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R.A.I.R.O.
(9e année, août 1975, R-2, p. 39-54)

ON SOME ELEMENTARY PROPERTIES
OF UNIFORM AUTOMATA

par Rüdiger VALK(1)

Communicated by W. BRAUER

Abstract. — Uniform automata are special topological automata, where ail maps are uniformly
continuons, lt is shown, that for these automata the existence problem of topological minimal
automata and the « topological black box problem » have natural solutions. New uniformitiesfor the
state spaces are introduced and their appropriateness for finite approximations is proved.

L INTRODUCTION

Many results, known for finite automata can be extended to automata
with topological structures and continuous behavior [2]. On the other hand,
problems as the questions concerning minimal topological automata involve
some difficulties. A deterministic and complete topological automaton A is
called topological minimal [5], if any topological automaton, which is equi-
valent to A (in the usual sensé), can be mapped by a continuous automaton
homomorphism onto A. In [5] it is shown, that for the subclass of topological
automata with locally compact input space topological minimal automata
always exist. The same is shown in [3] for the subclass of 'compactly gene-
rated ' automata. Furthermore in [3] automata are introduced, the next state
function of which are only independently continuous in every component.
Therefore these automata are not topological automata in the usual sensé,
but the existence of topological minimal automata is proved for this class
without additional assumptions [3].

Another question concerning topological automata is a problem, which
we call ' the topological black box problem ' : Suppose an arbitrary topolo-
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40 R. VALK

gical automaton A is given, but the topology of the state space is unknown.
Hence, all we know, is the algebraic structure of A and the ' external ' topolo-
gical structures of the input and output spaces. The question is, whether an
'interna!' topology for the state space can be constructed such, that A is
again a topological automaton, i.e. such, that the ' internai ' behavior of A is
continuous. If, in particular, this new topology has better compactness pro-
perties, it becomes easier to find finite approximations of the automaton.
Clearly, this has some importance for practical applications.

In this paper topological automata are studied in the category of uniform
spaces and uniformly continuous maps. Such automata are called uniform
automata.

It is shown, that the problem of topological minimal automata and the
topological black box problem have quite natural solutions for this class of
uniform automata. The solutions, which are new uniformities for the state
spaces, are characterized as minimal solutions. These uniformities have been
introduced in 1973 by the author [6], and it is now proved, that they are
precompact under mild assumptions. This shows the appropriateness of
these uniformities for finite approximations. Furthermore it turns out, that
these uniformities and metrics are strongly related to well-known properties of
classical discrete automata.

We first give some gênerai définitions, which are needed in the following
expositions.

2. GENERAL DEFINITIONS

Définition l

a) A partial map ƒ from M into A îs denoted by ƒ : (M) -• N. D(f) c M
is the domain of ƒ If D( ƒ ) = 0 , we write ƒ = 0.

b) If ƒ : (L) -• M and g : (M) -• N are partial maps, then g o ƒ : (L) -• N
is the composition of ƒ and g and is defined by

D(gof):^{leD(f)\f(l)eD(g)}

and (g o f)(\) : = flf(/(l))for ail 1 eD(g o ƒ).
c) If ƒ : (M) -> N and ƒ ' : (M') -• JV' are partial maps, then we define

the product ƒ x ƒ ' : (M x M') -> N x NfbyD(f x ƒ ' ) := D(f) x D(f')
a n d ( / x f')(m,m'):= (f(m\ f '(m')) for ail (m, m') e D( ƒ x ƒ ' ) .

d) If ƒ : (M x M') ~* N is a partial map, then for ail m G M a partial
map fm : (M') -• N is defined by D(fm) : - { m' \ (m, m') e D(f)} and
ƒ > ' ) : = f (m, m' ) for ail m' e D{fm).

e) If M is a set, the identity map on M is denoted by idM and
AM : M -> M x M is the map m •-> (m, m).
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ON SOME ELEMENTARY PROPERTIES OF UNIFORM AUTOMATA 41

ƒ ) If M is a countable cartesian product, then by prt we dénote the
projection to the i-th component.

Maps are special cases of partial maps. Therefore définitions 1 a)-\ d) can
be used for maps also.

Définition 2

A family G = { g{i) : (M) -> N\ie 1} of partial maps from a uniform
space (M, CULM) to a uniform space (N, <\LN) is called uniformly equiconti-
nuous, if

V f F e m ^ F e ^ V / e / V m , m'e M : { m, m' } c Z%(0)
A (m, m')e K=> ( j > ^ > ' ) ) 6 i y

A partial map g is uniformly continuous, if the family { g } is uniformly
equicontinuous.

Lemma 1. Composition and product of uniformly continuous partial
maps are uniformly continuous. idM and AM are uniformly continuous for
any uniform space (M, ^ M ) .

The proofs are obvious, as in the case of total maps (cf. [1]).

Définition 3

The set of ail non-empty subsets of a set M is denoted by
P(M) := {N\N c M A N * 0}. If (M, ^ j j is a uniform space, then
for any entourage V e C\LM and any subset N e P(M) we define

:= {m\3neN:(n,m)e V}, and

K : - { (N, N')eP{M) x P(M) \ N c F[A '̂] A N' C K[iV] }.

{ K | F e "Ujtf } is a base of a uniformity on P(M), which we call the power
uniformity of (Af, "11 )̂ ([1], II, 1, Ex. 5).

On the other side, if P(M) is a uniform space, M is considered as uniform
subspace of P(M) by identifying M with the set { { m } \ m e M } a P{M\
If the uniformity of P(M) is the power uniformity, then the original uniformity
and the subspace uniformity of M coincide ([1], II, 2, Ex. 6).

3. COMPLETE AND DETERMINISTIC UNIFORM AUTOMATA

Définition 4

An automaton A — (Z, A, B, f,g)\s given by a state set Z, an input set A,
an output set B a next state map ƒ : Z x A -* Z and an output map
g : Z x A -• B. A is called a uniform automaton, if Z, f̂ and B are uniform
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4 2 R. VALK

spaces and ƒ and g are uniformly continuous with respect to the product
uniformity on Z x A. The uniformities of Z, A and B are denoted by ^z,
C\LA and ^ ^ respectively.

Définition 5
As usual, the functions ƒ and # are extended to functions f+:ZxA+^Z

and g+ : Z x A+ -+ B, defined for non-empty finite strings over A. Let
N = { 0, 1, 2, ... } dénote the set of nonnegative natural numbers. Then
X : — AN and Y : = BN are the sets of infinité séquences over A and 2?,
respectively. In the following, X and Y are always used in this sensé. If A
and B are uniform spaces, we stipulate, that X and Y are endowed with the
corresponding product uniformity. The behavior of the automaton is repre-
sentedbyafunction^ :Z x X^> 7, defined by gN(z,x){n) := g+{z,x(0)...x{n))
for all z e Z, x e X and ne N. This représentation is chosen, because it can
be extended easily to continuous-time automata by substituting the non-
negative real numbers for N [7]. Using the notation of définition \d), we
define G := {g% : X -> Y\z e Z }. Automata A = (Z, ^ , £, ƒ, #) and
jt' = (Z\ 4̂? 5, f',gf) are called equivalent, if the corresponding families G
and G' are identical as sets. Two states z, z' e Z are equivalent, if g% = gfj,
and J€ is reduced, if no two different states are equivalent.

The notions of equivalent and reduced automata coincide with the usual
définitions.

Lemma 2 : Let be A a uniform space and X — AN the corresponding
product space. Then the shift opération ô : X -* X, which is defined by
&(x)(n) := x(n + 1), is uniformly continuous. By 3" (n ^ 1) we dénote the
M-fold composition of 8.

Proof : For all n e N we have : prn o ö = prn+1.
QED

Proposition 1. For any uniform automaton A the function gN : Z x X-> Y
is uniformly continuous.

Proof ; For myneN we define ƒ(n) : Z x X -• Z by

The uniform continuity of ƒ (n) is proved for all n e N by induction : ƒ ( 0 ) is
uniformly continuous, because it is the composition of idz x pr0 :
Z x X ^ Z x A and ƒ : Z x ^ -• Z. ƒ ( n + 1 ) is the composition of the
following three functions, which are uniformly continuous [1] :

idz x A x \ZxX-*ZxXxX
ƒ<"> x ÔM + 1 :ZxXxX-+ZxX
fi0) .ZxX^Z

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ON SOME ELEMENTARY PROPERTIES OF UNIFORM AUTOMATA 4 3

From this follows, that for any ne N the maps

prn+1 o gN : Z x X -> B , />rn+1 o g" = g o (ƒ<«> x />rB+1) o (tfz x Ax)

and
/ ? r 0 o ^ ; Z x I - + 5 , pr0o gN = g ö (idz x pr0)

are uniformly continuous. Hence, gN : Z x X -• 7 is a uniformly continuous
map into the product space 7.

QED

Now, for any automaton A — (Z, A, B, ƒ, #)> where i? is a uniform space,
we define a uniformity for the state space, with respect to which A becomes
- under a natural condition - a uniform automaton.

Définition 6

Let be (B, "XL^ a uniform space and A = (Z, A, B9 f9 g) an automaton.
The family G of maps (définition 5) is endowed with the uniformity of uniform
convergence ([1], X9 1.1) with respect to 7 = BN. Now, the initial uniformity
on Z with respect to the map v : Z -+ G, z •-> g% is called uniformity of uniform
convergence on Z and is denoted by ^ ^ The set of all

( F ) : = { ( 2 ) z ' ) e Z x Z | V x e J : (gN(z, x), gN(z\ x)) e F },

where V runs through ail entourages of ^ y , forms a base of CILIIC.

Theorem 1 : Let A = (Z, A, B, f, g) be an automaton, where A and B
are uniform spaces and Z is endowed with the uniformity of uniform conver-
gence CUL„C. Then A is a uniform automaton, if and only if the family G is
uniformly equicontinuous.

Proof :\iA is a uniform automaton, then by proposition 1 gN : Z x X -> y
is uniformly continuous. This implies, that G is uniformly equicontinuous

Now let G be uniformly equicontinuous. Then the ' évaluation map '
val : G x X -> Y, (#*, x) >~* g^{x) is uniformly continuous, G being endowed
with the uniformity of uniform convergence ([1], X, 2.1). The map

w : A x X -> X, w(a, x)(n) := < is also uniformly conti-

nuous ([1], II, 2.6), which implies the uniform continuity of the following
composition of maps : F : = ö o val o (v x w)

val ö
G x X > Y > Y

A >*
Ï; x w > ^ J7

Z x A x X

diagram 1

n° août 1975, R-2.



44 R. VALK

Again by ([1], X, 2.1, Prop. 2) { Fx : Z x A -> Y \ x e X } is uniformly
equicontinuous and F : Z x A -• Fx , defined by F(z, a)(x) : — F(z, a, x), is
uniformly continuous with respect to the uniformity of uniform convergence
on the set Yx of all maps from X into Y ([1], X, 2.1, Prop. 1).

We now prove, that diagram 2 is commutative. For all z e Z, ut e A and
x e l w e have :

v(f(z, a)){x) = gN(f(z, a\ x) = 8(^(z, w(a, JC)) = (8 o val)j^, W(Û, X))
= (6 o val o (y x w))(z, a, x) = F(z, a, x) = F(zy a)(x).

Since the uniformity 'Vb^ of Z is the initial uniformity with respect to the
map v, f is uniformly continuous.

To finish the proof, we have to show, that the output map g is uniformly
continuous.

gN : Z x X - • Y is uniformly continuous, since it is composition of the
maps v x idx : Z x X -+ G x X and val : G x X -+ 7.

Let x e l b e a n arbitrary but fixed element and define

/ ? : Z x ^ - > Z x ^ x X

by p(z9 a) : = (z9 a, x). p is uniformly continuous ([1], II, 2.6).

P

Diagram 3

(PrO°

Therefore

Z x A

V
B -

is commutative :

gN o (idz x w) o

g is uniformly

> z x A x x

idz x

(pro (g
f' •

diagram 3

/?)(z, a) = pro(g
N{z, w(a,

continuous.

*)) = !

QED

The last proposition and theorem give a solution to the foliowing black
box situation.

Given a uniform automaton A, where the (internai) uniformity of the
state space Z is unknown. Construct a uniformity for Z such, that A becomes
a uniform automaton.

Clearly, uniformity ^ ^ for Z is a solution. We give now a characterisation
of this solution.

Proposition 2 : For any uniform automaton A the uniformity ^ ^ is the
coarsest uniformity for the state space, with respect to which A is again a
uniform automaton.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ON SOME ELEMENTARY PROPERTIES OF UNIFORM AUTOMATA 4 5

Proof : Let A be a uniform automaton and Z the state space of A with
uniformity c\^oZ. By proposition 1 gN is uniformly continuous and G is uni-
formly equicontinuous ([1], X, 2.1). Hence, A is again a uniform automaton
if ^ 2 is substituted by the uniformity ^ „ ^ (theorem 1). If Zuc dénotes the set
of states of A, supplied with uniformity ^^ we have to prove, that the identity
map on Z idz : Z -• Zuc is uniformly continuous. Since gN : Z x X -> Y is
uniformly continuous, {g% : Z -> 71 JC e X } is uniformly equicontinuous
([1], X, 2.1, Prop. 2) and from ([1], X, 2.1, Prop. 1) we deduce, that the
map gN : Z -> F*, gfw(z)(jt) : = ^(z, x) is uniformly continuous, if the set Yx

of ail maps from X to Y is endowed with the uniformity of uniform conver-
gence. Since Zuc is the initial space with respect to v : Zuc -> 7*, from
g* = y o idz follows, that idz : Z -> Zuc is uniformly continuous.

QED
Définition 7

A uniform automaton ./fc is called uniformly minimal (or shortly w-minimal),
if for any uniform automaton A\ which is equivalent to A, there is an auto-
maton homomorphism from A' onto A, which is uniformly continuous. A is
called a w-minimal réduction of A',

This définition is an analogon to the définition of a /-minimal topological
automaton in [5].

Theorem 2 : Any uniform automaton A has a w-minimal réduction and
ail w-minimal réductions of A are reduced and uniformly isomorphic.

Proof : For A = (Z, A, B, f, g) there is an equivalent reduced automaton
A' = (Z', A, £, f', g'\ which is unique up to automaton isomorphisms and
a corresponding automaton homomorphism (p : Z -• Z'. The families G and
G' of jt and A', respectively, are identical considered as sets. Therefore both
G and G' are uniformly equicontinuous and A and A' are uniform automata
with respect to the uniformity ^ ^ on their state spaces (theorem 1). The
spaces (Z', ^ „ J and (G, ^ G ) , where "^LQ is the uniformity of uniform
convergence on G, are uniformly isomorphic. Hence, cp : (Z, ^ „ J -> (Z', ^ „ J
is uniformly continuous. But by proposition 2 C\LUC is coarser than the
original uniformity ^ of Z and <p : (Z, 1LZ) -> (Z\ «U^) is uniformly
continuous.

If A" = (Z", A, B, ƒ", öf") is a second w-minimal réduction, then the cano-
nical homomorphism cp' : (Z\ "M^) -> (Z", 'U^) is a uniform isomorphism.

QED

In order to use the uniformity ^^ in practical applications it is useful to
consider a corresponding distance function. If (Y, dY) is a metric
space, then from the définition of ^ ^ and ([1], X, 3.1) it follows, that
dz(z, z') : = sup { dY(gN(z, x), gN(z\ x)) | x e X} is a pseudometric for the state
space, which générâtes the uniformity ^ ^ corresponding to the uniformity

n° août 1975, R-2.



4 6 R. VALK

of (y, dy). If dB is a bounded distance function for 11^, then the product
00

uniformityon Fcanbegeneratedby the metric ̂ y(.y,/): = £ 3 " ^ ( ^ ( Ï ) , ƒ(*)).

For any ne N, two states z and z' are called «-equivalent, ifg+(z, w) = g+(z', n>)
for all non-empty words w of length at most n + 1.

Proposition 3 : Let A = (Z, 4̂, i?, ƒ, #) be an automaton and dB be a
bounded metric on B. Then the pseudometric dz for the state space, just defined,
has the following properties :

a) Any two states z and z' are equivalent, if and only if dz(z, z') = 0.
Hence dz is a metric, if an only if A is reduced.

b) If dB is the discrete metric on B, then z and z' are «-equivalent, if and

onlyif dz(z,z') ^ — 3 "".

Proof : Statement Ö) follows immediately from the définition of dz and
the fact, that dY is a metric.

To prove statement b), let z and z' be w-equivalent. Then we have
dB{gN(z, x ) { m ) , g N ( z \ x){m)) = 0 f o r a l l x e X a n d 0 ^ m ^ «> a n d

Now suppose, that z and z' are not «-equivalent, i.e. there is an input xeX
and a number 0 ^ m ^ « such, that gN(z, x)(m) ^ gN(z', x)(m). This gives the

result dB(gN{zy x){m\ gN{z\ x)(m)) = 1 and dz(z, z') ^ 3"m > 3"w > ^ • 3 ""

QED

4. NONDETERMINISTIC
AND INCOMPLETE UNIFORM AUTOMATA

Next state and output relation of a nondeterministic and incomplete
uniform automaton are defined by a common transition relation t, whereas
continuity of these two relations is required independently. We consider only
states, for which at least one transition is defined.

Définition 8

A nondeterministic and incomplete automaton (shortly ND-automaton)
A ~ (Z, A, B, t) is defined by a non-empty state set Z, an input set A, and
an output set B and a transition relation t c z Z x A x B x Z with the
propertyprx(i) - Z.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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A is called a uniform ArZ>-automaton, if P(Z), A and B are uniform spaces
and the following partial maps ƒ and g are uniformly continuous.

f : (Z x A) ^ P(Z\ D(f) := { (z, a) | 36 3z' : (z, a9 6, z') e t }
ƒ (z, fl) : = { z' | 36 : (z, a, 6, z') e / }for all (z, a) eD(f\ g : (Z x A)-> P(B),

D(g) : = />(ƒ), g(z, a) : = •{ 6 | 3z' : (z, a, 6, z ' ) e / } for all (z, a) e Z>(g).
Z is considered as uniform subspace of P(Z) (cf. définition 3), Z x 4̂ is the
product space of Z and 4̂ and Pflï) is endowed with the power uniformity.

Définition 9

The global output gN of a iVZ)-automaton is a partial function :
gN : (Z x Jf) -> i>(7) and is defined by Z)(^N) : = {(z, x) | 3?r e Z N 3^ e Y :
rr(O) = z AVneN: {tr{n\x{n\y{n\ ir{n + l ) ) e f } , ôfN(z,x) : = { j | 3?reZ N :
rr(O) = z A Vn e N : (^(n), X(AÏ), >>(«), /r(« + 1)) 6 t } for all (z, x) G D(gN).
(tr stands for ' state trajectory ' .)

Again using the notation of définition ld), we define

G:={g»:(X)^P(Y)\zeZ}.

Given a set Zx c Z, the set of input output pairs 6(ZJ : = { (x, y) | 3z G ZX :
j^ e ^^(z, x) } is called the behavior of Zv The behavior of a single state z e Z
is defined by 6(z) : = 6({ z }).

Lemma 3 : If (B, ^Lg) is a uniform space, then the map : |3 : P(B)N

defined by P(M) : = { y | V« e TV : y(n) e M(n) } is uniformly continuous, with
respect to the power and product uniformities.

Proof : The set of all Vn := { (y , / ) | (y(«),/(«))e F } , where V runs
through 'ULg and n through N, forms a subbase of the product unifor-
mity 'MigN.

To prove the uniform continuity of P, with the notation of définition 3,
it suffices to show : (p x p)((K)J c (vn). From (Af, M')e(F) n follows
(M(«), M'{n))e K and M(«) <= K[M'(«)] and M'(n) <= K[M(«)]. Hence, for
any ƒ G P(M) we have y(n) e M(n) <= F[M'(«)], i.e. there is an element y' e M'
such, that (y(n), /(«)) G F. This implies Vj G p(M) 3^' e p(M') : (y, j;) G Fn

and p(M) c F„[P(M')]. In the same way we show p(M') c Fn[p(M)] and
obtain (p(M), P(M')) G (?;).

QED
Proposition 4 : If it is a uniform 7VZ>-automaton such, that

P(f ) : (P(Z) x A) - P(Z), (Zl5 a) ~ U /(z, a)
zeZi

and
P(g) : (P(Z) x ^) - P(5), (Zl5 a)

n° août 1975, R-2.



48 R. VALK

are uniformly continuous, then gN : (Z x X) -> P{Y) is uniformly continuous
and G is uniformly equicontinuous with respect to the power uniformity

In particular, the assumptions concerning P(f) and P(g) hold for uniform
ATD-automata, where Z is a uniform space and the uniformity of P(Z) is the
power uniformity.

Proof : As in the proof of proposition 1 we define for all ne N the
maps ƒ<"> : (Z x X) -• P(Z) inductively by f(0) := ƒ o ( ^ z x pr0) and
y-<n+i) _ p(y) o (/<n) x />rn + 1) o (idz x Ax), which are uniformly continuous
also in the case of partial maps. Hence, for all ne N the maps
ocn+1 : (Z x X) -> ƒ>(/*), an+1 : = P ( » ) o ( / w x i>r„+1)o(^z x Ax) and
a0 : = g o (idz x pr0) and a : ( Z x I ) - * P(B)N, defined by oe(z, x)(n) : = oc„(z, x),
are all uniformly continuous. By lemma 3, the partial map P o a : (Z x X) -• P( F)
is uniformly continuous. Since any partial map, the graph of which is a subset
of the graph of a uniformly continuous partial map, is uniformly continuous
itself, it suffices to prove, that the graph of gN is a subset of the graph of P o a.
Therefore let be (z, x) e D(gN) and y e gN(z, x). By définition of gN there is a
séquence tr e ZN such, that tr(O) = z and (tr(n\ x(n\ y{n\ tr(n + 1)) e t for
all «eiV. Hence, we have for all n e N : (z, JC) 6 D( f(n)) and rr(») € ƒ <n)(z, x)
and y(0) e g(z, x(0)) = oto(z, x) and j(« + 1) e P(g)(fin)(z, x),
x(« + 1 )) = ocn+1(z, x). Therefore we obtain y(n) e a(z, x)(n) for all n e N and
7 G (p o ot)(z, x).

The uniform equicontinuity of G follows immediately. If (Z, ^U )̂ is a
uniform space and / : ( Z x i ) - > P(Z) is uniformly continuous with respect
to the power uniformity on P(Z), then P(f) : (P(Z) x X) -+ P(Z) is uniformly
continuous : for We^z and WecVbP{Z) there are entourages F e ^ and
K' e nLx such, that (z, z')eV and (x, x') G V' and { (z, x), (z', JC') }<=/)(ƒ)
imply ( ƒ (z, x), ƒ (z', x')) G W. Hence (Zl5 Z2) e Vy (x, x') G V' and
{ (Zl9 x), (Z2,x')} c= D(P(f)) imply (^(/XZ,, x), P(f)(Z2, x')) e W. The
same argument applies to P(g).

QED

Since in the case of ATD-automata, the éléments of G are partial maps,
the uniformity of uniform convegence ^ ^ cannot be defined for the state
space. Therefore we now introducé a second uniformity for Z.

Définition 10

Let A = (Z, A, B, t) be a ATD-automaton and A and B uniform spaces.
The initial uniformity on Z with respect to the map b : Z -• /'(A' x Y),
z <-• £(z) and the power uniformity on the product X x Y is called behavior

/îevwe Française d'Automatique, Informatique et Recherche Opérationnelle



ON SOME ELEMENTARY PROPERTIES OF UNIFORM AUTOMATA 4 9

uniformity on Z and is denoted by "U .̂ Analogously, the behavior uniformity
on P(Z) is the initial uniformity with respect to the map b : P(Z) -*> P(X x Y ).

F o r F G ^ a n d F F G ^ w e d e f i n e ^ F , W)):= {(Zl9Z2)sP(Z) x P(Z)\
V(x,y)e b(Zx) 3 (x', yf)E b(Z2) : (x, x ')G V A (y,/) G FF A
V(x ' , / )eè(Z 2 )3 {x,y)eb{Z1) : (*',*)e K A (y',y)eW}

With définition 3 we can conclude, that { ((F, W)) \ Ve °ILX A FF G «Uy }
forms a base of (P(Z)9 «Uj.

The behavior uniformity on Z may be considered as a subspace of the
behavior uniformity on P{Z\ The éléments of the corresponding restriction
of the given base are denoted by (F, W) : = { (z, z') | ({ z }, { z' }) e ((F, FF)) }.

Proposition 5 : Let A = (Z, 4̂, i?, *) be a iVD-automaton, where A and B
are uniform spaces and G = { g^ : (X) -• P(Y) \ z e Z } is uniformly equi-
continuous. Furthermore assume :

Then the behavior uniformity ^ is the coarsest uniformity on Z such,
that gN : (Z x X) -> P(F) is uniformly continuous.

Proof : Given Weç\LPiY) there is an entourage Fe'ULy such, that for ail
z e Z : (x, x') 6 F " 1 o F A { x, x' } ci D{g?) => (<£(x), g?(x')) e W. Now
define V' := (F, ^F)eclLfc (cf. définition 10).

Then (x, x') e F and (z, z') e F ' and (z, x), (z', x') € £(#*) imply : for
ail (x, y) G b(z), there is a pair (x, j ) e b(z') such, that (x, x) e F and (y, y) e W.
Hencewehave (x', x) e F" 1 o Fand (j?, j>0e JFand {y, y')e W o W, which
proves the uniform continuity of gN wih respect to ^ j , .

If 'Vbz is an arbitrary uniformity for Z, with respect to which gN is uniformly
continuous, we must prove CILZ => ^ j , .

Letbe(F, M ^ J e ^ .

Since gN is uniformly continuous with respect to ^z, there are entourages
Vx e nLZï F2 e ^ such, that (z, z') e F1? (x, x') e F2 and (z, x), (z', x') e Z>(^)
imply (gN(z, x), ^(z ' , x')) e W. By assumption of the proposition for
(z, z') e Vx and x G D(g^) there is an element x' such, that (x, x') e V n V2. This
implies (gN(z, x), gN(z\ x')) e FF. Hence for any (x, y) s b(z) there is a pair
(x', y') e è(z') with the property (x, x') e F and (y, y') G FF. In the same way
one can show : V(x', y') e b(z') 3(x, ƒ) G b(z) : (x, x') e F A (y, y') e W. This
gives the desired resuit : (z, z') e (F, FF) and Vx c (F, FF).

QED

Proposition 6 : Let A — (Z, 4̂, 5 , / , g) be a (complete and deterministic)
automaton and A and B uniform spaces.
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Then the behavior uniformity ^ is coarser than the uniformity of uniform
convergence 'IJL,,,, on Z. The uniformities are identical, if G is uniformly
equicontinuous.

Proof : The first statement follows from the définitions of ^ ^ and c\Lb

and the observation, that (W) <= (V, W) holds for all Ve'Mx and IFeclLr.
If G is uniformly equicontinuous, then by theorem 1 A is a uniform auto-

maton with respect to CILWC. By proposition 5 gN is uniformly continuous with
respect to ^j,. But ^ ^ is the coarsest uniformity with this property and
therefore coarser than 'ULj,.

QED

By the last proposition the uniformities ^ ^ and €\Lh are identical for all uni-
form automata. This result suggests, that the behavior uniformity cUbb is a
suitable extension of the uniformity of uniform convergence HL^ to incomplete
uniform automata.

Définition 11

A iV7)-automaton A = (Z, A, B, t) is called input concaténation preser-
ving, if for any arbitrary state z e Z and inputs { x, x' } cz D(g^) also the
following input x(0)x\ defined by

^ n = (\ isaninputforz,i.e.x(0)x'6D(^)
if n > 0

Intuitively, this property means, that after a transition from a state z
to a next state z' by an input x(0) we can switch over to the inputô (x'), if x' was
defined for the state z. This property is trivially satisfied for complete automata.

Theorem 3 : Let A = (Z, A, B, t) be an input concaténation preserving
iVZ>-automaton, where A, B and P(Z) are uniform spaces and the uniformity
of P(Z) is the behavior uniformity.

Then, if G is a uniformly equicontinuous family of partial maps, A is a
uniform MD-automaton.

Proof : To prove the uniform continuity of ƒ : (Z x X) -• P(Z), let be
((F, W)) an entourage of the base of ^ p ^ (définition 10). By définition of

O 0 0

uniform spaces there exists an entourage We ^ y such, that W1 = W (sym-
o o

metry) and W oW <=. W (o = relational composition). Since the shift opéra-
tion ô is uniformly continuous, there are éléments W1e

c\LY and Vx e ̂ ^ such,
that {yf /) e Wl and (x, x') e Vx imply (8(j), 3 {/)) e W and (8(x), 6(x')) e F.
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Since G is uniformly equicontinuous, an entourage V2 e
 CU>X must exist,

which satisfies the following condition :

(I) VzeZVx.x'eX: {x,x' } c D(g^) A (x,x')e V2 =>

=> Vy e «*(*) 3 / e a?(x') : .(* y') e ^
A V / € 9?(JC') 3j> e o?(x) : ( / , ƒ ) e W,

As a subbase of X we consider the set of ail Vni which are defined in the

proof of lemma 3. We can choose entourages V2 G clLJr>
 v' G °^x anc* F" e C\LA

with the following properties : (F,)"1 ° F2 c= V2, V' a V2 n Vl9

V" c (pr0 x pro)(V') and V' belongs to the base of «U*.

To prove the uniform continuity of/, it suffices to verify :

(z,z')e(K', » ï ) A ( f l , f l ' ) e r A { (z, a), (z's a') } c / )(ƒ) A

Z = ƒ (z, Ö ) A Z ' = ƒ (z', a') ̂  (Z, Z') e ((F, *F)).

Therefore let be (x, j ) e Z>(Z). Now we must find a pair (xf, y')e b(Zf) such,
that (JC, x ')G F and (y, yl) e Wis satisfied.

(JC, y) e è(Z) implies, that there exist a pair (x, y) e b(z) satisfying
(8(jc), 8 (j>)) = (x, y). By (z, z') e (V, W^) we know, that there is a pair
(x, ƒ) G b{z') with the properties :

(II) {x, 5c) e V'

and

(in) (y,y)€W1.

From (a, a') e F" follows (aie, a'x) e V' <= V2 and formula (II) implies
o o o

(ax, x)s V' c= K2. Combiningtheseresults, weobtain(a'x,x)G(F2)"1 o V2 a V2.
By assumption of the theorem we know {a'x, x } <z D(g%,). Using for-
mula (I), for y G g^{x) we get an element y" G g% {a'x), which satisfies :

(IV) (y, y") € Vx.

By (a'x, / ' ) e b(z') we obtain'{x', y') : = (ô(a'x), 8( ƒ'))6 6(Z').

From (III), (IV) and the définition of W^ follows (ô(y), 8 (ƒ")) e W,

= (y, S (y)) e ^ and (y, / ) e ÏT. (II) implies (x, x) e Vx and

In the same way for ail (x', y') 6 b(Z') we can find a pair (x, y) e b(Z)
satisfying (JC', X) e V and (y', y) e W, which establishes the resuit

We now prove, that g : (Z x A) -> P(B) is uniformly continuous. Let
be W e 'ILg and W € I L ^ , . Then there is an entourage W' e 'ILy such, that
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(pr0 x prQ){Wf) c W. Let be Wx e <\LY having the property WloW1a W\
For this entourage we can find^an entourage V2e

c\i>x, which satisfies
formula (I). Furthermore let be V2 e^x and V3 e ^ entourages with the

properties ( ï ^ ) ' 1 o V2 e K2 and K3 c: (pr0 x jpr0)(F2) and K2 belongs to the
base of ̂ ^ mentioned above.

Nowfor (z, z')e (F2, J^), (a, fl')e F3and { (z, a), (z', a') } eZ)(g)it suffices
to prove (éf(z, a\ g(z\ a')) e (W) or equivalently

Vbeg(z,a)3b'eg(z\a'):(b,b')eW
and

Vè' e flf(z\ a') 36 e g(z, a) : (Ô', 6) e W.

Let be 6 e g(z, a). By the définition of a iVZ)-automaton an element
x e D(f(z, a)) exists. Furthermore there is a pair (x, y) e b(z) such, that 8(x) = x,

jc(O) = a and j)(0) = b and by (z, z') e (^, P^) another pair (je, j;) e 6(z') exists,
which satisfies

(V) (x,x)eV2

and

(vi) (y,y)ewv
o o

From (V) follows (ax, x) e V2 and from (a9 a')e V3 we obtain (ax, a'Jc) e V2

and (a% JcJefKj)"1 o V2 <= F2. Since x€Z>(^)anda'Jc€/)(âr^), which is trueby assumption of the theorem, we can use formula (I). Thus, for y e g^(x)
there is an element y' e g^,(afx\ which satisfies (y9 y') e Wx. Together with (VI)
this implies (y, y') sW1oW1^Wf and (̂ (O), ^'(0)) - (b, y'{0)) e W and
b' : = }>'(0) is the required element b' e g(z\ a').

In the same manner for a given b' e g(z', af), we can find an element
b 6 g(z, a) such, that (b\ b) e W is satisfied.

QED

Définition 12

An incomplete automaton A is a iVZ>-automaton such, that the range
of ƒ is Z and the range of g is B (considered as subsets of P(Z) and P{B),
respectively).

A is a uniform incomplete automaton, if A, B and Z are uniform spaces
and ƒ and g are uniformly continuous partial maps.

Similar to theorem 1 the condition in theorem 3 is also necessary, if we
consider incomplete automata. We recall, that in this case again the uni-
formity of uniform convergence cannot be used.
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Corollary : Let A = (Z, A, B, t) be an input concaténation preserving
incomplete automaton, where À and B are uniform spaces and Z is endowed
with the behavior uniformity «U^

Then A is a uniform incomplete automaton, if and only if G is a uniformly
equicontinuous family of partial maps.

Proof : If A is a uniform incomplete automaton in the proof of proposi-
tion 4 the maps P(f ) and P(g) can be substituted by ƒ and g, respectively.
Since ƒ and g are uniformly continuous by assumption, G is uniformly
equicontinuous.

On the other hand, (Z, «Ul̂ ) can be considered as a subspace of (P(Z), CIL1)).
Therefore, if G is uniformly equicontinuous ƒ : (Z x 4̂) -• Z is uniformly
continuous by theorem 3 and the same holds for g : (Z x A ) -* 5.

QED

5. PRECOMPACTNESS OF THE STATE SPACES

For practical applications, for modelling and simulation only finite models
can be used. Therefore the problem of finite approximation of uniform auto-
mata has some importance. Suppose the uniformity of the state space Z of a
uniform automaton A is given by a metric d. Let e be a positive real number.
A finite approximation of Z of degree e can be defined as a finite subset Zx a Z,
which has the property, that every state z e Z ofA has a distance smaller than s
from at least one element zx of the subset Zt. The property, that approxima-
tions of arbitrary small degree 6 exist, is well-known as the property of
precompactness.

Définition 13

A uniform space (Z, "Vb^ is precompact, if for any arbitrary entourage
V e ^ 2 , there is a finite subset Zx c Z having the property Z = V\ZX~\
(cf. définition 3) [4].

In the following we assume, that the input space A and the output space B
are precompact uniform spaces. This is a natural assumption, since in many
practical cases A and B are compact real intervais.

Proposition 7 ; The state space Z and the power set P(Z) of a iVD-auto-
maton A = (Z, A, B, t) or an automaton A = (Z, A9 B, ƒ, g) are precompact
with respect to the behavior uniformity ^ j , .

Proof : The product spaces X = AN
9 Y = BN and X x Y are precom-

pact [1]. Furthermore it is easy to prove, that the same holds for the power
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uniformity on P(X x 7). Since the behavior uniformity cULb is the initial unifor-
mity with respect to the maps b : Z -• P{X x Y) or b : P(Z) -> />(* x 7),
the uniformity «Û  is precompact ([1], II, 4.2).

QED

The preceeding proposition holds under a stronger condition for the
uniformity «U^. The following proposition is an application of the theorem
of Ascoli to automata theory.

Proposition 8 : The state space Z of an automaton A = (Z, A, B, ƒ, g)
is precompact with respect to the uniformity of uniform convergence "U^,
if the family of maps G = {g^ : X -» 7 | z e Z } is uniformly equicontinuous.
The condition is also necessary, if all the maps of G are uniformly continuous.

In particular, the state spaces of all uniform automata are precompact
with respect to the uniformity C\LUC.

Proof : Since CILUC is the initial uniformity with respect to the map
v : Z -* G, (Z, ^„c) is precompact, if and only if G is precompact with respect
to the uniformity of uniform convergence ([1], II, 4.3, Prop. 3).

Now the proposition follows from the theorem of Ascoli ([1], X, 2.5,
Theorem 2).

The results given in this exposition suggest, that a gênerai approximation
theory of sequential Systems can be developed. ^T-T^

QED
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