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VALUED VECTOR SPACES AND ABELIAN p-GROUPS

by Laszlo FUCHS

Let A be an abelian p-group, written additively, where p denotes a fixed pri-

me. As usual, we define pA = (pa ; a ~ A) ; and in general, p A (for ordinals

0 ) is defined transfinitely by

p 0’+ 1 A = A) and p p A = A

for limit ordinals p. If A has no divisible (i. e. injective) subgroups # 0

(which can be assumed without loss of generality), then p A = 0 for some ordinal

T . The height h(a) of a E A is defined by setting h(a) = 0’ if a E 

and h(O) = ~ . Now we concentrate on the socle

A[pJ = (a E A ; pa = 0)

of A which is viewed as a vector space over Z/(p) , y furnished with the height as

"valuation". In this way, we obtain what is called a valued vector space.

H. PREFER (in 1923) was the first to discover the relevance of the socle. In 1955,

B. CHARLES has investigated the socles of p-groups without elements of infinite

heights Later K. HONDA [10J, P. HILL [8J and P. HILL-C. MEGIBBEN [9J studied

various aspects of socles. In order to make use of the socles in the structure theory

of abelian p-groups, in 1975, I investigated systematically valued vector spaces,

using certain ideas from non-archimedean Banach spaces and totally ordered vector

spaces. There are a few interesting developments, and my present goal is to give a

short survey of the most essential results in the study of socles via valued vector

spaces.

PART I. Results on valued vector spaces.

w 
Here we collect the basic definitions and results needed for applications in abe-

"S lian p-groups. We restrict ourselves to the special case when the values 
are ordinal

~ ~ numbers and the underlying scalar field is trivially valued, though most of the

~
results extend easily to more general cases.

D ~
i ct-

Ó a
1,Basic definitions.

Let r denote the class of ordinals and let 5 Vector

..J.....
spaces V only over ~ will be considered.

m o

A valuation v of V is a function

v: V ~ r U (co)
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(the symbol co is regarded as being larger than any ordinal) satisfying the follow-
ing conditions : 

’

(i) v(a) = 00 if, and only if, a = 0 ,

( ii ) v(aa) =v(a) for all a E V and non zero 

(iii) v(a + b) $:min(v(a) v(b)) for all a, b E V .

A valued vector space is a pair (V, v) where V is a vector space and v is a

valuation of V . These are the objects of the category ~ of valued vector spaces,
the morphisms

~ : (V, v) --7 (V~ , p v’)

are those ~-linear maps p, : V 2014~ V~ which satisfy

. for all 

Two valued vector spaces are isometric if they are isomorphic in V, i. e. there is

a vector space isomorphism between them that preserves values.

For a subspace U of V , the restriction of v to U makes U into a valued

vector space, (U, y is a subobject of (V, v) . A (V , w) -3 (V , v)
is an injection (or embedding) if ~ is an isometry of (w y w) with a subobject
of (V , v) . This has to be distinguished from the Y-monomorphisms which are those

y-maps which are one-to-one on W.

Let U be a subspace of V . The quotient space V/U can be equipped with the

valuation

v( a + U) = sup UE U v( a + u) .

It is straightforward to check that V is an additive category with kemels and co-

kernels, limits and colimits. It is, however, not abelian (not all monic V-maps are

kemels).

It is useful to describe explicitly the categorical coproduct and product of a set

of valued vector spaces (V. , v. ) , i E I . Their coproduct (V, v) is the vector

space direct sum V = ~Vi where the value of an a = V is defined as

min. v. (a.) . Their product (V* , v ) is the cartesian product V = f1 V. where

the value of a = ( ... , a. , ... ) E V* is again min. v. ( a. ) . We write

(V, v) = 11 (V. , v. ) , and ( V-* , v*) = 03C0 (V. , v. ) .

An element a of a valued vector space (V, v) is said to be orthogonal to a

subspace U of V if

v(a) for all uE U .

A subspace W of V is orthogonal to U , if every a E W is orthogonal to U .

The orthogonality of subspaces is a symmetric relation, and U , W are orthogonal

subspaces of V, if U + W is canonically isometric to the coproduct of U

W .
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A topology-like structure can be introduced in V by declaring a subspace U of

V s-dense (spherically dense) whenever 0 is the only vector in V orthogonal to

U . On the other hand, U is s-closed in V , if U is not contained properly in

any subspace of V as an s-dense 3ubspace 8 Or, equivalently, every coset of V

mod U contains an element orthogonal to U . For every subspace U of V, there

exists a (not necessarily uhique) subs pace of V such that U is s-dense in

U y and is s-closed in V . Such a UH" is an s-closure of U in V . For

details we refer to [4~ ,

By the support of V is meant the set (v(a) ; 0 # a e V) , while the lenght of
V is defined as sup (v(a) + 1 ; 0 ~ a E V) . With every ordinal a , y there are

associated the subspaces

(a E V ; v(a) ~a) , and = (a E V ; v(a) &#x3E; al .

C le arly, for every ordinal cr.

2. Free valued vector 

By a valued set (X, g) is meant a set X along with a function g : X 2014~ r .

A free valued vector space (F, y f) on the valued set (X, g) is a valued vector

space with an inclusion map i : X 2014~ F preserving values such that : given any

function h : X ~ V into a valued vector space (V, v) satisfying

v(h(x)) ~g(x) for all x EX, y there exists a unique V-morphism

~ : (F, f) - (V, v) such that i = h .

It is easy to see that on any valued set (X, g) there is a valued vector space

(F , f) , unique up to isometry, namely.

F ~x , where v(x) = g(x) for x EX.

The functor that associates f) with (X, g) is the left adjoint of the

forgetful functor from Y into the category of valued sets.

There are enough free objects in V.

THEOREM 1. - Every valued vector space is isometric to a quotient F/K of some

free valued vector space F . Moreover K can be chosen so as to be s-closed in F .

The proof is standard, see e. g. [4J.

There is an important functor that associates with every valued vector space V a

free valued vector space B. This functor is the grading functor gr : V 2014~ B ,

and B is isometric to a basic subspace of V . By a basic subspace is meant a free

s-dense subs pace ; 9 such ones do exist and are unique up to isometry (see [4J). It is

convenient to write and to use as a standard notation

B(o)

where is the coproduct of those 1-dimensional subspaces (in same representa-
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tion of B as a free valued vector space) where each vector ~ 0 has value o (we
say : is 03C3-homogene ous).

We have the Conrad-Fleischer embedding theorem ~4~,

THEOREM 2. - If V is a valued vector space and B is a basic subspace

of V , then there is an injection

V 

which is the identity on B .

Let us mention a few results of interest on free valued vector spaces ; for de-

tails we refer to [4~].

THEOREM 3. - Finite valued subspaces of valued vector spaces are free summands.

THEOREM 4. - A valued vector space with countable support is free if, and only if,
it is the union of a countable ascending chain of finite-valued vector spaces.

THEOREM 5. - Countable dimensional valued vector spaces are free.

THEOREM 6. - Countable-valued subspaces of free valued vector spaces are free.

3. In~ective valued vector s aces.

Adopting the costumary definition, we call a valued vector space T injective, if

for every in jection ~ : U - V and any U -9 T there exists a

11: V - T such that 11* = ~.

Homogeneous vector spaces are always injective. A product of valued vector spaces
is injective exactly, if all components are injective. Hence ~ in theorem 2

is injective, and we see that every valued vector space is contained in an injective

valued vector space. For the discussion of injective hulls, the following concept is

needed.

A valued vector space V is said to be s-complete if it is not s-dense in any

larger valued vector space. A proof given by INGLETON [ 11] (in terms of spheres)
applies to show :

THEOREM 7. - A valued vector space is injective if, 9 and only if, it is s-complete.

If T is any injective valued vector space containing a valued vector space V,
then an s-closure V?~ of V in T turns out to be injective, and it is easy to

see that it has to be a minimal injective containing V . This is the injective hull

of V ; it is unique up to isometry. More over we have the following theorem.

THEOREM 8. - Eve ry valued vector s pac e V has an in j e c tive hull V , unique up

to isometry. V is s-dense If B is a basic subspace of V, 9
then we have the isometry
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There is a subspace of the injective hull  which we shall need in the sequel.
Let X = lenght of V be a limit ordinal, and define a subspace W of  via

w/v ==(v/v)~ ,
i. e. W/V is the largest À-homogeneous subspace of This W can be charac-

terized as follows.

PROPOSITION 1. - W is determined, up to isometry over V, by the following pro-

perties

(a) V is s-dense in W,

(b) W/V i s 03BB-homogeneous,

(c) W is maximal with respect to the properties (a) and (b).

It will be called the augmentation of V and will be denoted as W = V[À] . Notice
that we have defined it for 03BB = lengh of V only.

It should be pointed out that can also be obtained as an inverse limit. In

fact, for a  p  À let

2014~ 

be the canonical map a + Vp ~2014~ a + vcr . For the arising inverse system of valued
vector spaces we can prove the following theorem.

THEOREM 9. - V~ ~ lim 

vector s aces.

A valued vector space S is called subfree if it is an s-dense subspace of some

free valued vector space F. Any basic subspace of S is basic in F , so it is

isometric to F. Consequently, F is unique up to isometry.

Subfree valued vector spaces are not necessarily free, as is shown by the follow-

ing example.

Example. - Let F =11 be a free valued vector space where = and

J runs over all ordinals less than some limit ordinal À not cofinal with w .

Define 
,

S = ’

i. e. the subspace spanned by all a - a with p , y o  À . It is immediate that

F , and that S and any a 
cr span F. Thus F/S is 1-dimensional of value

À . Since F has no vector of value À, S has to be s-dense in F , i. e. S

is subfree . By way of contradiction, assume S is free, say S = 1L (it has to
be isometric to F as its basic subspace). If x ~ FBp , then for every o  A. ~
there is a c ~ S such that v(x - cO") &#x3E; 0" . The coordinates of c and c
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(o~  p) are the same in every with Y  cr , so x ~ S implies that there is

a sequence Pl  .0.  pn  ... of ordinals such that c has a non-zero coor-

dinate in some 03A6b where c , 8ft. , , c have 0 coordinates. From cof 03BB ~ w
Yn+1 ~1 .. 

- Pn
we infer that there is a x with sup Pn  Po . Then c03C10 

has the same non-

zero coordinate as c pn 
in 03A6b03B3n a contradiction to c03C10 

E S . Hence S is sub-

free, but not free.

There are known several criteria which a subspace of a free valued vector

space is again free. Here we mention only two results of this kind o theorem 10 and

12.

THEOREM 10. - Let S be a subfree valued vector space, i. e. s-dense in some free

F . If the support of F/S contains only ordinals cofinal with w, then S is free.

The proof of this result is rather lengthy, To obtain a corollary to theo-

rem 10, the following result is needed.

THEOREM 11. - Let S be an s-dense subspace in a free valued vector space F .

There is a subspace U of F such that

(i) S ~ U ~ F ,

(ii) all non-zero vectors in U/S have values ~ cof w ,

(iii) all non-zero vectors in have values cof w .

COROLLARY 1. - For any subfree valued vector space S there exists a free valued

vector space F in which S is s-dense and all the values of vectors in F/S are

not cofinal wi th w.

In fact, by theorem 10 and 11, y F can be replaced by U in the definition of sub-

free spaces.

We say that a valued vector space V satisfies the countability condition if

X C support of V and X = sup X implies 03BB = sup Y for some countable subset Y

of X . This condition suffices to prove the following theorem.

THEOREM 12. - An s-closed subspace of a free valued vector space with the counta-

bility condition is likewise free.

Notice that here "s-closed" can be omitted in view of theorem 10.

PART II. Valued vector s aces in 

We wish to apply the general results on valued vector spaces to the theory of p-

groups. As pointed out in the introduction, the socles are in a naturel way valued

vector spaces. The study of the socles, however, needs a more general perspective,
and our main objective is now to study what we call slices and their relations to the
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groups.

5. Slices of abelian rou s.
In this section~ ~ will always denote a limit ordinal.

By the 03BB-slice of an abelian group A , we mean the socle of the quotient A/p A
as a valued vector space over Z/(p) , equipped with the height as valuation :

Sx(A) = (A/pÀ A)[p] .
Since p A is a so-called subgroup, the heights in SÀ (A) can be computed
not only via A/p A , but also as the supremum (= maximum in this case) of heights
of elements of A in the coset. In the definition, it is irrelevant that ~ is a

limit ordinal~ but for non-limit ordinals the slices do not seem to be of interest

in our present subject.

Let ð: A 2014~ A/p’ A denote the canonical map. We define

UÀ(A) = ð(A[p]) = (Alpl + pÀ A)/pÀ A .
Our main concern is now the relation between UÀ (A) and SÀ (A) . Though we are in-
terested in p-groups, now we do not assume A is one : it can be an arbitrary abe-

lian group. The following basic fact is straight foward to prove the following theo-

rem.

THEOREM 13. -For any abelian group A, any prime p , and any limit ordinal À,
the following is true

(1) UÀ(A) 
(2) pÀ A .

This result yields an essential information on how the subgroup p A and the quo-

tient A/p’ A are glued together to form the group A . For a fuller information, a

finer analysis of (2) is required. This is based on a filtration induced by A.

It is costumary to denote, for a subgroup G of A , by p" G the set of all

a E A with pa ~ G , y i. e. the set of elements contained in the cosets 

For every integer n ~ 1 , we write

= A) n + pÀ A .

With increasing n , these form an increasing chain of subspaces of S.(A) (1. e.

filtration)

Ux(A) = U)(A) G ... ~U~(A) - ... G U§/(A) 
where

~~~ = U n ~~) = [(p -1 (pÀ Tp} + pÀ 
here T stands for the p-component of the torsion part of A. It is readily ob-

served that consists of all cosets in SÀ(A) which can be represen-
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ted by elements of order p of A , but not by elements of order  pn-1 , and

consists of those which have no representatives of finite order in A .

For matter of convenience, we set U =-S..
For every n  1 , we can select a basis {ani} (i e I ) of the quotient vector

space U. (A)/U.(A) (including n . 
= a) ), and pich a representative ~ ani of

smallest order in its coset mod p A . Then the following holds. 
~ 

LEMMA 1. - The elements b = taken for all n  03C9 and all i e fonn

a p-basic subgroup p A t 
For the theory of p-basic subgroups, we refer to [3]. They are useful invariants

of arbitrary abelian groups. With the aid of the information contained in this lemma,
the construction of A from p A and A can be performed in a more explicit

fashion, though in general it does not determine A .

6. The socles of

One of the basic questions is to characterize the socles of abelian p-groups A

as valued vector spaces, (Needless to say, is viewed as a vector space over

Z/(p) with the height as valuation.) We consider this problem in order to understand
better the structure of p-groups in general.

Let V be a valued vector space over the field $ = 2/(p) and let B == ii B(o’)
denote a basic subspace of V . Here each B(o’) is a-homogeneous free and o runs

over a set of ordinals. From results in [4]~ one can easily verify that there is a

decomposition

V = C(B)JLL VB for every ~
where we can assume that

B(a) ~ C(B) for every o-  ~

while we always have B(o) s V for J ~~ . Here C(~.) is unique up to isometry

only. 
"

From theorem 13 and lemma 1~ it follows easily the lemma 2.

LEMMA 2, - For V = we have that has lenght X and .

(l) dim C(B)M/C(~) ~ Z~~~ dim B(o)
for every limit ordinal ~ not exceeding the length of V .

This lemma provides us with a necessary condition for V to be isometric to A[pj
for some A . For valued vector spaces of countable length, this turns out to be

sufficient as well. For uncountable lengthy the precise condition is not yet known.

The difficulty lies in the peculiar behavior of abelian groups when inverse limits
are taken over ordinals tending to a limit ordinal 7~ cof (D .
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THEOREM 14. - A valued vector space V of countable length T is isometric to

the socle of a p-group A if, and only if, it satisfies (1) for every limit ordi-

nal 

The proof makes use of heavy machinery of abelian group theory, in particular, of

certain existence theorems. Here we can only state the fundamental lemmas on which

the proof is based.

Recall that a subgroup G of a p-group T is called isotype if

(2) for every ordinal a .

G is pÀ-pure in T if the exact sequence 0 2014~ G 2014~ T -..-~T~G 2014~ 0 represents

an element of p~ Ext(T/G , G) . If G is p~-pure in T , then by [ 12], ( 2) holds

for all 

LEMMA 3. - Let G be a p-group of limit Then there is a T

of the same length such that

(i) T[p] = V where V is an vector space between G[p] and G[p][À],
(ii) T ,

(iii) T = G + f or every a ~.

LEMMA 4. - Let T be a p-group of limit length X y and V a subsocle of T that

is dense in the 03BB-topology of T[p] . Then V supports a p03BB-pure subgroup G of

T such that T/G is divisible.

These combined with a modified form of the existence theorem L3 (t~ .2, theorem 105

105-3~ p. 210)] for p-groups, lead to theorem 14.

7. The socles of totall ro’ective 

There is an important class of p-groups for which a satisfactory structure theorem

is known : this is the class of totally projective p-groups.

A totally projective p-group can be characterized in various ways. By the original

definition of Nunke [14], a reduced p-group A is totally projective if

p ~ A , C) = 0 , for every cr and every group C .

HILL [7] proved that within the class of totally projective p-groups, the groups are

characterized by their Ulm-Kaplansky invariants, i. e. by the basic subspace.of their

socles.

The obvious question presents itself : which valued vector spaces are isometric 
to

socles of totally projective p-groups ?

First, the most important fact should be stated.

THEOREM 15. - The socles of totally projective p-groups are subfree valued vector

spaces . 
’

The proof is by transfinite induction on the length.
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So far, we do not have a satisfactory characterization of the socles of totally

projectives. Instead of discussing cumbersome conditions, we note that their socles

are completely determined by the basic subspaces. So the problem can be split into

two parts. First, when a free valued vector space can be a basic subspace of the so-

cle of a totally projective p-group, secondly, how to construct the space from its

basic subspace. The existence theorem on totally projectives by Hill [7J and Crawley-
Hales [2J yields an immediate answer to the first question.

THEOREM 16. - A free valued vector space B(a) of length T is the basic

subspace of a totally pro jective p-group exactly if

n)

for every o with 03C3 + w  T .

The second question we raised will be discussed elsewhere.

The totally projective p-groups of countable length are known to be precisely the

direct sums of countable Their socles and all their X-slices are

free valued vector spaces, as it follows at once from theorem 5. Moreover, there is

a useful characterization of these groups in terms of their slices.

THEOREM 17. - An abelian p-group of countable length is a direct sum of countable

p-groups if, and only if, its socle and all its ~-slices are free valued vector spa-

ces.

In fact, this result is equivalent to a theorem of Megibben [13].

The last theorem is a typical example for results we are driving at. Once a satis-

factory characterization of socles of totally projectives is obtained, a similar re-

sult is expected for totally projective p-groups.

8. Classifications in terms of socles.

There are several classes of abelian p-groups within which the individual groups

are distinguished by their socles.

1° As noticed in 7, the totally projective p-groups are distinguishable by their

basic subspaces. So they can be distinguished by their socles as well.

We should add two remarks. First, the p-groups whose socles are free valued vector

spaces of lengths ~ cu are completely determined by their socles. In fact, 9 they are

the direct sums of cyclic p-groups. Secondly, as pointed out by HILL and MEGIBBEN

[9], no p-group of length &#x3E; 03C91 can have a free valued vector space as a socle.

2° It is not difficult to see that the torsion-complete p-groups are the only abe-

lian groups whose socles are injective valued vector spaces (this follows from theo-

rem 13). Thus an injective space is the socle of a p-group if, and only if, it is of

length ~ w .
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The torsion-complete p-groups are distinguishable by their socles. Moreover, HILL

[8] proved a remarkable generalization of this result to direct sums of torsion-com-

plete p-groups.

3° A class of p-groups which is close to the direct sums of cyclic p-groups, but

which displays quite a variety in structure is the class of the so-called 

jective p-groups. Their simplest definition is that they are extensions of direct

sums of groups of order p by direct sums of cyclic p-groups. J. IRWIN and the

author [6] have proved that two p03C9+1-projective p-groups are isomorphic if, and

only if, their socles are isometric. In other words, these groups can be classified

with the aid of their socles only.

4° A dual class consists of extensions of direct sums of groups of order p by a

torsion-complete p-group. As shown by two groups in this class are

isomorphic exactly if their socles are isometric.

. 
These results can be generalized if slices with filtrations are considered.

L. SALCE and the author are investigating the almost totally projective p-groups

A (defined by

f A) = 0 , for every 

by using the socles and the ~-slices in order to get structure theorems for them.

It turns out that, for countable length, the relation between the socle, the 03BB-sli-

ces and the filtration discussed in 5, yields sufficient information to distinguish

between the groups in the mentioned class.

We believe that the application of valued vector spaces to abelian p-groups is

still at an early stage, but the results obtained so far are encouraging and support

our conviction that a great deal can be leamed about the structure of p-groups by

studying their slices.
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