

W{{e2}t {e3,e4})
W({e3}, {eve2})
W({e3}, { e l s e 4 } ) . . . :
W({e3},{eve<}).-

H r ( K }.{* . .**})
^ ( K } . { « - « 3 } )
W{{e4l{e„e,})

W({e2},{el3e3ie4})
W({e3},{el9e2,e4})

* F ( { e 4 } » U > « 2 . « i } )
W({ei}e2},{e3,e4})
W{{elte,}9{e»eA))
W{{e»eA}9{e29e%})

i } 9 { € , } , { € , } )

{x}a {e2}t{eve4}).
W{{el}t{e3}9{e1,e4}).

)

2 } , { 4 } , { i , 3

1.9825
2.2395
2.0095
2.2395
1,4838
1.4838
1.4838
3.0522
3.0012
2.2395
1.4838
2.7235
3.7322
3.5122
4.5507
3.7950
3.0333
2.9823
5.0347
5.2917
4.5360
5.0107
4.4850
3.7233
6.0345

0.3804
0.7622
0.8628
0.7045
0.5102
0.8343
0.4525
0.4525
0.8392
1.086.3
0.8343
0.7622
1.1637
0.9398
1.2147
0.9627
1.2098
1.5965
1.2147
1.6735
1.2868
1.7020
1.6735
1.5965
2.0490

the axis Ox. This is the reason for which we call it the classification according to
Riemann interaction bet ween curves.

(c) Classification according to the horizontal connexion.
Let us consider a partition of the interval [-774, T/4] on the axis Oy,

containing the disjoint intervals

~{k-l)T kT\ „ . . . .. VIT S Tl

Through the ends of these intervals we draw the 17 parallels to the axis Ox. The
number of intersection points bet ween these parallels and the curves of our
family are introduced in the table IV. The values of corresponding entropies and
entropie interdependences are given in the column L of the table III. The
classification in this case is given in the figure 4. Of course, this classification

vol. 13, n° 4, 1979
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{elt e2, e3, e4 } [eil e2, e

l l l

( e t )

Figure 3 Figure 4

TABLE IV

e, . . .
e . .

e

e , . . .

i
0
0
0

r T

2
4
8
8

1T
32

2
0
0
0

- T

2
4
4

. 0

3T
16

2
0
0
0

- 3 T

2
4
0
0

32

2
0
0
0

- T

2
2
0
0

T
8

2
2
0
0

2
0
0
0

371

32

2
4
0
0

-3T

2
0
0
0

T
T6~

2
4
4
0

-1T
~32~~

2
0
0
0

T
32

2
4
8
-8

i
0
0
0

0

3
5
9
17

dépends on the partition of the interval [ -774, T/A] on the axis Oy. It is a
classification according to Lebesgue interactions between the curves.

4. ENTROPIC DISTANCE AND HAMMING DISTANCE

Let En be the linear space of ail vectors having n components belonging to
Galois Field GF (2). For any vector 5eEn let w{s) be its weight, i. e. the number
of non-zero components of 5. For any pair of vectors s, s*eEn we dénote by
w (s*, s) the number of positions where we have the component 1 in the vector s*
and the component 0 in the vector s. Let also d(s,-s*) be Hamming distance
between the vectors 5 and s*. Then

d{s, s*) = w(s|s*) + iü(s*|s). (11)

R.A.l.R.O. Informatique théorique/Theoretical Informaties
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To each vector seEn we attach the entropy

' w (s) n — w (s)

w(s) w(s) n-w(s) n-w(s)
= log2 log2 . (12)

n n n n
For any subset

we defme the inner connexion, or the total connexion, between the vectors
belonging to E*, as being

^ t o t ( £ * ) = ^ ( E * ; {5]L}, . . . , { s r } ) = £ H({st})-H(E*), (13)
!= 1

where #(£*) is the entropy of the random distribution given by the relative
frequencies of the columns in the matrix whose rows are the vectors s l f . . ., sr.

The interdependence between two vectors s, s*e£n is given by

W{{s}, {s*}) -H({s}) + H({5*}) -H({s , s*}) (14)

where
H({s,s*})

_ fw(s,s*) MJ(S|S*) IÜ(S*|S) n — w{s, s*) — u;(s|s*) — IÜ(S*|S) \
= Ü4I , , , I, (15)

\ n n n n J

where w(s, s*) is the number of components where both 5 and s* have the
letter 1. The entropie distance between s and 5* is

{ } { { } ) (16)

while the Hamming distance is given by

d(s,s*) = w(s-s*). (17)

PROPOSITION 3: For any pair 5, s* eEn we have

V J \n-d{s,

vol. 13, n° 4, 1979
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where
t, l - f )=- t log 2 t - ( l - t ) log 2 ( l - t ) l te[0,1].

Proof: For any random distribution

Pi>0, f] Pi = l,

the corresponding entropy is equal to
n

Hn{p1 Pn)=~ E Pi1Og2Pi

According to the well-known proper ties of discrete entropy we obtain

H({s,s*})

w(s, s*) XÜ(S|S*) w(s*|s) w{s, s*) + w;t(s|s*) + M;(s* \s)

n ' n ' n n

'wis, 5*) wis,s*) + djs, s*) d{s,s*)'

n n n

-, s*) fw{s\s*) XÜ(S*|S)'
+ n " 2 V d ( s , 5*)^ d{s,s*)

2n J n z \ dis, s*) * d(s, s*)

d(s, s*)\ / M?(S, s*) IÜ(S, s*)

Kn-d(s, s*)' n-d{s,s*)J'

According to (16) we get

/ d(s,

n \d{s, s*) d(s, s*)

M? (S , S»)

n ) x 2\n — dis, s*) * n — dis, s*)

\ n n J

i..e. just (18).

Q.E.D.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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REMARK: Obviously, if
d(s,s*) = 0,

then

which implies
p(s,s*) = 0.

The converse assertion is not true.

PROPOSITION 4: If for s, S*€JE„ we have d(st s*) = n then p(s, s*) = 0.
Proof: If

d(s.s*) = n,
we have

w(s)
and according to (18) we can write

\ J\ n n J \ n
because

w (s | s*) = u? (s) = w — u; (s*),
M;(S*|S) = M;(S*).

Q,E,D.

It is well-known the importance of Hamming distance in algebraic coding
theory. The entropie distance can also be used with this respect. How the
independent errors modify the entropie distance can be seen in the folio wing
proposition:

PROPOSITION 5: If the vector seEn is transmit ted and t independent errors occur
such that u components 1 are changea into 0 and v components 0 are changea into 1
(u + v=t), we obtain at the receiver the vector s*£Enfor which

n-w(s)

«>(s)-tt + p \ ( 1 9 )

n \w(s)

Proof: If the vector s is transmitted and u components 1 are changed into 0 and
v components 0 are changed into 1, according to (16) we get

p(s, s*) = 2H({s, s*})-H({s})-H{{s*})

w(s) n — w(s)\ (w{s) —
= -H2[

\ n n ; \ n n j
(w{s) — u u v n — w(s) — v\
\ n n n n J

vol. 13, n° 4, 1979



406 S. GUIASU, C. REISCHER

But
fw(s)-~u u v n — w(s) — v\
\ n n n n )

w(s) u n — w(s) — v
. - ,

n n n

n-w(s)-
) n 2 ' i r i s ) ' i r i s ) ) 'n \n — w(s) * n — w(s)

From (20) and (21) we obtain (19).
Q.E.D.

The advantage of using the entropie distance instead of Hamming distance can
be seen in such common situations when sorne letters of the transmitted message
are deleted or when some letters are inserted into the message during the
transmission. With respect to these errors Hamming distance is very vulnérable
while the entropie distance works quite well. For example let us take the binary
vector s = 01010101 and let us suppose that an initial symbol 1 is inserted and ail
the other symbols are shifted» receiving the vector s* = 10101010 of the same
length 8. The effect of this usual kind of error on Hamming distance is very
severe, namely d(s, s*) = 8 while p(s, s*) = 0. If the initial symbol 0 is inserted
into the message 5 and all the other symbols are shifted, receiving the vector
s* =00101010 of length 8, we get d(s, s*) = 7 (i. e. 87.5% from the maximum
Hamming distance) while p (s, s*) = 0.8568 (i. e. 42.84% from the maximum
entropie distance). The entropie distance gives good results when we want to
recognize the^tructure, or the pattern, of the word. Thus, from the viewpoint of
the entropie distance there is no différence between the vector s = 01010101 and
the vectors s ^ 10101010 and sf =02020202 because p(s, sj) = p(s, sJ) = O
because s, s f and sf have the same pattern (i. e. the alternation of two symbols)
while d(s, sf) = $ and d(s, s|) = 4.

On the other hand, the entropie distance is more flexible than Hamming
distance. Thus let us consider the table IV. We can see that Hamming distance
makes no différence between the pairs of vectors ( { ex }, { e3 } ) and ( { ex }, { e4 } )
because

while

P({*i},{e3}) = 1.4049, P ( R M e 4 } ) =
Also, we get

d({eu e3}, {e2, «4})=d({ e i , e4}, {e2, e3})=15.
while

i. e3}, {e2, e*})= 1.4236, p({eu e,}, {e2, e3})=1.6471.

R.A.LR.O. Informatique théorique/Theoretical Informaties
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At the same time we cannot compute Hammmg distance between { ex} and
{e2, e3 } while the entropie distance between them may be obtained without any
difficulty being equal to

P({ei}. {e2le3}) = 2.1344.

Of course, the problem is not to replace Hamming distance by entropie distance
but only to use both of them together.
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