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A HIERARCHYOF
PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS (*)

by E. FACHINI and A. MAGGIOLO-SCHETTINI (*)

Communicated by G. AUSIELLO

Abstract. — In this paper we give a characterization of primitive recursive functions
ƒ : Nr~* Ns{r^0, s>0) and define a Hierarchy of classes <f(ùa+bia> b^O) of these functions by a
syntactic measure ofeomplexity. The behavior ofthe classes J^a+bw^ respect to different operators is
also analyzed. The classes J^ + b coincide with the ones ofCleavé's hierarchy for a^2,b^0 and give a
refinement of the Meyer-Ritchie hierarchy.

INTRODUCTION

Partial recursive séquence functions, i. e. partial functions of type ƒ : Nr -» Ns,
have been studied by Eilenberg and Elgot and by Germano and Maggiolo-
Schettini (see [6, 7, 8, 9, 10]). In this paper we consider a characterization of
primitive recursive functions Nr ->JVs(r^0, s>0), which reduce obviously to
primitive recursive functions when s = 1. Such functions are obtained by starting
with a finite set of basic functions and taking the closure with respect to
composition, cylindrification and répétition operators.

We consider a hierarchy of length G)2 of primitive recursive séquence functions
in a very simple manner: every class J^ + b contains the functions obtained from
the basic one by a nested répétitions and b successive compositions. (The idea of
constructing an œ2 hierarchy was suggested by Cleave in [4] where an a>2

hierarchy of functions Nr -> N computed by a register machine is presented and
the équivalence with a characterization of the chain of classes in terms of the
substitutions and recursions occurring in the functions of each class is shown.)

(*) Received June 1978, revised October 1978.
(l) Gruppo Nazionale di Informatica Matematica c/o Istituto di Scienze delllnformazione

dell'Università Salerno, Italy.
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50 E. FACHINI, A MAGGIOLO-SCHETTINI

We introducé LOOP programs (see Meyer and Ritchie [13]) with r input
variables and s output variables. We consider the class of functions computed by
these programs and prove that it coincides with the class of primitive recursive
séquence functions. We define the class Mœa + b of LOOP programs as the classes
of programs with b successive subprograms containing at most a +1 nested loop
instructions. It is easily seen that the corresponding classes of functions coïncide
with the classes Jma + b and then a hierarchy of LOOP programs follows. It can be
also shown that these classes are computation time closed. (Note that in [3] Beek
introduces a œ2 hierarchy of Meyer and Ritchie LOOP programs inspired by
Cleave's idea. The classes of programs are defined here similarly as in Beck's
paper but the proof and the point of view are different.)

If we consider the subclasses J^L+bi^ma.+ b of functions Nr -> N we can
compare our hierarchy with the known hiérarchies of primitive recursive
functions defined by Axt, Cleave, Grzegorczyk, Meyer-Ritchie (see [2, 4, 11, 13]
respectively).

In section 1 primitive recursive séquence functions are defined and the
relationship with primitive recursive functions is shown. In section 2 the classes
of primitive recursive séquence functions are defined in terms of composition and
répétition. In section 3 the proper containment of each class in the foliowing one
is shown. In section 4 we introducé LOOP programs and the hierarchy defined in
terms of nesting and concaténation of loops and we prove that the corresponding
hierarchy of functions coincides with the one of sections 2-3. In section 5 we
recall the définition of Axt, Cleave, Grzegorczyk and Meyer-Ritchie hiérarchies
and compare these hiérarchies with our hierarchy (restricted obviously to
functions Nr ->• N). In section 6 we extend some known decidability results to
the classes </œfl+&.

A rather complete synthesis of works on complexity classes of functions is in
the book by Ausiello (see [1]).

We are grateful to Egon Borger for encouragement at the beginning of our
work, to Giorgio Ausiello for many discussions and to Jean-François Perrot for
discussions and for bringing the papers by Beek and by Huwig and Clausto our
attention.

1. PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we introducé a characterization of primitive recursive functions
from séquences of natural numbers to séquences of natural numbers, briefly
primitive recursive séquence functions.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 51

In the following we will use the letters x, y, possibly with indices, for natural
numbers and the letters M, V for tuples of natural numbers without specifymg the
arity of the tuple when it is clear from the context.

Consider the set of functions

DÉFINITION 1.1: The set £f of primitive recursive séquence functions
ƒ : AT -»• Ns, with r ̂  0, s > 0 is defined as the least set of functions containing S
and closed with respect to the following operators :

1° the composition operator h f, g .{f .g) such that if ƒ : Nr -> Ns and
g :NS-+N* then f.g:Nr -^ N* and ( ƒ . g) (u) = g ( / (M)) ;

2° the left cylindrification operator Xf.cf such that if ƒ : Nr -* Ns then
cf:Nr + 1^Ns+1 andc/(x, ü) = x,f(u);

3° the right cylindrification operator Xf. fc such that if ƒ : Nr -> JVS then
/ c : Nr+1-^NS+1 and/c(w, x) = ƒ(«), x,

4° the répétition operator X ƒ.ƒ* such that if/ : AT -> Nrthen fR : Nr+1 ̂  Nr

and ƒR (x, u) = ƒ ̂  (u) = (J^_J) («)•

Consider the following functions:
1° the functions 0 r : AT -> iVr (r> 1) such that

0 r (x l f . . ., xr) = (x2> . . ., xrf Xi);

2° the functions Ar : Nr -+ N2r(r>0) such that

A(M) = M, M;

3° the functions ©^ : ATr —> ATr(i^r, r > 1) such that

4° the functions 7J : Nr -+ N( l ^ i ^ r ) such that

/[(xi xr) = x£;

5° the functions F : Nr -+ Nr{r>0) such that

6° the functions Tr
itj : N

r^Nr(i±j, l^ij^r, r>l) such that

-* i, jV^ l ' • • • » X;, . . . , Xj-_i, Xj, Xj'+i, . . . , Xr)

= Xi, . . . , Xi, . . . , Xj- i, Xi, Xj+ i, . . . , Xr,
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52 E. FACHINI, A MAGGIOLO-SCHETTINI

7° the functions Cm : Nr -> N(m, r^O) such that

For brevity set © = 02 = ©2; A = A\ I = I\.

Consider the foliowing operators:
1° the cartesian product Xfg.(fxg) such that if ƒ : Nr -> Np and

g : Nq->NS then fxg : Nr+q -+ Np+S and (ƒ xg)(u, v) = ƒ (M), <?(W);

2° the juxtaposition operator Xf,g.(f^g) such that il ƒ : Nr ^ Np and
g : Nr -+ Ns then ƒ"# : JVr-> JVP+S and (f"g)(u) = f(u), g(u).

LEMMA 1.1: The class Sf contains 0 r , Ar, ®-, F, /•, !T-f,-, C^.

Proof: It is immédiate from the définitions. •

LEMMA 1.2: The class £f is closed with respect to cartesian product and
juxtaposition.

Proof: II f : Nr^Np and g : Nq -> Ns then it holds that ƒ x g = ƒ *. c"g If
ƒ : AT -> iVp and ^ : Nr -* N s then it holds that f"g = Ar 4e.c^. D

NOTATION: Let .S^1'-7 dénote the set of primitive recursive séquence functions

ƒ : JV£ -> JV7* for a certain ï^O a n d ; > 0 , so that ^ = (J «9PI"iJ'.

J>0

Let the set SP of primitive recursive functions be defined as the smallest set
containing O, the zero of zero arguments, S, the successor, I' (for l ^ i ^ r ) , the
projectors, and closed with respect to substitution and recursion. We will
dénote SPt the set of primitive recursive functions of i arguments, so that

THEOREM 1.1: y={f = f1\ . rfs\fi(

Proof: (a) Sf^ {ƒ = ƒ / . . . V i | / - e^ r , r^O, s>0} .

It is true for the basic functions because S e {0, S, / J } .

Assume it is true for f:Nr^> Ns. It holds that

JJ+1(w) for î = l .

ISi-df(Ï2+1(u), ...,rrtl(u)) for

As by induction hypothesis ƒ = ƒ./* e ̂ V and ^ is closed with respect to
substitution it follows

with f / ^ e ^ + i . Analogously for fc.

R.A.I.R.O. Informatique théorique/Theoretical Infonnatics



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 53

Assume the thesis true for ƒ : Np -» Nq and g : Nq -> Nr. It holds that

(ƒ. <?M«) = ((ƒ• 9) • ' 0 («) - (ƒ• te. Id) (w) = ^ (/i ( « ) . . • • . ƒ , ("))•

As by induction hypothesis ƒ e ^ p and gie0>
q and 9 is closed with respect to

substitution it follows

Assume the thesis true for ƒ : Nr -+ Nr. It holds that

As by induction hypothesis/. I• e ̂ r and ^ is closed with respect to simultaneous
recursion it follows

(6) ^ g { / = / r . . . \ f . | / É ^ , , r^O, 5>0}.
As 5^ is closed with respect to juxtaposition it suffices to show that £Pr e ïf

r* *
for every r^O.

The set of the basic functions of 9 is contained in Sf by définition and
lemma 1.2.

Givens+1 functions/, g lt . . ., öfsG^with/: N ' ^ N a n d ^ i : Nr -• N. let fc
be the function such that h(u) = f{gl (M), . . . , #S(M)). It holds that h e £f because

Given two functions g, /ie^* with g : Nr -* N and h : Nr + 2 -> N, let ƒ be the
function such that

It holds that ƒ e =9̂  because

/ = ®ïîi.cAr/+1g/+iOc.((Ar+1)c/+1fc/Sc)R./ïîi

Note that, if r = 0, 0 ' t i and cAr must be replaced by I and A respectively. •

2. CLASSES OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we define classes Ji of primitive recursive séquence functions
and we study the behaviour of these classes with respect to the operators
introduced in the previous section.

vol. 13, n° 1, 1979



54 E. FACHINI, A MAGGIOLO-SCHETTINI

Let E ̂  E u { ©, A } and, for a subset Xoî Sf, let V {X) be the closure of X with
respect to composition and left and right cylindrification and <%(X) the set of
functions obtained from X by répétition.

DÉFINITION 2 . 1 :

\ } forevery a, b^O,

for a ^ l .

Note that S is the least set of functions such that / [ 6 / 0 .

LEMMA 2 . 1 : The following properties holà:
1°
2°

3°
4° iffeJ^a + b thenf~fo.fi fb withfosS^,flt

5° iffeJ&a + b thenfceJ&a + b andcjeJroô + fc.

Proof: It is immédiate from définition 2 . 1 . •

The property 2 . 1 . 4 affirms that the functions of the class ^f^a+b are obtained
by composition of a function in J&a with b functions in M{J^ which, by
property 2 . 1 . 2 , means b functions obtained from Jo by a nested répétitions.

The following lemmas characterize the behavior of the above classes of
functions with respect to the operators and lead eventually to the proof (see
lemma 2.6) that the procedure of generating such classes ends with the class

• / « a = U A>« + 6 and </ ro>=^.
Û<CÛ

b<(0

LEMMA 2 .2 : ^ (^ œ f l ) c e / ö ) f l + 1 .

Proof: It is immédiate by définition 2 . 1 .

L E M M A 2 . 3 : IffeJ^va + b' 9^^<oa+c thenf.geJaa + b+cfor a,b,c< ©.

Proof: It is by induction on b and c.

For fc = c = 0 the thesis is true by property 2 . 1 . 3 .

Assume the thesis is true for fe = 0, c ^ n. Let ƒ e J&a and getf1ùa + n+lf then
ge^oa + n+i by définition of / M + B + 1 .

Assume the thesis is true for b < m and for every c. Consider the case c = 0. Let
+ m and j e / M . Then ƒ . # = ƒ ! J2 .g where/x e t / e ) ö + m - i a n d / 2 e « ^ , J .

R.A.I.R.O. Informatique théorique/Theoretical Informaties



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 55

As by induction hypothesis and lemma 2 .1 fi-Q^^&a + i then, again by
induction hypothesis, it follows tha t / t ,f2 -g^^œa + m- Assume the thesis is true
for b^m and c < n. Let feJma + m and 0 e ./„<, + „. Then f.g=f.g± .g2 where
giet/(ùa + n-1 and g2e${S<aa)' As by induction hypothesisf.g1 e^^a + n + m-i
then, by définition of ƒ«,« + „+„, f.

LEMMA 2 .4: IffeJ(ùa + h) geJ^a+c thenf"geJ'(ûa + b + c,for a, b, c < co.

Proof: It follows from lemma 2 .3 reminding that for / : J V - > J V P and

L E M M A 2 . 5 : / ƒ / e </<*>« + &> g e ^ < * a + c then f x gsJfaa + b + ctfor a , b , c < co.

Proof: It follows from lemma 2 .3 reminding that for f : Nr -> Np and

Let ^m2= I ] 0 ..

LEMMA 2.6: (a)

(b) m(J,ù = J^
(c) J* = &.

Proof: (a) Let ƒ 6 <g (JJ) then ƒ = / i . / 2 where/L , / 2 e ̂ , by définition of J^z
there exist a, b, c, such that fx^J^a+b a n d / 2 e ƒ œfl + c. But by lemma 2 .2 it
follows that / i .fzeSva+b+c^Sat then « (ƒ t t . ) £ . / „ i ;

(b) analogously;

(c) by (a) and (b) and définition of $f and Jr
(û2. •

3. A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we show the strict containment of the class J{ in the class <fi + 1

(for i < co2).

The proof for i < co is based on the fact that a function ƒ defined by patching
together from several cases must be computed with at least a new répétition not
reducible to the ones needed for the définition of the functions expressing the
different cases of ƒ

The proof for the classes J^^a + bwrtn a ^ l ,b < oo is inspired by [4] and exploits
properties of growth of the functions in J{ with 'respect to a proper ordering of
the séquences.

We prove first some lemmas. In lemma 3 .1 the strict containment of the class
Jt in the class <fi+1(i<(ù) is shown. In lemma 3 .2 the strict containment of the
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56 E. FACHINI, A MAGGIOLO-SCHETTINI

class i/œ + j in the class t/G) + i + 1 (i < ca) is shown under the normality hypothesis.
In lemma 3 .4 the normality property is stated for J^. From lemmas 3.1-3.4
theorem 3 .1 follows which affirms the strict containment of the class <?t in the
class «/; + ! for every i<co2.

Let < dénote the usual lexicographie order on séquences of natural numbers.
DÉFINITION 3 .1 : A subset X of ¥ containing E u { -f } and closed with respect

to composition and left and right cylindrification is said to be normal if it contains
a strictly increasing function h : N -> N with the property that for every
g : Nr -> Nse Xthere exists meN such that, for every u = xlt. . ., xr,

g(u) < F0(m, max xt) if r > 0, g{u)<F0{m, 0) if r = 0.

with F0(x, y) = {hc.c(h.S).hR) (x, y).

LEMMA 3.1: For every i < co there exists a function f e J'i +1 — J\.

Proof: Let rem (x) the residue of the division of x by a constant m. Consider the
foliowing functions:

/1(x) = mx,

{ if reMi(x) = 0ff (x)= {
Ic i jx) otherwise,

if «m,W
otherw1Se

with m > 1 and remf(m7)^0 for every i±j.
It is easy to see that if we want to define a function by patching together from

several cases we cannot dispense with introducing répétitions {see also how in the
recursive function theory a function defïned by cases is reduced to the
composition of functions obtained by recursion).

In our case, assuming that ft e Ji but not fiet/i-h we obtain fi+1 from ƒ by
composition with a répétition on C^+i and therefore fi + 1$Si.

Now

/i=cO.(S™)*.

As it is easy to check that the functions in Jö are of the type

f(x1> . . ., xr) = (xii

with xije{x1, . . ., xr} u {0} , mt^0, s>0, then fx e Jx cannot be expressed
in Jö. Furthermore

^ Q i 1 -Jo and

R.A.I.R.O. Informatique théorique/Theoretical Informaties



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 57

because we cannot spare the répétition, it follows that f2eJ2~^i- Finally

m, '

where

is the function such that rem. mi -(x) = (rem. (x),. . ., remi {%)). Asfi+1 can be
obtained by compositions of functions in J>0 with rem. mi (which can be always
computed by a single répétition) and i functions obtained by répétition of
functions in Jo, it follows fi+1 e Ji+1 axi&fi+1£Ji.

LEMMA 3 .2: Suppose that J>'w is normal. Consider the functions Ft : AT2 —• N,
Gt: N-*N,Ht: N^N defined as follows:

F = hc.c(h.S).hR; Fi + 1=Ft.A.hR;

Then it holds that:
1 FieJ'(û+i + 1,

2° for every i < ©, for every g : Nr -> N&eJ^+i there exists meN such that
g(u) < Ff (m, max xt);

3° for every i < a), for every g : N -> Ne.f^+i there exists m e N such that
g(x)<Hi {x) for x>m.

Proof: 1° it follows immediately from the définition;
2° the thesis is true for i = 0 by hypothesis.

Suppose the thesis is true for i < j . Consider a function g : Nr -> AP e «/o+j-. By
définition ^ = ^i .^f, gleJiû+j^l and g2£Jf<ù- By induction hypothesis there
exist m2, wt| such that

(flfi./f+1)(xi,. • . , x r ) < F J - _ 1 (m;, max x;)

^ Fj-x (mi, max x£) for mx =max m-

and g2 (yx,. . ., ys) < F o (m2, max j/J.

For every y > 0 it results

i,. - . . ys) < ((C22)c.Fof(y, max
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58 E. FACHINI, A MAGGIOLOSCHETTINI

and then for every (xx,. . ., xr)eNr:

g(xlt. . .^r)<((C22)c-JF0)K(FJ_1(m1)maxx i)) F,-„x (mlf max xt))

= « O . F,-_ A. A . (C£ • F of) (max x£)

mijm2 = ( O . F j . , .A.((C°m2y.F0)
R. It holds that

! ^ , x)). . .))))

.Fj-! .c0 . (S*^)*) (x), F,--! {mlf x)).

Now (C^y.Fj»! .cO.(SMlBa)+1)*efn+j-i and then by induction hypothesis
there exists 'm>mXt m2 such that ((C^)c. F,-_ x.

 CO . ( ^ w + f ) (x) < F,_ x (wi, x)
for every x. So finally we obtainfmi Ol2 (x) < hR(Fj„ t (m, x), Fj-_ i (m, x)) and then

g(xlt. . ., xr) < F^m, max xt);

3° by 2 for every/: N ->JVe/w + i there exists meN such that for every x,
ƒ (x) < F^m, x). As Fi(m, x) < Ht (x) for every x > m then ƒ (x) < Hj(x) for
x > m.

LEMMA 3.3: lf Jm is normal with thefunction h then J2<& is normal with the
function h*=H0.

Proof: Consider Fg : N2 -> N, Gg : N -> AT defined as follows

F ^ f c ^ . ^ ^ . S ) . / ! * * and GS=(C°)C.FS.
By définition h*e<f(ù+1 g /2«B» ^O e^2ü) + i» GJe^œ- Suppose^ : ATr->Nsand
geJ2w In order to prove that there exists raeiV such that, for every
M = X1, . . ., xr, #(u) < Fo (m, max xf) we must show, by lemma 3.2.2, that, for
every n,ieN, there exists msN such that, for every x, Ft (n, x) < F§ (m, x). By the
définitions of Ft and Fg it results

F;(n, x) = ((A.hRf)(i,F0{n,x))
and

FJ(m, x) = (A.^.ch.c5./iY(F0(m, m), F0(x, x)+l).

Let g = A . hc. ch. C5. ̂ R. It is easy to prove by induction on n that, for every x,
F0(n, x) < #*(n, F0(x, x)+l) ^ FJ(w, x) where mis the least integer such that
n ^ F0(m,m).Ifwe suppose that F ^ ^ x ) < 0*(n + i—l,Fo(x,x)+l), for every
n andx, we obtain that Fj(n, x)<gR{n + i, F0(x, x)+l). Then for every i, neJV
it results Ft(n, x)<F^(m, x), where m is the least integer such that
F0(m, m)^.

LEMMA 3 .4: Jm is normal with h = A.SR.

R.AJ.R.O. Informatique théorique/Theoretical Informaties



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 59

Proof: By induction on Jm. We have shown that iîfe^o then
f{xu. . ., xr) = (xii + m1>. . ., xis + nis)

withXf.elxi,. . ., xr) u (0},mJ-eAT. Let m = max x̂ . It is immédiate to see that

f(xx,. . ., xr) S SR(m, max xt) < 22m (2 max Xj + 1) = FO (m, max x£).

Suppose now r = s and consider ƒ*. It holds that

fR{x, x l f . . ., x r)^((À c . cSy./!)(x, m, maxXi)<F0(»i, max (x, x*)).

Suppose the thesis is true for 7 < i. Consider feJt. lïfeJi then/^/i .ƒ§ with
fx^^i-i,f2eJQ. Then there exist m], m2 such that

( h -Irj+1) (*i>. . ., xr) < Fo (mj, max x£) ̂  Fo (m^ max xt)

where m^max m} and ƒ f (j>, yi, • • •, Jr) < F0(m2, max (y, yf)) and finally

. ., xr) < F0(m2, Fo {mu max x£)) < Fo (2 m2 + m1 + 1, max x )̂. Q

The strict containment of the class ^OÏ+É- i m ^i^ + t fc>r every Ï can be proved
by defining a new séquence of functions F f starting with Fg as it has been done in
lemma 3 .2 starting with Fo. Now J^ can be proved to be normal with /i**
where /i**=iJg = A.Fg. By repeating the same reasoning up to J^2 t n e

following theorem can be stated.

THEOREM 3.1: ^tS-^i+i for i < Û)2.

4. COMPLEXITY CLASSES OF LOOP PROGRAMS

In [10] partial recursive séquence functions have been proposed to give a
semantics of a simple recursive language (i. e. the language SL introduced by the
authors). Analogously primitive recursive séquence functions can be used to give
a meaning to Meyer-Ritchie LOOP programs (see [13]) in a version which allows
more than one output variable. In this manner we obtain a relationship between
the structural complexity of LOOP programs and the computational complexity
of primitive recursive séquence functions.

DÉFINITION 4 .1 : A LOOP program has the following form:

IN s; /x ; . . .; Jk; OUT t (k^O)

where s is a list (possibly empty) of names for variables (without répétitions) and
Ii is an instruction of one of the following types:

(a) Xt<^0 where Xt is an input variable or a variable introduced before or a
new variable;

vol 13, n° 1, 1979



60 E. FACHINI, A MAGGIOLO-SCHETTINI

(b) Xt <- Xj where Xt and Xj (i =£ƒ) are input variables or variables introduced
bef ore;

(c) Xt «- Xt +1 where X; is an input variable or a variable introduced before;
(d) LOOP Xt; I[;. . . ; Jj; END where Xf is a input variable or a variable

introduced before and /• are instructions of types a, b, c, d;

and where t is a (non empty) list of names either contained in the input list or
introduced in 1̂ (1 ^ i S k).

DÉFINITION 4.2: A function ƒ : Nr -> Ns e <? is computed by a LOOP program
P with input list s and output list t if before the exécution of P the input list
contains xlt. . .,xreNr (and the other registers are empty) and after the
exécution of P the output list contains the séquence ƒ(xx,. . ., xr)eNs. The
meaning of a LOOP program P is the function computed by P.

Let J^ be the set of functions computed by the LOOP programs.

THEOREM 4 .1 : J^ = ^ .

Proof: {a) ̂  g y.

Let s = (Xu . . ., Xr) and t = (Xiit . . ., XJ, where i,-e{ 1, . . ., r} u
{ r + 1 , . . ., r+ p }, and X r + 1 , . . ., Xr + P are the new variables introduced by
the instructions of the programs.

Case 1 : The program P : IN s; OUT t computes the function ƒ̂  ". . . " ƒ' (in this
case is always q S r> P = 0).

Case 2: The program P : IN s; Xt <- 0; OUT t computes the function

and the function

otherwise.

The program P . : IN s; Xt *-Xs\ OUT t computes the function

The program P : IN s; X^Xi+l; OUT t computes the function
ci-ls^. ( / [ ; . . . ^ y .

Case 3: Consider the program P : IN s; / t ; . . . ; Ik; OUT t where J£ are
instructions of the types a, b, c, d. Take the programs P£ : IN s;; U\ OUT t£
(1 ^ i ^ fc) with Sx =s, Si = (s, s--!), for 1 < i ^ fe, where s--! is the list of new
variables introduced by l i , . . ., Ii-1,andti=(sts'1), tt = si + ll for 1 < i < /c, and
tfc= £. Assume that the functions ƒ; computed by the programs P£ belong to 5^.
Then the function ƒ computed by the program P can be written as composition of
functions in £f and therefore fe&*.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 61

Case 4: Consider the program P : IN s; LOOP Xt; Ix; . . . ; Ik; END; OUT t
where the instructions It are of the types a, b, c, d. The function/computed by
the program P is

<rO '''"O/''A^'".^**1.f'R.{% + *". . .~I[+P),

where ƒ' is the function computed by P' : IN (s, s'); h', . . • ihl ° U T (s, s'), s'
being the list of the variables introduced by the statements It. Assume that
f'e&, then

(b) &^

Programs computing the functions of S are constructed easily. If/i ,f2

P l f P 2 are the programs computing fx,f2 respectively, then the program
computing the function fx ./2 is obtained from P t and P 2 by the insertion of
instructions which take the contents of the output registers of Px into the input
registers of P 2 . lïfeSf and P is the program computing / then the program
computing fR is obtained by including the instructions of P in a couple LOOP-
END. D

DÉFINITION 4 . 3 : Let M o be the class of LOOP programs obtained by using
only instructions of the types a, b, c. Let M^a + b be the class of LOOP
programs P such that in P there are b successive instructions of the form LOOP
Xt; I; END where the instruction / contains at most a nested instructions of the

typed. Let Mm o= (J M œ ( û _ 1 ) + 1 for a ^ l .

We consider the following classes of primitive recursive séquence functions:

«$i= {f | ƒ 6 y a n d there exists P e Mt such that ƒ computable by P } for i < œ2.

By the proof of theorem 4 .1 (part b) and définition 4 . 3 we obtain that if
fie^foa+b a n d fi£^l*a+c t h e n f = fi'f2^^(ùa+b+c and if fsJl^ then
fReJ(m{a+1)+1 for every a^O.

THEOREM 4 .2: Jt<ùa+b = *0<ùa+bfor every a, b<(ù.

Proof: It can be given easily by induction on a and b.

In fact if/: Nr -> NseJmc+n then ƒ = ft .f2 with A et/(ÛC + n _ 1 , / 2 e / K + 1 and
by induction hypothesis there exist P i e Mœc + „ _ x and P 2 e M&c + x computing fr

and f2 respectively. Then the program P computing ƒ is a program in M^c+n.
Therefore ./flK: + B£B^(BC+B.

Conversely iffeJf^ + n and P is the program computing ƒ one can always
consider P as obtained from the composition of two programs P± eMœ c + n_i
and P 2 e M c + 1 . The functions flt f2 computed by these programs are, by
induction hypothesis, in t/(ac + n_x and in Jr

ö)C+ x respectively and then
ƒ = / i -ƒ2e ƒ„,+„. Therefore J f w + B s / K + B . D
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DÉFINITION 4.4: Let P a program IN s;I; OUT s" with / = / i ; . . .;
Let s' be the list of new variables introduced by / and r, q be the lengths of the
variables lists s and (s, s') respectively. Then £P, the computing time function
of P, is

where t is the stepcounter function of P defined as follows:

(a) t = I\X\ if n = 0;

(6) t = c " V . c 9 S if ƒ :jr,<-X, + l;

t = cï"1(Cè)di"l.c<S if I :Xt^0;

t^Tlj^S if I;Xi*-Xj

(c) t = t ! . r 2 "if Iiliih

{d) t = *~lA*~' .®f+1 .fa .*(S .S))R.*(S .S) if / : L O O P X , ; ƒ ' ; E N D .

LEMMA 4 .1 : IfPeMtaa + b then tPeJ?wa + bfor a, b^O.
Proof: The program P' computing rP is obtained by P as follows: the input list

is the same of P; the first instruction is of the type T *- 0, where Tis a register not
used in P; the successive instructions are the ones of P followed by an instruction
of the type TV T+1, for each instruction of the type a, fe of c of P and followed
by two instructions of the type T <- !T+1 for each loop instruction. Moreover for
each loop instruction there are two instructions of the type T<- T+1 between
the couple LOOP-END; finally Tis the only output register. •

Now for the classes Mma + b we can prove a resuit analogous to that proved by
Meyer and Ritchie for the classes Lt (see [18]).

Let F*m be the functions such that for every g e J^^m + n there exists p e N such
that, for every u = xx, . . ., xr, g(u)<F*m{p, max xt) {see lemmas 3.2-3.4).

LEMMA4 .2: LetPeM^+i,. Suppose that tP{u)<F*m{p> max xt)for peNand
l^m<a, b>0. Then there exists a program P'eMnm + nt sucn tnat ï* &nd P'
compute the same function, with nf = n ifm>l, n' = n+l otherwise.

Proof: It is analogous to the proof given by Meyer and Ritchie. The
program P' can be obtained from the program that compute F%m (p, max x£)and
from a program in M(ù + 1 that simulâtes the instruction séquence of P. •

By lemmas 4.1 and 4.2 the following theorem can be stated.

THEOREM 4.3: Given a function fsif and a program P which computes f
f€^<oa+b' \fftp(u)<F*a(p> max Xi)for a proper p, with bf — b-\-lfor a=l,b>0
and with b' = b for a>l, b^O.
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5. COMPARISON WITH OTHER HIERARCHIES OF PRIMITIVE RECURSIVE FUNC-
TIONS

As primitive recursive functions coincide with primitive recursive séquence
functions when the output séquence is of length one (see theorem 1.1), it is
interesting to compare the above hierarchy in this particular case with known
hiérarchies of primitive recursive functions.

We recall briefly the définitions of Axt, Cleave, Grzegorczyk, Meyer-Ritchie
hiérarchies.

LetB={S = Xx.(x+l), O = {0),IÏ = Xx1, . . . , xr.(x0}.

The initial class JR0 of the Axt hierarchy is defined as the closure of B with
respect to substitution; the class Rif for z<co, is defined as the smallest set of
functions containing Ri_1 and the functions obtained from those in Ri-1 by
primitive recursion (see [2]).

The initial class Eo of Cleave hierarchy can be defined as the closure
of the s e t F = { fx = X x , j / . ( x + j > ) , f2 = X x , y . ( x y ) , 5 = A , x , j / f ( i f x ^ y
then 0 else 1)} with respect to substitution; the class E(ùa+b, for
a, b<(ù, can be defined as the set of functions ƒ : Nr -• N such that
ƒ (u) = R0(u, Riiu, . . ., Rb(u, 1). . .)), where Rt is obtained by a nested
simultaneous recursions (see [4]).

The class êit for f<ü), is defined as the smallest set of functions containing B
and the function ƒ-, where f0 (x, y) = x+l; fi(x, y) = x + y; fi(x, y) = xy\
fn(x, 0)=l and/M(x, y+l) = fn-x(x,fn{x, y)), for n ^ 3 , and cîosed with respect
to substitution and limited recursion (see [11, 15]).

The class S£{ of the Meyer-Ritchie hierarchy is defined as the class of functions
computed by LOOP programs (with only one output register) in Lit i.e. by
programs with at most i nested LOOP-END instructions (see [13]).

Let J\t for i«ù2, be the subclass J{ containing only functions with output
séquence of length one, i.e., J\={fA)\f : Nr^NseJ?u r^O, s > 0 } .

By the theorem 4.2 the foliowing lemma holds.

LEMMA 5 .1 : S^i = ̂ /
aifor i<©.

The following lemmas express the relationship between the classes J\ and the
classes Si a n d ^ .

LEMMA 5 .2: J'mi = êi + 1for i>l.

Proof: From [13] we have ^?
i — S>

i+1 for i>l. From lemma 5.1 the thesis
foliows immediaiely. •

LEMMA 5.3: S'mi+j = Eai
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Proof: From [4] we have E<ûi = S'i + 2 for i>0. From lemma 5.2 the thesis
foliows immediately. D

Using lemmas 5 . 1 , 5 .2, 5 .3 and known results (see [2,13,14,16,17]) we can
draw the following diagram to show the relationships among the hiérarchies we
have considered. In the diagram A ->B means that the class A is strictly
enclosed in the class B; A---B means that the two classes are not comparable.

Note that the classes Et (0 S i < G>) are not comparable with St (i < 3). The class
/ ó = ifo = R 0 c £ o , but «£?!, R1 are not comparable with £J(Ï<Ü)), because the
predecessor function is in S£x n Rx and not in Eo, and the product function is in
E but not in jSfx or in Rt, The classes J[ are contained in the classes Eit for

The class of functions computed by Beek class L) of LOOP programs (see [3]),
deüned as the class of programs withj successive different subprograms
containing at most i+1 nested LOOP-END instructions, is seen easily to
coincide with the class of functions J'^i+j, for i,j^0.

If we énlarge the base of the hierarchy with the functions sum, product and "if
x^y then 0 else l ' \ i.e. we take Cleave's base, we obtain Cleave's hierarchy
again.

Let Z/ = E u F . Let us take S0 =<#(!,') and deüne new classes J^ with a
construction anàlogous to the one used for J{, The following lemma can be
proved easily by induction.
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LEMMA 5 .4: Ei = J\for I<CJO2.

In [4] Cleave considers primitive recursive functions ƒ : Nr -> Ns defined as
tuple of functions fx : Nr -> N. The juxtaposition operator is used implicitely and
the following assertion is proved: "if/J : Nr -• NeE^a + b' then/ = {fx, . . ., fs) :
jVr -• NseEr^+b for a, b<co". Now in lemma 2.4 we proved that if
/e«/öw + b then (/x". . . ̂ fs)eJaa+sb but we can prove also the following
lemma.

LEMMA 5.5: Iffi^J^ + ̂ for a^2, b^O, l ^ z ^ s , then f^ . .

Proof: Consider the LOOP programs F(eM&a + b computing the functions
is easy to construct a program P computing ƒ = / iA . . ,"fs and

consisting of a part in charge of making s copies of the input followed by the 5
subprograms P ; (possibly with some names of variables changed). As each Pt

consists of the b succesive loops each containing a nested loops, the program P
will consist of sb successive loops each containing a nested loops, i.e.
PeMna+sb. For a ^ 2 and b^O one can construct a program P' equivalent to P
in which s loops are substituted by one only loop which runs on the maximum of
the values on which the single loops were running. •

Then from lemmas 5 .3 and 5 .5 we obtain the following lemma.

LEMMA 5.6:

2° S~+b = \jEÜ+h for a,b^0.
r, s

The above results show that the classification of primitive recursive séquence
functions is not a trivial extension of classification of primitive recursive
functions.

Cleave's method for the uniform génération of classes by simplified s
multanéous recursion and substitution needs a hierarchy base containing sum
and product. The séquence functions formalism allows the uniform génération of
the hierarchy by répétition and composition starting from a very simple base. It
results that the sum is in J x and the product is in tfta+ x, which seems to be more
reasonable than having both opérations in the same class, see e.g. [3].

6. REMARKS ON SOME DECIDABILITY RESULTS

Some decidability results proved for the classes Lt and L) (see [3, 13, 17]) are
generalized immediately to the classes Jt.
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The foliowing assertions hold:
the équivalence problem is recursively unsolvable in J<xa + b> f°r Û=1» b^.2;
the équivalence problem for functions of is recursively solvable J^ in J2(ù ;
the problem of determining the least a, b such that ƒ belongs to tfl^a+b is

recursively unsolvable for a ̂ 2 , b^.1;
there is an algorithm which for a given function /ej^(i<û)) détermines

whether the expression defining ƒ contains a répétition on a constant, so that in
such a case fe^i-1.

The method for generating a hierarchy of primitive recursive séquence
functions expounded above can be used to generate other hiérarchies of
primitive recursive séquence functions starting from different bases. In particular
we can define classes */f, <?\ having as base X u {P} and S u { t}, with
P = X x . (x — 1) and t = Xx, y, z. (if z = 0 then x else y), respectively.

The results on decidability of the équivalence problem proved by Beck (see [3])
and by Huwig and Claus (see [12]) can be extended easily to the classes «/£
and ^ .
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