
RAIRO. INFORMATIQUE THÉORIQUE

CELIA WRATHALL
Characterizations of the Dyck sets
RAIRO. Informatique théorique, tome 11, no 1 (1977), p. 53-62
<http://www.numdam.org/item?id=ITA_1977__11_1_53_0>

© AFCET, 1977, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1977__11_1_53_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 11, n° 1, 1977, p. 53 à 62)

CHARACTERIZATIONS OF THE DYCK SETS (*) (1)

by Celia WRATHALL (2)

Communicated by M. NIVAT

Abstract. — Two représentations of the Dyck sets, using Utngucige-iJworeni opérations,
are presented.

Two représentations of Dyck sets in terms of simpler languages are
given here. First, the Dyck set on k letters (k ^ 2) is shown to be definable
from the Dyck set on one letter by use of language-theoretic opérations.
Second, membership in the Dyck set on one letter is expressed in terms of the
language { 0"l" : // ^ 0 }. In both cases complémentation is used, along with
some of the AFL opérations ; use of complémentation is necessary.

In Section 1, some basic définitions from formai language theory are
reviewed, including the définition of the Dyck sets. In Section 2, the Dyck set
on two letters is shown to be equal to a certain language that is defined from
the Dyck set on one letter by application of the opérations of inverse
homomorphism, product, union and complémentation (Theorem 2.3). The
method of définition generalizes easily to the Dyck set on k letters for
any k ^ 2. Deterministic automata that accept the Dyck sets have been
described elsewhere [9, 13]. The représentation of the Dyck set on two letters
that will be given here can be used to simplify the mode of opération of
such automata. One result of these constructions is a représentation of the
context-free languages using two-way counter machines and length-preserving
homomorphism. In Section 3 the Dyck set on one letter is considered. By
making use of a known characterization of that set, it is shown that the Dyck
set on one letter can be defined from { 0"T : n ^ 0 } by application of the
Boolean and AFL opérations. The results are summarized in Theorem 3.2.

(*) Received : December 1975. Revised : June 1976.
l1) This research was supported in part by the National Science Foundation under Grants

DCR-75-15945, and MCS-76-05744.
(2) Department of System Science, University of California, Los Angeles, California, USA

and Computer Systems Laboratory, University of California, Santa Barbara, California, USA.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 11, n° 1, 1977

54 C. WRATHALL

1. PRELIMINARIES

This section establishes the notation and terminology to be used in this
paper.

If 2 is a finite set of symbols (an alphabet) then E* dénotes the f ree
monoid over E, that is, the set of all strings of symbols in E. The identity
of E* is the empty string, e. The length of a string x e E* is denoted \x\ ; \e\ = 0.
If x e E* and <2G E then # a(w) is the number of occurrences of the
symbol a'mw.

" Homomorphisms " are monoid homomorphisms h : E* -> F*, with S and F
alphabets. If h : E* -> F* is a homomorphism, the "inverse homomorphism"
Zz"1 takes strings in F* to subsets of E* : f o r x e l * , j e f * , x e h~x (y) if
and only if h (x) = y. A homomorphism /z : E* -• F* is length-preserving if
for all a e E, |/*(Û)| = 1, and it is nonerasing if for all a e E, \h(a)\ ^ 1.
The homomorphism h performs /c-limited erasing on L ç I * if for all x e L,
x = uyv with h(y) = e implies that \y\ ^ k. The homomorphism h performs
linear erasing on L if there is a constant m such that for all x e L,

|.Y| g /77 . max [|/?(x)|, 1 }.

The product of two languages Lx and L2 is
LiL2 — \ .Vj_ A*2 : xx e L t and A2 e L2 \.

The Kleene * of L is L* = \JÜ where L° = { e } and Z/+1 = LjL. The class

of regular sets is the smallest class of languages containing the finite
languages and closed under the opérations of union, product and Kleene *
An AFL [6] (" abstract family of languages ") is a class of languages containing
at least one nonempty language and closed under the AFL opérations :
norierasing homomorphism, inverse homomorphism, union, product, Kleene *
and intersection with regular sets. A full AFL is an AFL that is also closed
under arbitrary homomorphism.

The Dyck sets on one and two letters are defined as follows. Let E2 be
the alphabet {a1,a2,â1,â2 } and let Ex be the alphabet {a1,â1 }. Let ~ be
the binary relation on E* defined by x ~ y if and only if x = uafi{v for
some u, v e l * , / = 1 or 2, and y = uv. That is, x ~ y if y results when
some pair a1ai or a2a2 is cancelled from x. Let & dénote the reflexive and
transitive closure of ~ , so that x & y if and only if for some n ^ 1
and z l 5 . . . , zn e E*, x = zx ~ . . . ~ zn = y. Then the Dyck set on two
letters is D2 = {x e E* : x & e } and the Dyck set on one letter is

D , = {xeZ* : J C * e } .

Two properties of the Dyck sets are apparent :

(1) no string in D1 begins with ax or ends with ax ; and
(2) for i = 1,2, for any x and y, if x ~» y then x e Dt if and only if y e Dt.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

CHARACTERIZATIONS OF THE DYCK SETS 55

2. THE DYCK SET ON TWO LETTERS

In this section we show that membership in D2 can be expressed in terms
of membership in Dx.

DÉFINITIONS : Let h : E* -» E* be the homomorphism déterminée by
defining

h(al) = h(a2) = ax and h(a1) = h(a2) = ax.

Let

Note that for x e E*, x <£ A if and only if whenever x = uatv for i = 1 or 2
then v eh'1 (DJ^-E* ; that is, x $ A if and only if for every occurrence of at

in x there is a "matching" occurrence of üt.
It is easy to see that h{D2) = Dl9 so that D2 ç h~1(D1); moreover, the

language ^ contains the strings that are in h~l (D^ but not in D2. To prove
this, we first establish two properties of the language h'1 (DJ — A.

LEMMA 2.1 : For any x, y e Z*> (/ x ^ } \ then x e h~l (D^) — A ij and
yeh-1^) - A.

Prooj : Suppose x — y. Then by définition, x = ucijâjV for some u and v,
and y = uv. Then

() = A ^ ï i A W - h{u)h{v) = A(^),

so /z (x) e £>! if and only if h (y) e Dx. It remains to show that x e A if and
only if y e ^4.

If x e A then for some ae {a1,a2} and some MX, i;l5 x = u1av1 and
v1^h~1 (DjflZ*. Now if Wj = w then Ö = a>3 and ^i = âjV e h'1 (DJS^.S* ;
therefore MX 7̂ M. TWO cases remain :

(i) | « i |< \u\: Then u = u1au2 for some u2 and i?x = u2ajajv. Now
h(u2ai) = h(u2)a1 $ Dl9 so it is not hard to see that if u2v e h'1 (DJâZ*
then also vx e h'1 (DjâZ* , a contradiction. Since ^ = u1a(u2v), y e A.

(ii) l^il > |M| : Then MX = uajâjU2 for some w2
 s o ^ = uu2av1. Since

If yeA then ƒ = w^^! and i\i h~l {Dx)âl^. Again there are two
cases, IWJI < \u\ and \ux\ ^ |w| ; using arguments similar to those above, it
can be seen that x e A. D

LEMMA 2.2 : For any x # e in E** ^ -Y e // ~ l (/)x) — Ĵ ///^z A* = uaji^ for

some M, D e I* <z«d / = 1 or 2.

vol. 11, n° 1, 1977

56 C. WRATHALL

Proof: For y e E*, define

d(y) = * «Ay) + * a2{y) -*öi{y)-* Ö2{y)
= *ai(h(y))- *a1(h(y)).

Suppose x = a1 . . . <Jn is in h"1 (D J — A with n ̂ 1, <Jt e X2 for 1 ̂ / ^ «.
Let

m = max {rf (ax . . . a f) : 1 f^ i ^ n }
and

A: = min {./ : 1 ̂ j ^ fl, ̂ (a x . . . a,.) = m } ;

that is, fc is the leftmost position in x at which the maximum depth m
is achieved. Since h(x) e D1 and every nonempty string in Dx begins with al9

m > 0. Let u = ax . . . c ^ . ! (that is, if k = 1, then w = e). By the choice
of k, d(cy1 ... ak) ̂ öf(w), so afc is either «! or a2, say « ^ Since every
nonempty string in D1 ends with al9 k < n, so let v = ok + 2 ••• crw.
Then x = ua1ok + 1v and since x $ A, ak+lv e h~x (D^â^^. Since

d(a1 ...<yk) = m ̂ d{a1 . . . ak + 1) ,

afc+1 is a "barred" symbol, either H1 or â2. But no string in h~i(Dl) can
begin with a "barred" symbol, so in fact afc+1 = 'ai and x = ua1â1v. D

The set y4 was defined from h~l (D^ by use of Boolean opérations and
product with regular sets. Thus the following theorem gives a définition
of D2 from Dx.

THEOREM 2.3 : D2 = h~1(D1) - A9 where

A= U 2îflf(ï5 -A-M^i)^^)-
i = 1 , 2

Proof: The proof is by induction on |JC| for x e l * . For the basis step, \x\ = 0 ,
note that e e D2, eeh~1(D1) but e $ A. Suppose for some k > 0, for
alljyeX*, | j | < ^ implies y G D2 if and only if y e h'1 (D^ — A, and consider
any string x with |x| = k. If x e D2 then since |x| > 0, there is a string y
with \y\ = \x\ — 2 such that x ~ j> * ^. Since then y e D2 and |j>| < A:,
J G / I " 1 ^) — ̂ 4. From Lemma 2.1, also x e / z " 1 ^) — ̂ . Conversely,
if x e/z~1(Z)1) — A then since |x| > 0, from Lemma 2.2 there is a string y
such that x ~ y and | j | = |x| — 2. From Lemma 2.1, yeh~1(Dl) — 4̂
so v e Z)2 and therefore x E D2. D

By making the appropriate extensions in the définitions of the homo-
morphism h and the language A, one obtains a représentation in the form
of Theorem 2.3 for the Dyck set on k letters, k ^ 2. The opérations used
above to define D2 from Z^ were inverse homomorphism, union, product
with regular sets and complémentation. If complémentation were removed,
then the remaining opérations, even with the addition of the other AFL ope-
rations and arbitrary homomorphism, would not be sufficient to yield D2

R.A.Ï.R.O. Informatique théorique/Theoretical Computer Science

CHARACTERIZATIONS OF THE DYCK SETS 57

from Dx. This follows from the fact that the full AFL generated by Dx (i. e., the
one-counter languages) is properly contained in the context-free languages [8] .
From the Chomsky-Schützenberger Theorem, any (full) AFL containing D2

must contain all the context-free languages, so the full AFL generated by D1

cannot contain D2. The addition of intersection to the AFL opérations is
also not sufficient to yield D2 from Dx, since (using [5]) the intersection-
closed AFL generated by Dx does not contain the context-free lan-
guage { wcwr : w e { a, b }* }. On the other hand, the intersection-closed
full AFL generated by D1 does contain Z)2, since it is the class of all
recursively enumerable sets [12].

Theorem 2.3 can be rephrased as follows : a string i e l * is in D2 if and
only if

(1) h(x)eDl ; and
(2) whenever x = uatv (i = 1,2), there is a string weh~1{D1) such

that wat is a prefix (i. e., initial substring) of v.

Descriptions of D2 similar to this one have been the basis for constructing
automata that accept the Dyck sets.

COROLLARY 2.4 :

(i) [13] D2 can be accepted by a de terminis tic Turing machine that opérâtes
in log (n) space.

(ii) [9] D2 can be accepted by a deterministic two-way one-counter auto-
maton. D

The automaton described in [13] is a device with two-way (read-only)
input and has for storage counters which are bounded by the length of the
input, so there is a log (n) tape-bounded Turing machine that accepts the
same set. The counter of the device given in [9] is also bounded by the
length of the input. The automaton in [9] essentially opérâtes by checking
condition (2) above for each symbol at (i = 1,2) in the input x = uatv,
using a counter to détermine which initial substrings of v are éléments
of h'1 (Z^). It also checks another condition, that every symbol ~üi in x has
a "matching" symbol a{ to its left; that is,

(3) whenever x = uatv (i = 1,2) there exists w e h'1 (DJ such that atw is
a suffix of u.

It is not hard to see, however, that if conditions (1) and (2) are satisfied
by x then x also satisfies (3).

Since the class of languages DSPACE (\og(n)) accepted by deterministic
Turing machines in \og(n) space is closed under inverse homomorphism
and intersection (with regular sets), from Corollary 2.4 (i) and a resuit
in [2], we see that any context-free language L can be represented as L = hL (L')
where L e DSPACE (log (n)) and hL is a length-preserving homomorphism.

vol. 11, n° 1, 1977

58 C. WRATHALL

Further, using [3], any language accepted by a nondeterministic multitape
Turing machine in linear time can be so represented, as the image under a
length-preserving homomorphism of a language in DSPACE(log(«)). It is
not known whether DSPACE(log(«)) is closed under application of length-
preserving homomorphisms. From Corollary 2.4 (ii), statements similar to
these hold for the class of languages accepted by deterministic automata
with two-way input and one counter.

The space bound in Corollary 2.4 is also a lower bound for récognition
of the Dyck sets: from [1], any nondeterminisitic off-line Turing machine
that accepts D2 must use at least \og(n) space on an infinité set of input
strings.

Other définitions of D2 from simpler languages have been given in order
to demonstrate that predicates of a certain simple form exist for membership
in D2. The characterization of the Dyck sets suggested in [15] can be restated
using language-theoretic opérations. Let f1 :2* -> E* and f2 : £* -* ^* be
the homomorphisms (similar to the homomorphism h of Theorem 2.3)
determined by defining for i = 1,2,

/M) = ai > fi&i) = ai and ft(aj) = ft(âj) = e

for./ ^ i (J = 1,2). Let / = / T ' p i) n f2~
1(D1\ so that J is a "shuffle" of

two copies of Dx. Define a language K by K = yL*a1Jâ2I<* u H*a2Jâ1X*.
Then D2 = J — K. The language / is properly contained in h'1 (Dx),
and K is properly contained in A. From this représentation, a deterministic
two-way automaton can be easily constructed to recognize D2 using two (linear-
bounded) counters.

3. THE DYCK SET ON ONE LETTER

In order to define Dx from Lo = { Onln:n ^ 0 }, we first express D1 in
terms of Lx = { w e { 0, 1 }* : # 0(w) = # 1 (w) } and then express Lx in
terms of Lo. The following theorem restâtes a well-known characterization
of the Dyck set on one letter.

THEOREM 3.1 : Tlier e exist homomorphisms /z1? h2, /z3, with hx and h2 length-
preserving, and a regular set R such that

D1 =hi(Li -h^Rnh;1^)))
where Lx = { w e { 0. 1 }* : # 0(w) = # 1 (w) }.

Prooj : Let hx : { ü. 1 }* -• Z* be the homomorphibin determined by

defining A 1 (0) = Ö 1 , hl(\) = al. Let h2 : { 0, 1, c, d}* -+ { 0, 1 }* and

h3 : { 0, 1, c, d }* -> { 0, 1 }* be the homomorphisms determined by defining

* 2 (0) = M c) = * 3 (0) = 0 , h2(\) = h2(d) = h3(l) = 1
and h3 (c) = h3 (d) = e.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

CHARACTERIZATIONS OF THE DYCK SETS 59

That is, h2 changes c to 0 and d to 1 and h3 erases occurrences of c and d;
both h2 and h3 leave 0 and 1 fixed. Let R be the regular set denoted by the
expression (0 + l)*d(0 + 1 + df (c + df. Then for x e { 0, 1 }*,

xeh2(R nhï^Li))

if and only if for some prefix y of x, # 0(y) < # 1 (>>). Hence

xeh^L, -h^Rnh-^L,)))

if and only if (i) # a1 (x) = # a1 (x) and (ii) for every prefix y of x.
«! (y) ^ # «! (>>). These two conditions are known to characterize the
strings in Dl9 and the theorem follows. D

It will be shown that Lx can be defined from Lo and regular sets by use
of inverse homomorphism, length-preserving homomorphism, union and
intersection. The opération of complémentation need not be used, because Lt

can be accepted in linear time by a deterministic automaton with one-way
input and two counters, that opérâtes in such a way that each of the counters
makes only one turn during any computation. By " splitting " the computations
of this automaton as in [4], two languages L\ and L"x can be found such
that L1 is the image under a linear-erasing homomorphism of L[n L'[
and L[and L'[are one-turn one-counter languages (that is, are accepted
by automata with one counter that make only one turn during any compu-
tation). Since the AFL generated by Lo contains the one-turn one-counter
languages [8], L t can therefore be defined from Lo using the AFL opérations
together with intersection and application of a linear-erasing homomorphism.
The algebraic définition of Lx from Lo (which reduces the linear-erasing
homomorphism to a length-preserving homomorphism) is based on these ideas.

Let

d = { e} u { ucvcw: u,v,we{0,l }*, # 0(w) = #0(i;w),
l (w ü) = # l (w) and #0(w) = # 1 (w) > 1 }.

Note that if x = ucvcw is in Cx then # 0(x) = # 1 (x), # 0(x) is even, and
the two occurrences of c in x mark the positions in x where half the O's and
half the I's in x have occurred. Similarly, let

C2 = {ucvcw: M, v9 we {0, 1 }*, #0(w) + 1 = *0(vw),
1 (uv) + 1 = # 1 (w) and # 0(w) + 1 = # 1 (w) > 1 }.

Let gj : { 0, 1, c }* -• { 0, 1, c }* be the homomorphism that interchanges O's
I's : gl (0) = 1, gl (1) = 0 and gl (c) = c. Let C3 = C1ug1 (Q) u C2ugl (C2).

Let g2 : { 0, 1, c }* -• { 0, 1 }* be the homomorphism that erases c:
g2(0) = 0, g2(l) = 1 and g2(c) = e. Then Lx = g2(C3). Since any word in
C3 has at most two occurrences of the symbol c. g2 is 2-limited on Cy

The effect of a A-limited homomorphism can be achieved by use oï length-

vol. 11, n° 1, 1977

60 C. WRATHALL

preserving homomorphism, inverse homomorphism and intersection with a
regular set [7, p. 44], so it suffices to show that Cx and C2 can be formed from
Lo.

Cx is the intersection of three one-turn one-counter languages, each of
which checks one of the conditions on the number of symbols in a word.
Let

C4 = {ucvcw: #0(w) = *0(vw) ^ 1 },
C5 = { ucvcw : # 1 (uv) = # 1 (w) ^ 1 }

and C6 = { ucvcw: #0(w) = # \{w) ^ 1 };

then Q = { e } u (C4 n C5 n C6). It is not hard to see that C4, C5 and C6

are inverse a-transducer mappings of Lo ; hence they can be defined from Lo

by use of length-preserving homomorphism, inverse homomorphism and
intersection with regular sets [6]. We show how C4 can be defined from Lo

and regular sets ; the définition for C5 is essentially the same, and that for C6

is simpler. Define four homomorphisms as follows :

rx: { 0 , 1 , ® } * - * { 0 , 1 } * , M 0) = 0, M l) = l, r, (®) = e,
r 2 : { 0 , l , ® } * - { 0 , ® } * , r2(0) = r 2(l) = 0, r 2 (®) = ® ,
r 3 : { 0 , l , c , ® } * - . { 0 , l , ® } * , r3(0) = 0, r3(l) = r3(c) = e, r3(®) = S,
r 4 : { O , l , c , ® } * - { O , l , c } * , r4 (0) = 0, r 4 (l) = l , r4(c) = r 4 (S) = c.

Let i^i and i?2 be the regular sets :

JRX = { 0 w S l " : m , n ^ 1 },

* 2 = { o , i } * { © } { o , i r { c } { o , i } * .
Then

^ 1};
: « ^ 1} ;

^M^K^)!))^ { { }
0 (w) = #0(yvv) è 1 } ;

and
R,)) n R2) = C4.

The démonstration that C2 can be formed from Lo is similar.
The preceding discussion is combined with Theorems 2.3 and 3.1 in the

following result.

THEOREM 3.2 : If # w a c/a^ o/ languages containing { 0w 1" : « ^ 0 } and
closed under union, différence with regular sets, inverse homomorphism and
length-preserving homomorphism, then every Dyck set is in *€ and hence the
family ofcontext-free languages is proper Ir contained in %>.

Proof : "Différence with regular ^ets" is the opération laking a language L
to R-L where R is any regular set. If <é satisfies the conditions in the statement

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

CHARACTERIZATIONS OF THE DYCK SETS 61

then it ib easil> seen that % is also closed under intersection and différence
and that # contains every regular set. <€ can also be shown to be closed
under product, by a straightforward construction using length-preserving
homomorphism, inverse homomorphism and intersection.

Now since Lo and every regular set are in <% and # is closed under
length-preserving homomorphism, inverse homomorphism, union and inter-
section, Lle

(€. From Theorem 3.1, then, since # is also closed under différence,
D1e

cé, and from Theorem 2.3, D2e
c€. To see the second part of the

statement, suppose L is a context-free language. Then there exist homo-
morphisms hl9 h2 and a regular set R such that L = hl(R n h2

l [D2)) and
/zx is length-preserving. This stronger form of the Chomsky-Schützenberger
Theorem can be shown by considering a Greibach Normal Form grammar
for L, as in [2]. Since D2e

cé> and ^ is closed under the opérations used to form
L from Z)2, L e ^ . Proper containment follows since the class of context-free
languages is not closed under intersection. D

As in Theorems 2.3 and 3.1, the opération of différence or complémentation
cannot be deleted in the statement above, since the closure of Lo under
the AFL opérations and intersection does not contain the Dyck sets.

For a language L, let ^(L) dénote the smallest class of languages
containing L and closed under the opérations in Theorem 3.2 : union,
différence with regular sets, inverse homomorphism and length-preserving
homomorphism. The question then arises : what context-free languages L have
the property that all context-free languages are in %>(L) (or, equivalently,
that Loe^(L))l It is not hard to show that #(L0) is closed under all
Boolean and AFL opérations, as well as under application of linear-erasing
homomorphisms. The regular sets also have these closure properties. Is
there a Boolean-closed AFL lying strictly between the regular sets and
#(L0)? The class ^(Lo) is of independent interest, in that it is the class of
languages associated with the rudimentary attributes [14].

The referee has pointed out that the représentation of the Dyck sets
in [10] is false; a counterexample is the string a1â1a2alâ2âla2â2, which
satisfies the predicate in [10] but is not in D2.

The referee has also noted that a simpler définition of Lx from Lo is
possible [11] : Ll is the shuffle of Lo with the language L£ = { PO" : n ^ 0 }.

REFERENCES

1. H. ALT and K. MEHLHORN, Lower Bounds for the Space Complexity of Context-Free
Récognition, unpublished manuscript.

2. R. BOOK, On the Chomsky-Schützenberger Theorem, Technical Report, Department
of Computer Science, Yale University, New Haven, Conn., 1975.

vol. 11, n° 1, 1977

62 C. WRATHALL

3. R. BOOK and S. GREIBACH, Quasirealtime Languages, Math. Systems Theory,
Vol. 4, 1970, pp. 97-111.

4. R. BOOK, M. NIVAT and M. PATERSON, Reversal-Bounded Acceptors and Intersections
ofLinear Languages, SIAM J. Comput., Vol. 3, 1974, pp. 283-295.

5. P. FISCHER, A. MEYER and A. ROSENBERG, Counter Machines and Counter Languages,
Math. Systems Theory, Vol. 2, 1968, pp. 265-283.

6. S. GINSBURG and S. GREIBACH, Abstract Families of Languages, Memoir 87, American
Mathematical Society, Providence, R.I., 1969, pp. 1-32.

7. S. GINSBURG, S. GREIBACH and J. HOPCROFT, Pre-AFL, Memoir 87, American
Mathematical Society, Providence, R.I., 1969, pp. 41-51.

8. S. GREIBACH, An Infinité Hierarchy of Context-Free Languages, J. Assoc. Computing
Machinery, Vol. 16, 1969, pp. 91-106.

9. G. HOTZ and J. MESSERSCHMIDT, Dyck-Sprachen sind in Bandkomplexitat log n analys-
ierbar, Technical Report, Universitât des Saarlandes, 1975.

10. N. JONES, Context-Free Languages and Rudimentary Attributes, Math. Systems
• Theory, Vol. 3, 1969, pp. 102-109.
11. M. LATTEUX, Cônes rationnels commutativement clos, This Journal.
12. M. MINSKY, Recursive Unsolvability of Post's Problem of Tag and other Topics in the

Theory of Turing Machines, Annals of Math., Vol. 74, 1961, pp. 437-455.
13. R. RITCHIE and F. SPRINGSTEEL, Language Récognition by Marking Automata, Inf.

and Control, Vol. 20, 1972, pp. 313-330.
14. C. WRATHALL, Subrecursive Predicates and Automata, Research Report 56, Depart-

ment of Computer Science, Yale University, New Haven, Conn., 1975.
15. Y. Yu, Rudimentary Relations and Formai Languages, Ph. D. dissertation, University

of California, Berkeley, Calif., 1970.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

