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CHARACTERIZATION AND LOWER BOUNDS
FOR AUDITIVE CHARGES

FOR HETEROGENEOUS QUESTIONNAIRES

by Bhu Dev SHARMA (*) and Asha GARG (2)

Abstract. — Information Theory hasfound interesting applications in Questionnaire Theory. Picard
and Campbell have shown connections ofnoiseless Coding Theorems with average charge of a valid
homogeneous questionnaires. Duncan has considered heterogeneous questionnaires and has shown thaï
if log d is considered as the charge for a question of resolution d then the expected charge for the
questionnaire is lower bounded by Shannon's Entropy. In this paper we consider heterogeneous
questionnaire, and a gêneralized average charge and characterize the twoforms, one classical and the
other of order t by considering the additivity property. It has then been proved that for a heterogeneous
questionnaire average charge of order t is lower bounded by Rényïs Entropy. It fias also been shown
that a valid questionnaire will existfor which the average charge of order t per state can be made as close
to the RényVs Entropy as desired.

Résumé. — La théorie de Vinformation a trouvé des applications intéressantes dans la théorie des
questionnaires. Picard et Campbell ont mis en évidence des liaisons entre des théorèmes de codage sans
bruit et le coût moyen d'un questionnaire homogène. Duncan a considéré des questionnaires hétérogènes
et montré que, si log d est considéré comme le coût d'une question de base d, le coût moyen du
questionnaire est borné inférieurement par Vinformation de Shannon. Dans ce papier, on considère les
questionnaires hétérogènes et un coût moyen généralisé; on caractérise deux formes, Vune classique,
Vautre d'ordre t, en considérant la propriété d'additivité. On prouve ensuite que, pour un questionnaire
hétérogène, le coût moyen d'ordre t est borné inférieur ement par l'information de Rényi. On montre
aussi qu'il existe un questionnaire valide pour lequel le coût moyen d'ordre t par état peut être rendu
aussi proche que possible de Vinformation de Rényi.

I. INTRODUCTION

Information Theory has found an interesting application in theory of
questionnaires (Picard [8]). Picard [9] and Campbell [4] have shown that a
charging scheme based on the resolution of questions gives a relationship
between questionnaire theory and noiseless coding theory. Duncan [5] has
generalized the "only if" part of Kraft's inequaîity for an arbitrary
heterogeneous questionnaire. A charge equal to log d, for each question of
resolution d, considered by Duncan [5] follows from an equity principle. Using
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384 B. D. SHARMA, A. GARG

this charging scheme an extended noiseless coding theorem shows that the
average charge for a heterogeneous questionnaire is bounded below by the
Shannon's Entropy [5].

While discussing the noiseless coding theorem for an arbitrary heterogeneous
questionnaire, Duncan [5] has chosen the random charge of a questionnaire
which minimizes the average charge subjected to the condition that the
questionnaire is valid. He has confined to the case when the average charge is
expectation of the random charge. But this may not be the case always. In the
present paper we introducé a gênerai measure of average charge for an arbitrary
heterogeneous questionnaire. Laying down what may be called the additivity of
average charges, the gênerai expression has been characterized, as is done in the
case of homogeneous questionnaires [8] and the linear functions turn out to be
the only possible case suiting the purpose. The lower bound on the average
charge when the function is linear has been obtained by Duncan [5], for
heterogeneous questionnaires.

In this paper lower bound has been obtained on the average charge obtained
by considering the exponential form of the function. A theorem analogous to the
ordinary noiseless coding theorem has been proved which shows that the
exponential measure of given order t is arbitrary close to the Rényi's Entropy [7].
truc state is pt(/ — 1, 2, . . ., m) and

II

First, we give some notations which are very near to those used by Duncan [5].

Let © = {0!, 02, • • ., 0m} be a finite state space and P = (plt p2, • . ., pm) b e

the probability vector over the state space such that probability of 6; being the
true state is pt (i= 1, 2, . . ., m) and

X > = 1, Pi^O (i = l , 2 , . . . , m ) . (1)

Let g be a questionnaire defined on 0 and nid represent the number of
questions of resolution d required to reach the state 0;. Now, if a heterogeneous
questionnaire Q is valid and uses precisely nid questions of resolution d
{d = \,2, . . . ) to détermine 0̂  (i = l, 2, . . . , w ) , then {cf. Duncan [5]):

m oo

I T\d-""^. (2)

Also, if Q is a valid heterogeneous questionnaire and C{Q) is the random
charge when logd is the charge for each question of resolution d, then expected
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charge for Q is given by

m e » m oo

ErC{Q)= Z Z Pinidlog2d= £ Pilog2 n dn" (3)
» = 1 d - 1 i = l d=l

which is ordinary average of the random charge

C(Q)= £ nulog2d (3)

In gênerai, the random charge may be a function of this quantity. So that if we
take a continuous, strictly increasing function viz. cp: [l,co[-*R, the random
charge for Q may be given by

Consequently, the generalized average charge for Q may be taken as

cp being a continuous, strictly increasing function, cp"1 exists.

It is interesting to see that (4) reduces to the classical average charge EP C (Q) in
two different situations. The first case arises when a questionnaire Q uses same
number of questions of each resolution d to détermine every Qt (i = 1, 2, . . ., m)
i. e. when nld = n2d= .. . =nmd = nd (say), so that we have for any q>,

E$C(Q)= £ nd\og2d = EPC(Q).
d=i

Next, we consider that cp is a linear function i. e. if

<p(x) = (po(x) = ax + b; a # 0 , x e [ l , oo[

then, also

El° C(Q)=t tpi "f lQg2 d = EPC(Q).
i=l d=l

For reasons that will become clear in the next section, another useful function
cp is the one given by

cp(x) = cp,(x) = 2<* (xe[l,oo[),

For the function cpt,
1 / m 00

£ ? C ( Ö ) = - l o g 2 ( E p , - n ^
l \ ï = 1 </ = 1
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386 B. D. SHARMA, A. GARG

We call this average charge to be the exponential average charge of order t
for g.

It can be seen easily that lim E? C(g) = £p° C{Q) = EP C(Q).
t -> o

III

In this section, we jointly characterize the average charges given in (3) and (5).

Consider two independent state spaces

0 = { 6 l f 9 2 , . . . , 9 , } a n d 0 * = { 9 ? , 0 ! , . . . , 9 * }

with associated probability distributions P = (pi,p2, --"Pj) a n d U = {u1,
J K

u2, • • ., uK) such that Pji^O, £ pj = l, ( j= l , 2, . . . , J) and ufc^0, £ uk=l

(k= 1, 2, . . ., X). Since 0 and 0* are independent, the probability of the pair
(9j, 0f) is pjWk Ü = l , 2, . . ., J; /c=l, 2, . . ., X).

Let us dénote by PU the probability distribution

and let valid heterogeneous questionnaires Qi and Q2 exist on 0 and 0 * ,
which use precisely mjd (7 = 1,2, . . ., J) and nfcd (fc = 1, 2, . . . , K) questions of
resolution d respectively to détermine Qj and 9*. A questionnaire say, Q, may
now be developed from the above two questionnaires on 0 and 0 * in which
wjd + Uw Ö = 1, 2, . .., J;k = l, 2, . . ., K) questions of résolution^ are required
to détermine the pair (9;-, 9£).

Now, because a questionnaire for (9;-, 9?) exists with {mjd + nkd} questions of
resolution d (d — l, 2, . . ., 00), we have the inequality

which also folio ws from the inequalities

j 00 & 00

5] f ] < T m ^ l and X [1 d"B u^l
j = 1 d = 1 J t c = l d = l

ensured from the existence of questionnaires Qi and Q2-

Further, it is natural to expect that if E%v C (Q) is a measure of average charge
for g , then it is the sum of the average charges for Q1 and Q2 separately i. e.:

(7)
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i. e.:

<P~ 1 t i Pj«ic <P ( f { mJd + nkd } log2 d ) ]

j=l \d

i. e.:

jn

We call the property (7) as additivity of the charge.

Now, we will find ail additive, quasiarithmatic average charges which
amounts to determining ail possible values of cp which satisfy (8) under the
condition (6). We restrict ourselves to the case J = K = 2 and proceed on the unes
of Aczél[2].

THEOREM 1: For a questionnaire Q, the onîy quasiarithmetic charges (4) which
are additive (7) withJ = K = 2 are the arithmetic and exponential average charges
given in (3) and (5).

Proof: For J = K = 2, (8) can be written as

q)"1 PiW1(pMog2^n dm"+nA + Plu2y(\og2 fj dm"+n

+ p2i/1<p(log2 H dm»*n» ) + p2u2(p(log2 fl ^m2d+"2d )]
V d=i J \ a=i J_\

g.n̂

p Q d"»\\. (9)
where

Pi^O, p 2 ^ 0 , P i + p 2 = l ; « i^O, w 2 ^0, MI+M 2 = 1 (10)

and mld, m2d, nld, n2d are positive integers.
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388 B. D. SHARMA, A. GARG

Setting
mid = m2d = ^d'y ux = l—u, u2 = u in(9)

we get

ç - ^ a - u ) <pAog2 fl d»«+A + uq>(log2 n d"»+

(11)

for all ue[0, 1] and positive intégrai values nXd, n2d and md.

Now, let us take
tym(x) = <p(x + m) (xe(l , oo[),

where
00

m = \og2 f ] dm".
d = l

Then, (11) gives

for all ue[0, 1] and arbitrary integers n ld and n2d-

Now refer Hardy, Littlewood and Pólya [6], there must be a linear relation
in <p and \)/m L e.,

(12)

the constants a (m) and P(m) may in gênerai depend on m.

Thus, by (12) we have

; xe [ l , oo[. (13)

Now, there arise two different cases viz. for a(m)= 1 and ot(m)£ 1.

In these cases (cf. Aczél [2]) we get an équation for <p of the form

cp (x + m) = a cp (x) cp (m) + b <p (x) + 6 cp (m) + c (14)

with
a —O, 6 = 1 in the first case (15)

and
b = aB, c = aB2-B in the second case (16)
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so, (9) gives

with the variables restricted only by (10).

If mld = nld=i and m2d, n2d = 2, 3, . . . ; p2, u2e[0, 1] and if we take

g2]J d

and

tt>.= Ml q> Mog2 n dnid) + U2 9 Hog2 U dnA

then (17) becomes

Vx, j ; e [ l , oo[, (18)

where
x = cp~x (i;) and y = <p"A (M;), V v, w in suitable domain.

Now, if the constants are as given in (15), then by setting

/ (x) = <p(x) + c; XG[1 , oo[ (19)

the functional équation (18) reduces to

ƒ(*+}>) = ƒ(*) + ƒ()>), V X ^ G [ 1 , oo[. (20)

Since cp is increasing, the function ƒ is also increasing, and so, by Aczél [1], the
solution of (20) is

vol? 13, n° 4, 1979
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where y (>0) is an arbitrary constant, which gives

(p(x)-yx + 8 (Y>0) ; XG[1,OO[. (21)

Again, when the constants are as in (16), we may set

g(x) = a[<p(x) + B\; xe[ l , oo[; a^O (22)

and obtain the functional équation (18) in the form

Vx, ye[l, oo[. (23)

From (22) we see that g is strictly increasing, because (p is strictly increasing.
On the other hand, as (23) shows, if there exists an x0 for which g (x0) = 0 then
g-(xo + y) = 0,Vye[l, oo[, which would contradict the strict monotonicity of g.
Thus g is strictly monotonie and nowhere zero and then again from Aczéi [1], we
get

Vxe[l, oo[

i. e.:
<p(x) = 2te + 8; t>0; VXG[1, OO[. (24)

The proof of the theorem now follows by considering the forms (21) and (24)
in (4).

Q.E.D.

On the other hand, the functions given by (21) and (24) satisfy (8) for all J > 1,
K > 1 [and all mjd, nkd, pjt uk{j=i, 2, . . ., J;'fc = l, 2, . . ., £)satisfying(6) and
(8)], thus the arithmetic and exponential average charges (3) and (5) are always
additive (7).

IV

In this section (cf. Campbell [3]), we will obtain a lower bound on the average
charge of order t given in (5) for heterogeneous questionnaires.

THEOREM I: Let nid (i = 1, 2, . . . , m) satisfy

t fld-""£i. (25)
i = i d = i

Then we must have
PFC(Q)*Ha{P), (26)

where

and
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^ l is the Rényïs Entropy.

Proof: If t = 0 and oc = 1, the result is one proved by Duncan [5]. If t = oo and

ot = O, then Ep>C{Q) = max f l d"M a n d ^o(J°) =
I d=l

If the nid satisfy (25), then we must have

d=i

00

for at least one i and hence for the max [~[ dnid. It foliows that
l

max Y,

Now, let 0 < t < o o . By Hölder's inequality,

m \l/p / m \lfq m

|>3V (27)

where (l/p)+{l/q)=l and p<l. In (27), setting

oo

vCï ̂ = D; I I ^ » Vï ~~ Pi P ~" — f a n c l üf ̂— J. — oc
d= 1

we get
/ m oo \ — l/f / m \ 1/(1—a) m oo
/ \""» i r itn-.A \ I V a \ if X™1 1 T J—tt;d / O O \

I > Pi I u I > Pi \ S > I I tt . l^OJ
\ i = l d = l - / \i=l / i = l d = l

because the équation (1 lp) -H (1 /<2) = 1 implies that a = (1 +1) " 1 . No w, (28) can be
rewritten as

\ l / r • ' *• U / ( 1 " a >

Using (25) and taking logarithms to the base 2 we get the required result.

Q.E.D.
It can be seen easily that equality holds in (26) iff
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or

f nidlog2d=-oilog2Pi + log2( f] p)V (29)

We now prove the following generalization of the coding theorem:

THEOREM II: Let oc= 1/(1 -f 0- It is possible to construct a valid heterogeneous
questionnaire which détermines sufficiently long séquences of éléments of state
spacefor which average charge of order t per state is as close to Ha(P) as desired.

Proof: Let the state space ® = {0i, 02, . . . , 0m } have probability distribution
P^iPi'Pi* * • • > Pm)- Consider a séquence of length M of the éléments of 0 , say
s = (0i, 02, . . . , 0M) in such a way that the probability of s is

Pilph PiM (30)
iM

if 0 ! = xu , 02 = x,2, . . ., 0M = x,- . Let nd (s) be the number of questions of each
resolution d required to détermine the séquence s. The average charge of order t
for the séquences s (whose number is mM) of length M is

(31)

where the summation extends over the mM séquences 5.

The entropy of order a of this product space is

P), (32)
where

F* = 1 . ^ (*)]"• (33)

Let nd(s) be the integer which satisnes

~a log 2 F(s ) + l o g 2 P * â £ n d ( s ) log 2 d<l -a log 2 P(s ) + log2P*. (34)

Now, if every nd(s) is equal to the left hand member of (34) then

EÏMC(Q) = HaiM(P*),

Now, (34) implies that

[P(s)]-a tP* f^ f ] dt^w<2t[P(s)]-fltfP*t. (35)
d=i

If we multiply each member of (36) by P (s), sum over all s, and use the fact that
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a t = l — a, we get

d=X

Now, taking logarithm, dividing by t and using the relations 1 + t = a~1 and

oc£=l — a, we get

, ( P * ) + 1 . (36)

If we divide by M and use (33), we get

The quantity E%M C (Q)/M can be called the average charge of order t per state.

By choosing M sufficiently large the average charge can be made as close to

Ha(P) as desired. Thus we have proved the required result.

If £ = 0, it is just the ordinary coding theorem.
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