GROUPE D'ÉTUDE D'ALGÈBRE

ALFRED H. CLIFFORD

The system of idempotents of a regular semigroup

Groupe d'étude d'algèbre, tome 1 (1975-1976), exp. nº 8, p. 1-14 http://www.numdam.org/item?id=GEA_1975-1976__1__A8_0

© Groupe d'étude d'algèbre

(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude d'algèbre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE SYSTEM OF IDEMPOTENTS OF A REGULAR SEMIGROUP

by Alfred H. CLIFFORD

K. S. S. NALBOORIPAD [5], [6] has characterized the system $E_{\rm S}$ of idempotents of idempotents of a regular semigroup S as a "biordered set". His main purpose in doing this was to generalize to regular semigroups W. D. Munn's fundamental representation of inverse semigroups [4]. However, we shall not be concerned with this aspect of the theory in the present account.

We may also regard E_S as a partial groupoid, with the product of (e, f $\in E_S$) undefined if of $\in E_S$. Such a partial groupoid is called a "regular partial band" by G. BAIRD [1], who proposed the interesting problem of characterizing a regular partial band axiomatically. The author [2], [3] developed the matter further, and the present talk is an exposition of this work.

In § 1, a (regular) warp is defined as a partial groupoid satisfying certain axioms and it is shown that E_S is a regular warp for any regular semigroup S. Further needed properties of warps are given in § 2. Nambooripad's axioms for a biordered set are stated in § 3, and it is shown that every regular warp determines a biordered set. In § 4 a method is given for constructing all regular warps determining a given biordered set. In § 5 a method is given for completing a regular warp to a regular partial band. § 6 deals with fundamental regular warps. In the final § 7, an example is given of a regular warp which is not a regular partial band.

Let S be a regular semigroup and $\overline{S}=S/\mu$, where μ is the greatest idempotent-separating congruence on S. Then, E_S and $E_{\overline{S}}$ are isomorphic as biordered sets, but not in general as partial groupoids. Thus, the partial groupoid approach gives a finer classification of regular semigroups than does the biordered set approach. In spite of § 7, the method of § 4 shows that the notion of regular warp is a quite natural one, and the results of § 3 and 5 show that it is an adequate approximation to that of regular partial band.

1. Axioms for a warp; the warp of a semigroup.

By a warp, we mean a partial groupoid E satisfying axioms $(W_1)-(W_5)$ below. If e, $f \in E$, then " \exists ef " means that the product ef of e and f is defined in E. Except when emphasis is desired, a statement like " \exists ef and ef = g " will be abbreviated to " ef = g".

(W₁) Let e, f, g be elements of E such that H ef and H fg. If either (ef)g or e(fg) is defined, then so is the other, and they are equal. (We then write ofg for their common value in E).

- (W_2) ee = e for all e in E.
- (W_3) If ef = e or ef = f, then H fe.
- (W_{Δ}) If either
 - (i) ef = f, eg = g, and E(fe)(ge), or
 - (ii) fe = f, ge = g, and f(ef)(eg),

then, Efg.

Definition 1.1 - For any pair of elements e, f of E, we define the sandwich set S(e, f) of e and f to be the set of all g in E such that

- (i) ge = g = fg, and
- (ii) he = h = fh(h \in E) \Longrightarrow (eg)(eh) = eh and (hf)(gf) = hf .
- (W₅) Let $g \in S(e, f)$. If ef and (eg)(gf) are both defined, then they are equal.

A warp E is called regular, if it satisfies (R_1) and (R_2) . The empty set is denoted by \square .

- (R_1) For every pair of elements e , f of E , $s(e, f) \neq \Box$.
- (R_2) If $g \in S(e, f)$ and E(eg)(gf), then E(ef).

If a and b are elements of a semigroup, we write a \bot b, if a and b are inverse to each other, that is, aba = a and bab = b . If S is a semigroup, E_S denotes the set of idempotents of S . E_S becomes a partial groupoid, when we define the product of two elements e and f of E to be ef, if ef \in E_S , and otherwise undefined.

THEOREM 1.1. - Let S be a semigroup such that $E_S \neq \Box$.

- (i) E_S is a warp.
- (ii) For e , f in E_S , define $\mathbb{S}_1(e \ , \ f) = \{g \in E_S : ge = g = fg \ and \ egf = ef\} \ ,$

$$S_2(e, f) = \{g \in E_S : ge = g = fg \text{ and } g \perp ef\}$$
.

Then $S_1(e, f) = S_2(e, f) \subseteq S(e, f)$.

- (iii) If e, f \in E_S, and ef is a regular element of S, then $S(e,f) = S_1(e,f) \neq \Box$, and (R_2) holds the pair (e,f).
 - (iv) If S is regular, then E_S is a regular warp.

<u>Proof.</u> - (i) Axioms (\mathbb{W}_1) and (\mathbb{W}_2) are immediate. As for (\mathbb{W}_3), if ef = e then fefe = fee = fe , so E fe ; similarly if ef = f . To show that \mathbb{E}_S satisfies (\mathbb{W}_4), assume ef = f , eg = g , and E (fe)(ge) . Then

Since geg = gg = g,

Thus, \exists fg . The proof if fe = f , ge = g , and \exists (ef)(eg) , is dual. We defer the proof of (W₅) until we have proved (ii) and (iii).

(ii) Let e, f, g be elements of E such that ge=g=fg. Then

$$g(ef)g = (ge)(fg) = gg = g$$
,

$$(ef)g(ef) = e(fge)f = egf$$
.

Hence gief if, and only if, egf = ef , showing that $\mathbb{S}_1(e,f) = \mathbb{S}_2(e,f)$. Let $g \in \mathbb{S}_1(e,f)$, and let h be an element of E_S satisfying he = h = fh. Then

$$(eg)(eh) = egh = egfh = efh = eh$$
,

$$(hf)(gf) = hgf = hegf = hef = hf$$
.

Hence $g \in S(e, f)$, so $S_1(e, f) \subseteq S(e, f)$.

(iii) Since ef is regular, it has an inverse a in S: aefa = a and efaef = ef . Let h = fae . Then hh = f(aefa)e = fae = h , so h \in E_S . Clearly he = h = fh . Since ehf = efaef = ef , it follows that h \in S₁(e , f) , so S₁(e , f) $\neq \square$.

To show that $S(e, f) \subseteq S_1(e, f)$, let $g \in S(e, f)$. From he = h = fh and $g \in S(e, f)$, and the definition of S(e, f), we conclude that (eg)(eh) = eh. Using this and ehf = ef, we have

Hence $g \in S_1(e, f)$.

To show that (R_2) holds for the pair (e,f), let $g\in S(e,f)$, and assume E(eg)(gf), i. e., $egf\in E_S$. Since $S(e,f)=S_1(e,f)$, egf=ef, and hence $ef\in E_S$.

Having concluded the proof of (ii) and (iii), we return to the proof of (W_5) . Let e, $f \in E_S$ and $g \in S(e$, f). Assume that E of and E (eg)(gf). But then $ef \in E_S$, and, in particular, ef is regular. By (iii), $g \in S_1(e$, f), and so (eg)(gf) = egf = ef. This concludes the proof of (i), and (iv) is immediate from (iii).

2. Some properties of warps.

Throughout this section, E denotes a warp, and the letters e , f , g , h , i , j denote arbitrary elements of E . Since the axioms for a warp are all left-right self-dual, the dual of any true proposition is also true, and in general will not be stated. The dual of proposition n will be called proposition n^* . Except in corollary 2.8, we use only axioms $(W_1)-(W_4)$.

PROPOSITION 2.1. - ef = f and $\exists fg \Longrightarrow e(fg) = fg$.

<u>Proof.</u> - The hypotheses imply that ef , fg , and (ef)g are all defined. By (W_1) , e(fg) = (ef)g = fg.

We define the relations $\omega^{\mathbf{r}}$ and $\omega^{\mathbf{l}}$ on E as follows

$$e w^r f \iff fe = e$$

(2.1)

$$e \omega^{\ell} f \iff ef = e$$
.

Furthermore, we define $\omega = \omega^r \cap \omega^l$, $R = \omega^r \cap (\omega^r)^{-1}$, and $P = \omega^l \cap (\omega^l)^{-1}$. We let $\omega^r(e) = \{f \in E : f\omega^r e\}$, and similarly for $\omega^l(e)$ and $\omega(e)$.

By proposition 2.1, ω^{Γ} and ω^{ℓ} are quasi-orders on E (reflexive, transitive relations), and thus R and Σ are equivalence relations. It is immediate from (2.1) that

(2.2)
$$e \omega^r f \text{ and } f \omega^l e \Longrightarrow e = f$$
.

In particular, ω is anti-symmetric, hence a partial order on E . When $E=E_S$, $\mathbb R$ and $\mathbb R$ are just Green's relations restricted to E_S , and ω is the usual partial order \leqslant on E_S . Denoting by $\mathbb R_e$ the $\mathbb R$ -class containing e, and defining $\mathbb R_e \leqslant \mathbb R_f \ensuremath{\iff} e \ensuremath{\omega}^r f$, then \leqslant is the usual partial order on $\mathbb R$ -classes.

The sandwich set S(e, f) of e and f is the set of all g in $\omega^{L}(e) \cap \omega^{T}(f)$ such that $eh \omega^{L} eg$ and $hf \omega^{L} gf$ for every h in $\omega^{L}(e) \cap \omega^{T}(f)$. The following is an immediate consequence.

PROPOSITION 2.2. - If
$$g \in S(e, f)$$
, then
$$S(e, f) = \{h \in \omega^{2}(e) \cap \omega^{r}(f) : eh \ \text{Reg} \ \text{and} \ \text{hf } \text{L} \ \text{gf} \} \ .$$

A subset F of a partial groupoid E is called a partial subgroupoid of E if e , f \in F and H ef imply ef \in F . By a subwarp of a warp E , we mean a partial subgroupoid F of E such that if e , f \in F then $\mathbb{S}_F(e , f) \subseteq \mathbb{S}(e , f)$, where $\mathbb{S}_F(e , f)$ denotes the sandwich set of e and f relative to F . Then (\mathbb{W}_5) holds for F , and since $(\mathbb{W}_1)-(\mathbb{W}_4)$ hold for any partial subgroupoid of a warp, it follows that a subwarp of a warp is also a warp.

PROPOSITION 2.3. - For any e in E , $\omega(e)$ is a subwarp of E .

<u>Proof.</u> - If f, $g \in \omega(e)$ and f fg, then e(fg) = fg = (fg)e by proposition 2.1, so $fg \in \omega(e)$. Since

$$\omega^{\ell}(f) \cap \omega^{r}(f) \subseteq \omega^{\ell}(i) \cap \omega^{r}(i) = \omega(i)$$
,

it follows that

$$S_{\omega(e)}(f, g) = S(f, g)$$
.

PROPOSITION 2.4. - e $\omega^r f \Longrightarrow ef \Re e$ and ef ωf .

<u>Proof.</u> - By (2.1), fe = e; and by (\mathbb{W}_3), E ef . Also, E e(fe) . By (\mathbb{W}_1), (ef)e = e(fe) = ee = e . Since e(ef) = ef by proposition 2.1, we conclude that ef \mathbb{R} e . That ef \mathbb{W} f follows from proposition 2.1.

PROPOSITION 2.5. - If e ω^r f and i ge, gf, then, ge ω^r gf. Hence e R f and i ge, gf imply ge R gf.

<u>Proof.</u> - By (2.1), fe = e . By (W_1), (gf)e = g(fe) = ge . By proposition 2.1, (gf)(ge) = (gf)[(gf)e] = (gf)e = ge , that is ge ω^r gf .

PROPOSITION 2.6. - Let f, $g \in \omega^{\mathbf{r}}(e)$. Then \exists fg if, and only if, \exists (fe)(ge), and if they both exist, (fe)(ge) = (fg)e.

Proof. - Assume first that \exists fg . By (\mathbb{W}_1) , fg = f(eg) = (fe)g . By proposition 2.1, e(fg) = fg , so \exists (fg)e by (\mathbb{W}_3) . By (\mathbb{W}_1) , (fg)e = [(fe)g]e = (fe)(ge). Conversely, if \exists (fe)(ge) then \exists fg by (\mathbb{W}_4) .

By an E-square we mean an array $\binom{e}{g}$ of elements of E such that $e \ R \ f$, $g \ R \ h$, $e \ L \ g$, and $f \ L \ h$.

PROPOSITION 2.7. - Let $\binom{e}{g}$ $\binom{h}{h}$ be an E-square. If any one of the statements eh = f, fg = e, he = g, gf = h is true, then they are all true, and the E-square is a rectangular band.

<u>Proof.</u> - Of course, all horizontal and vertical products (ef = f, ge = g, etc.) hold by definition of R and C. By cyclical symmetry, it suffices to show that eh = f imples fg = e. But e(hg) = eg = e and eh = f imply, by (W_1) , that fg = (eh)g = e(hg) = e.

PROPOSITION 2.8. - If $g \in \omega^{\hat{L}}(e) \cap \omega^{r}(f)$ and E = ef, then eg = egf is a rectangular band.

<u>Proof.</u> - \exists eg and \exists gf by (\mathbb{W}_3) , and gf \mathbb{R} g \mathbb{C} eg by proposition 2.1 and its dual. From (ge)f = gf and \exists ef, we have g(ef) = (ge)f = gf. From $g \overset{\wedge}{\omega} e$, \exists gf, ef and proposition (2.5)* we have $gf \overset{\wedge}{\omega} ef$, and so \exists (ef)(gf).

Since f(gf) = gf, (ef)(gf) = e[f(gf)] = e(gf). Since H eg , we may write this egf. From $g \ R \ gf$ and H eg , e(gf) , we have from proposition 2.5 that eg R egf ; dually, $gh \ L$ egf , so $(g \ gf) \ is$ an E-square. By (W_1) ,

$$g(egf) = (ge)(gf) = g(gf) = gf$$
,

and the square is a rectangular band, by proposition 2.7.

COROLLARY 2.9. - A regular warp can be described as a partial groupoid satisfying axioms $(W_1)-(W_4)$, (R_1) and (R_2) .

(R!). If $g \in S(e, f)$, and one of ef and (eg)(gf) exists, so does the other, and they are equal.

<u>Proof.</u> - Clearly (R½) implies (W_5) and (R2). Conversely, (R½) is a consequence of (W_5), (R2), and proposition 2.7.

For each f in E we define $\tau^{\mathbf{r}}(f): \omega^{\mathbf{r}}(f) \to E$ and $\tau^{\mathbf{l}}(f): \omega^{\mathbf{l}}(f) \to E$ by (2.3) $x\tau^{\mathbf{r}}(f) = xf$ for all $x \in \omega^{\mathbf{l}}(f)$, $x\tau^{\mathbf{l}}(f) = fx$ for all $x \in \omega^{\mathbf{l}}(f)$.

By proposition 2.1, $\tau^{\mathbf{r}}(\mathbf{f})[\tau^{\mathbf{r}}(\mathbf{f})]$ is a projection of $\omega^{\mathbf{r}}(\mathbf{f})[\omega^{\mathbf{r}}(\mathbf{f})]$ onto $\omega(\mathbf{f})$.

If e R f[e L f] , we define $\tau^r(e$, f)[$\tau^{\rlap{\mbox{\it L}}}(e$, f)] to be the restriction of $\tau^r(f)[\tau^{\rlap{\mbox{\it L}}}(f)]$ to $\omega(e)$. Thus

(2.4)
$$\begin{cases} x\tau^{\mathbf{r}}(e , f) = xf & \text{for all } x \in \omega(e) \text{, where } e \Re f \text{,} \\ x\tau^{\hat{\mathcal{L}}}(e , f) = fx & \text{for all } x \in \omega(e) \text{, where } e \Re f \text{.} \end{cases}$$

If E and E' are warps, a bijection θ : E \rightarrow E' is called an isomorphism if, for all e , f in E , E ef if, and only if, E $(e\phi)(f\phi)$, in which case $(e\phi)(f\phi)=(ef)\phi$.

PROPOSITION 2.10.

- (i) If e R f and f R g, then $\tau^r(e, f)\tau^r(f, g) = \tau^r(e, g)$,
- (ii) $\tau^{r}(e, e) = \epsilon_{e}$, the identity transformation of $\omega(e)$,
- (iii) $\tau^{\mathbf{r}}(e,f)$ is an isomorphism of $\omega(e)$ onto $\omega(f)$, with inverse $\tau^{\mathbf{r}}(f,e)$.
- (i) For every x in $\omega(e)$, (xf)g = x(fg) = xg, by (W_1) ,
- (ii) Evident,
- (iii) That $\tau^{\mathbf{r}}(e,f)$ is a bijection of $\omega(e)$ onto $\omega(f)$, with inverse $\tau^{\mathbf{r}}(f,e)$, is immediate from (i) and (ii). Let $x,y\in\omega(e)$. $e^{\mathbf{r}}f$ implies $x,y\in\omega^{\mathbf{r}}(f)$. By proposition 2.6, $\exists xy$ if, and only if, $\exists (xf)(yf)$, in which case they are equal.

We call an E-square $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ τ -commutative, if the diagram

(2.5)
$$\begin{array}{c}
\omega(e) & \xrightarrow{T^{\mathbf{r}}(e, f)} & \omega(f) \\
\downarrow^{\tau^{\mathbf{l}}}(e, g) & \downarrow^{\tau^{\mathbf{l}}}(f, h) \\
\omega(g) & \xrightarrow{T^{\mathbf{r}}(g, h)} & \omega(h)
\end{array}$$

commutes. This notion is easily seen to be independent of which corner we begin in. As stated, it is equivalent to requiring that

(2.6)
$$h(xf) = (gx)h$$
, for all $x \in \omega(e)$.

PROPOSITION 2.11. - If an E-square is a rectangular band, it is T-commutative. Proof. - Assume $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$ is a rectangular band, and let $\mathbf{x} \in \omega(e)$. Then $\mathbf{x} \in \omega(e)$ and $\mathbf{x} \in \omega(e)$ by proposition 2.4. Likewise $\mathbf{x} \in \omega(e)$ and $\mathbf{x} \in \omega(e)$. From

f(xf) = xf we have

$$h(xf) = (gf)(xf) = g[f(xf)] = g(xf) = (gx)f = (gx)(eh) = [(gx)e]h = (gx)h$$
.

3. The biordered set determined by a regular warp.

We begin with Nambooripad's definition [5] of a biordered set, making, however, slight changes in notation.

Let E be a set, and let $\omega^{\mathbf{r}}$ and $\omega^{\mathbf{l}}$ be quasi-orders on E. Define (3.1) $\mathbb{R} = \omega^{\mathbf{r}} \cap (\omega^{\mathbf{r}})^{-1}$, $\mathbb{E} = \omega^{\mathbf{l}} \cap (\omega^{\mathbf{l}})^{-1}$, $\omega = \omega^{\mathbf{r}} \cap \omega^{\mathbf{l}}$.

For each e on E, define $\omega^{\mathbf{r}}(e) = \{f \in E : f \omega^{\mathbf{r}} e\}$, and similarly for $\omega^{\mathbf{r}}$ and ω . For each e in E, let $\tau^{\mathbf{r}}(e)$ and $\tau^{\mathbf{r}}(e)$ be partial transformations of E, and let $\tau = \{\tau^{\mathbf{r}}(e) : e \in E\}$ $\{\tau^{\mathbf{r}}(e) : e \in E\}$. The system $(E, \omega^{\mathbf{r}}, \omega^{\mathbf{r}}, \tau)$ is called a biordered set, if axioms (B_1) - (B_5) below are satisfied, together with their duals. By the dual of a statement P involving $(E, \omega^{\mathbf{r}}, \omega^{\mathbf{r}}, \tau)$ we mean the statement P* obtained from P by interchanging $\omega^{\mathbf{r}}$ and $\omega^{\mathbf{r}}$, and $\tau^{\mathbf{r}}(e)$ and $\tau^{\mathbf{r}}(e)$, for each e in E.

 (B_1) For all e, f in E, e ω^r f and f ω^ℓ e \Longrightarrow e = f.

(B₂) For all e in E , $\tau^{\bf r}(e)$ is an idempotent mapping (= projection) of $\omega^{\bf r}(e)$ onto $\omega(e)$, such that

(a) f ,
$$g \in \tau^{r}(e)$$
 and f $w' g \Longrightarrow f\tau^{r}(e) w' g\tau^{r}(e)$,

(b)
$$f \in \tau^{\mathbf{r}}(e) \Longrightarrow f\tau^{\mathbf{r}}(e) \Re f$$
.

Before stating the remaining axioms, we define the <u>basic partial binary operation on</u> E as follows. For e , f in E , the product ef is defined if, and only if, e and f are related by ω^r or ω^r , and then

(3.2)
$$ef = \begin{cases} e^{\tau^{\mathbf{r}}(f)} & \text{if } e \text{ } \omega^{\mathbf{r}} \text{ f,} \\ e & \text{if } e \text{ } \omega^{\mathcal{L}} \text{ f,} \\ f & \text{if } f \text{ } \omega^{\mathbf{r}} \text{ e,} \\ f^{\mathcal{L}}(e) & \text{if } f \text{ } \omega^{\mathcal{L}} \text{ e.} \end{cases}$$

We proceed to show that this definition is single-valued. From (B_2) we see that $\tau^{\bf r}(e)$ induces the identity transformation on its image $\omega(e)$, so $f\tau^{\bf r}(e)=f$ for all f in $\omega(e)$. In particular, $e\tau^{\bf r}(e)=e$; and dually, $e\tau^{\bf r}(e)=e$. Hence all four parts of (1.2) agree that ee=e.

Assume now that $e \neq f$, and that the pair (e, f) belongs to two or more of the relations ω^r , ω^ℓ , $(\omega^r)^{-1}$, $(\omega^\ell)^{-1}$. By (B_1) and the assumption $e \neq f$, the conjunctions $\omega^r \cap (\omega^\ell)^{-1}$ and $\omega^\ell \cap (\omega^r)^{-1}$ are impossible. Hence exactly one of the following must hold: $e \omega f$, $f \omega e$, $e \Re f$, $e \Re f$.

As remarked above, e ω f implies $\operatorname{et}^{\mathbf{r}}(f) = e$, and the first two cases in (3.2) give the same value, namely ef = e . Dually, f ω e gives fe = f . Assume e R f, and let $g = \operatorname{et}^{\mathbf{r}}(f)$. By (B_2) , $g \in \omega(f)$ and also g R e. From

Assume e R f, and let $g = e^{r}(f)$. By (B_2) , $g \in \omega(f)$ and also $g \in \mathbb{R}$ e. From $g \in \mathbb{R}$ and $g \in \mathbb{R}$ f, so g = f by

 (B_1) . Hence the first and third cases of (3.2) give the consistent result ef = f . Dually, for e f f, we find that the second and fourth cases of (1.2) give ef = e.

It is readily seen that the quasi-orders ω^r and ω^l , and the partial transformations $\tau^r(e)$ and $\tau^l(e)$ can be expressed in terms of the basic product (3.2) as follows:

(3.3)
$$e \omega^{r} f \iff fe = e,$$

In stating the remaining axioms, basic products will be used instead of the T-mappings, but the relations $\omega^{\mathbf{r}}$ and $\omega^{\hat{\lambda}}$ will be retained. Moreover, we shall repeat (B_2) , breaking it into its substatements (B_{21}) , (B_{22}) , (B_{23}) , and similarly for the other axioms. The letters e , f , g denote arbitrary elements of E .

The sandwich set S(e , f) of a pair od elements e , f of E is defined to be the set of all g in $\omega'(e)\cap\omega^r(f)$ such that eh ω^r eg and hf ω' gf for all h in $\omega'(e)\cap\omega^r(f)$.

$$(B_1)$$
 e w f and f w e \Longrightarrow e = f.

$$(B_{21})$$
 fe $\in \omega(e)$ for all f in $\omega^r(e)$, and ge = g for all g in $\omega(e)$.

$$(B_{22})$$
 f, $g \in \omega^{r}(e)$ and $f \omega^{l} g \Longrightarrow fe \omega^{l} ge$.

$$(B_{23})$$
 $f \in \omega^r(e) \implies fe \Re f$.

$$(B_{31})$$
 g ω^r f ω^r e \Longrightarrow gf = (ge)f.

$$(B_{32})$$
 f, $g \in \omega^{r}(e)$ and $f \omega^{2} g \Longrightarrow (ge)(fe) = (gf)e$.

$$(B_{41})$$
 S(e, f) $\neq \Box$ (the empty set), for all e, f in E.

$$(B_{A2})$$
 e, $f \in \omega^{\mathbf{r}}(g) \Longrightarrow S(e, f)g = S(eg, fg)$.

We omit the final axiom (B_5) since NAMBOORIPAD has subsequently found that it is a consequence of the other axioms.

THEOREM 3.1. - Let E be a regular warp. Define w^r and w^t by (2.1), and $\tau^r(f)$ and $\tau^t(f)$, for each f in E, by (2.3). Then (E, w^r , w^t , τ) is a biordered set.

<u>Proof</u> (with one omission). - (B₁) is immediate from (2.1). (B₂₁), (B₂₂), and (B₂₃) follow from propositions 2.1, (2.5)*, and 2.4, respectively. (B₃₁) follows from axioms (W₁) and (W₃). For g ω^r f ω^r e implies ef = f and eg = g, so H ge and gf = g(ef) = (ge)f . (B₃₂) follows from proposition 2.6. (B₄₁) is the same as (R₁). we omit the rather long proof of (B₄₂), see ([3] proposition 2.10).

We call (E , ω^r , ω^t , τ) the biordered set determined by the regular warp E

4. Construction of all regular warps determining a given biordered set.

Most of the important concepts introduced for warps in § 2 are really biordered set concepts: the quasi-orders ω^r and ω^t , the partial translations $\tau^r(f)$ and $\tau^t(f)$, and the sandwich sets S(e,f). The same holds for the restricted translations $\tau^r(e,f)$ and $\tau^t(e,f)$, both denoted by $\varepsilon(e,f)$ in [6], which play an important role in Nambooripad's construction. Proposition 2.10 and its dual hold for them; the proof of part (i) is immediate from axiom (B_{31}) . Consequently, the notion of a τ -commutative E-square is also biordered set-theoretical.

We saw in § 3 that every regular warp determines a biordered set. To every biordered set, there corresponds at least one regular warp (as we shall see), but in general more than one. For example, consider a completely simple semigroup S. The biordered set E_S is simply a rectangular array, with $\omega^r = \Re$ and $\omega^\ell = \pounds$, and the basic products are all the horizontal and vertical products. Every E_S -square is r-commutative. Regarding E_S as a regular warp, the number of further products which exist can vary between the two extremes:

1º all of them, when, for example, S is a rectangular band,

2° none of them, when, for example, S = M(G; I, Λ ; X), where X = $(\mathbf{x}_{\lambda \mathbf{i}})$, and G is the free group on the symbols $\mathbf{x}_{\lambda \mathbf{i}}$ ($\Lambda \in \Lambda$, $\mathbf{i} \in I$).

In the present section, we begin with a biordered set E, and give a method for describing all possible (regular) warps $E(\cdot)$ which determine E. Clearly the partial binary operation (\cdot) must include the basic products (3.2).

By a <u>row-singular</u> E-square we mean one of the form $\begin{pmatrix} e & f \\ ge & gf \end{pmatrix}$, where $e \ R \ f$ and e, $f \in \omega''(g)$. Column-singular is defined dually, and singular means either row- or column-singular. An E-square $\begin{pmatrix} e & f \\ e & f \end{pmatrix}$ is called <u>row-degenerate</u>, $\begin{pmatrix} e & e \\ f & f \end{pmatrix}$ is <u>column-degenerate</u>, and degenerate means either kind.

A set α of τ -commutative E-square is called <u>effective</u> if it has the following three properties.

$$(Q_1) \begin{cases} \text{If } \begin{pmatrix} e & f \\ g & h \end{pmatrix} \in \Omega \quad \text{and} \quad \begin{pmatrix} g & h \\ \mathbf{i} & \mathbf{j} \end{pmatrix} \in \Omega \text{ , then } \begin{pmatrix} e & f \\ \mathbf{i} & \mathbf{j} \end{pmatrix} \in \Omega \text{ .} \\ \\ \text{If } \begin{pmatrix} e & g \\ f & h \end{pmatrix} \in \Omega \quad \text{and} \quad \begin{pmatrix} g & \mathbf{i} \\ h & \mathbf{j} \end{pmatrix} \in \Omega \text{ , then } \begin{pmatrix} e & \mathbf{i} \\ f & \mathbf{j} \end{pmatrix} \in \Omega \text{ .} \end{cases}$$

(Q₂) If $\binom{e}{g}$ $\binom{f}{h} \in \alpha$ and $x \in \omega(e)$, then $\binom{x}{gx}$ $\binom{xf}{x} \in \alpha$, where $\overline{x} = h(xf) = (gx)h$. (Note (2.6))

 (Q_3) α contains all singular and all degenerate E-squares.

The partial binary operation (.) on a biordered set E corresponding to an effective set α of τ -commutative E-squares is defined as follows. Let e, $f \in E$. If, for some g in S(e, f) and some x in E, $\binom{g}{eg}\binom{gf}{x} \in \alpha$, then we define e. f = x. The uniqueness of e. f (if it exists) follows from proposition 2.2.

THEOREM 4.1. - Let E be a biordered set, and let Q be an effective set of

T-commutative E-squares. Under the partial binary operation (.) corresponding to α , E(.) becomes a regular warp determining the biordered set E, and C consists of those E-squares which are 2×2 rectangular bands in E(.).

Conversely, if E(.) is any regualr warp determining E, then the set α of all E-squares which are 2 × 2 rectangular bands in E(.) is an effective set, and (.) coincides with the partial binary operation (.) in E corresponding to α .

<u>Proof of converse.</u> - Let $E(\cdot)$ be a regular warp determining E, and write ab for a \cdot b . Let α be the set of all E-squares which are 2×2 rectangular bands.

To show (Q1), let ($_{g}^{e}$ $_{h}^{f}$) \in α and ($_{i}^{g}$ $_{j}^{h}$) \in α .

Then, by (W_1) , ej = e(ih) = (ei)h = eh = f, and $(e \ f) \in C$ by proposition 2.7. The second part of (Q_1) is proved dually.

To show (Q_2) , let $(g \ h) \in C$ and $x \in \omega(e)$. Then $x \in \omega(g) \cap \omega(f)$. By propo-

sition 2.8, $\begin{pmatrix} x & xf \\ gx & gxf \end{pmatrix} \in \mathcal{C}$. From (gx)e = gx, and eh = f, we have (gx)f = (gx)(ex) = [(gx)e]h = (gx)h = x,

so $\begin{pmatrix} x & xf \\ gx & \overline{x} \end{pmatrix} \in \mathcal{A}$.

To show (Q), let e R f and e , f $\in \omega^2(g)$. Then e(gf) = (eg)f = ef = f , so $(e f) \in \alpha$. Dually for column-singular E-squares. Trivially, α contains all degenerate E-squares.

Let e , f \in E , and let $g \in S(e$, f) . If R ef , then, by proposition 2.8 and (R_2^i) in corollary 2.9, $(g \ eg \ ef) \in \Omega$, and hence ef = e . f . Conversely, if E e . f , then $(g \ eg \ e \ f)$ for some $g \in (e \ f)$, by definition of (.) . Then e . f = (eg)(gf) = ef , by (R_2^i) .

For a proof of the direct part of the theorem, see ([3] p. 17-26).

5. The universal regular IG-semigroup on a regular warp.

By an IG-semigroup, we mean a semigroup which is generated by its idempotents.

Let E be a regular warp. Let \mathfrak{F}_E be the free semigroup on the set E . If a , b $\in \mathfrak{F}_E$, write a \sim b , if we can pass from a to b by a finite sequence of elementary transitions of the following two kinds.

- I. Replace two adjacent terms e , f in a word by the single term ef , if it exists, or the reverse.
- II. Insert an element of S(e, f) between two adjacent terms e, f in a word, or the reverse.

Then \sim is a congruence on \mathfrak{F}_E , and we define $B(E)=\mathfrak{F}_E/\sim$. It can be shown that the natural mapping of E into B(E) is injective, and we shall regard E as

a subset of B(E) .

If E and E' are biordered sets, a bijection θ : E \longrightarrow E' is called an isomorphism if it preserves ω^r , ω^l , and τ (in the obvious sense) in both directions. In terms of basic products, this is equivalent to, for e , f in E , ef exists if and only if $(e\theta)(f\theta)$ exists, and then $(e\theta)(f\theta) = (ef)\theta$. If E and E' are warps, a mapping θ : E \longrightarrow E' is called a homomorphism if the existence of ef in E implies that of $(e\theta)(f\theta)$ in E', and then $(e\theta)(f\theta) = (ef)\theta$.

THEOREM 5.1.

- 1º B(E) is a regular IG-semigroup with $E_{B(E)} = E$ as sets, and product in $E_{B(E)}$ extends that in E.
- 2° If S is any regular semigroup, and θ is a bijective homomorphism and biorder isomorphism of E onto E_S, then there is a unique semigroup homomorphism $\widetilde{\theta}: B(E) \longrightarrow S$ extending θ .
- 3° $E_{B(E)}$ is the smallest partial regular band on the set E extending the partial binary operation on the warp E.

We omit the proof, but remark that 3° is immediate from 2°, taking θ to be the inclusion of E in some regular semigroup S, identifying E with E_S . If e, f, g are elements of E such that ef=g in B(E), then

$$ef = (e\tilde{\theta})(f\tilde{\theta}) = (ef)\tilde{\theta} = g\tilde{\theta} = g$$
 in S,

so that ef = g in E_S . By theorem 5.1, we have a method for extending the partial product in a regular warp E in a minimal fashion to make it a partial regular band (namely, calculate $E_{B(E)}$).

An alternative construction of B(E) has been given by NAMBOORIPAD in a paper not yet published.

6. Fundamental regular warp.

A regular semigroup S is called fundamental if the identity is the only congruence on S contained in Green's relation $\mathcal H$. A regular warp E is called <u>fundamental</u> if the converse of proposition 2.11 holds: <u>every T-commutative E-square is a</u> rectangular band. It can be shown that a partial groupoid E is isomorphic with the warp E_S of some fundamental regular semigroup S if, and only if, it is a fundamental regular warp ([2] theorem 6.7).

If S is a regular semigroup, ρ a congruence on S contained in $\mathcal R$, and $\overline{S}=S/\rho \text{ , then the mapping } e \longmapsto e\rho \text{ is a biorder isomorphism of the biordered set}$ $E_S \text{ onto the biordered set } E_{\overline{S}} \text{ . It is also a bijective homomorphism of the warp } E_S \text{ onto the warp } E_{\overline{S}} \text{ . But it need not be an isomorphism. It may happen that } e,f\in E_S \text{ , ef } \not\in E_S \text{ , but } (e\rho)(f\rho)\in E_{\overline{S}} \text{ . For example, let S be completely simple, and take}$ $\rho=\mathcal R \text{ .}$

Let E be a biordered set, and let \$\mathbb{T}\$ be the set of all T-commutative E-squares (\delta 4). It is easy to show that \$\mathbb{T}\$ is effective. (Q1) follows from transitivity of \$\mathbb{R}\$ and \$\mathbb{L}\$, and a standard commutative diagram argument. For (Q2), the T-commutativity of (\frac{x}{gx} \frac{xf}{x}) follows from the observation that if \$x\$ we \$\mathbb{R}\$ f, then \$\tau^r(x , xf)\$ is the restriction of \$\tau^r(e , f)\$ to \$\omega(x)\$, and dually. As for (Q3), the T-commutativity of (\frac{e}{ge} \frac{f}{gf})\$, where e \$\mathbb{R}\$ f and \$e\$, \$\mathbb{E} \in \omega^*(g)\$, is equivalent to

$$(gf)(xf) = ((ge)x)(gf)$$
 for all $x \in \omega(e)$.

By (W_1) , both sides are found to reduce to (gx)f.

Let (*) denote the binary operation on E corresponding to § . From proposition 2.11 or theorem 4.1, we see that (*) is an extension of every warp operation on E that corresponds to the given biorder structure on E; that is, E(*) is the greatest (regular) warp determining E . Of all the warps determining E , E(*) is the only one that is fundamental. Since no enlargement of (*) can take place on passing from E(*) to $E_{B(E)}$ (§ 5), it follows that E(*) is a regular partial band.

7. A regular warp which is not a regular partial band.

Let $E=\{e_{{\bf i}\lambda}: {\bf i}\in I$, $\lambda\in\Lambda\}$ be an $I\times\Lambda$ rectangular band, with products defined by

$$e_{j\lambda} \tau^{2}(e_{j\lambda}) = e_{j\lambda}$$
,
 $s(e_{j\lambda}, e_{j\mu}) = \{e_{j\lambda}\}$.

The set E itself is an I × Λ E-array. The basic products are either horizontal $(e_{i\lambda}\ e_{j\mu}=e_{i\mu})$ or vertical $(e_{i\lambda}\ e_{j\lambda}=e_{i\lambda})$. Endowed with the basic partial binary operation, E is a regular warp which is isomorphic with the warp of idempotents E of the Rees matrix semigroup $S=\mathbb{R}(G;I,\Lambda;P)$, where G is the free group on $X=\{x_{\lambda i}\ ;\ i\in I,\lambda\in\Lambda\}$, and $P=(P_{\lambda i})$ is defined by $P_{\lambda i}=x_{\lambda i}$.

Every E-square is T-commutative, and there are no non-degenerate singular E-squares. A set α of E-squares is effective if, and only if, it contains all degenerate E-squares and satisfies (Q_1) . (Q_2) is trivially satisfied.

Now let, $I = \Lambda = \{1, 2, 3, 4\}$. Let $\mathfrak A$ consist of all degenerate E-squares and the following :

$$\begin{pmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{pmatrix}$$
, $\begin{pmatrix} e_{22} & e_{23} \\ e_{32} & e_{33} \end{pmatrix}$, $\begin{pmatrix} e_{33} & e_{34} \\ e_{43} & e_{44} \end{pmatrix}$, $\begin{pmatrix} e_{12} & e_{14} \\ e_{32} & e_{34} \end{pmatrix}$, $\begin{pmatrix} e_{21} & e_{23} \\ e_{41} & e_{43} \end{pmatrix}$.

No two of them have a row or a column in common, so (Q_1) is vacuously satisfied, and so α is an effective set of (τ -commutative) E-squares.

Let (*) be the partial binary operation on E corresponding to α , and let $B(E)(\bullet)$ be the universal regular IG-semigroup of E(*). By proposition 2.8, each member of α is a 2 × 2 rectangular band in E(*). Calculating in B(E), we have

$$e_{14} \cdot e_{41} = e_{14} \cdot e_{34} \cdot e_{43} \cdot e_{41}$$
 since $e_{14} \cdot e_{34} \cdot e_{43} \cdot e_{41}$,

 $= e_{14} \cdot e_{33} \cdot e_{41}$ since $e_{34} \cdot e_{43} = e_{33}$,

 $= e_{14} \cdot e_{32} \cdot e_{23} \cdot e_{41}$ since $e_{32} \cdot e_{23} = e_{33}$,

 $= e_{12} \cdot e_{21}$ since $e_{14} \cdot e_{32} = e_{12}$

and $e_{23} \cdot e_{41} = e_{21}$,

 $= e_{11}$ since $e_{12} \cdot e_{21} = e_{11}$.

In the following diagram one sees the five non-degenerate members of α , and one sees also the missing square $\begin{pmatrix} e_{11} & e_{14} \\ e_{41} & e_{44} \end{pmatrix}$

REFERENCES

- [1] BAIRD (C. R.). On semigroups and uniform partial bands, Semigroup Forum, t. 4, 1972, p. 185-188.
- [2] CLIFFORD (A. H.). The fundamental representation of a regular semigroup, Semigroup Forum, t. 10, 1975, p. 84-92.
- [3] CLIFFORD (A. H.). The partial groupoid of idempotents of a regular semigroup, Semigroup Forum, t. 10, 1975, p. 262-268.
- [4] MUNN (W. D.). Fundamental inverse semigroups, Quart. J. Math., Oxford 2nd Series, t. 21, 1970, p. 157-170.
- [5] NAMBOORIPAD (K. S. S.). Structure of regular semigroups, Dissertation, University of Kerata, Trivandrum (India), 1973.
- [6] NAMBOORIPAD (K. S. S.). Structure of regular semigroups, I: Fundamental regular semigroups, Semigroup Forum, t. 9, 1975, p. 354-363.

Alfred H. CLTFFORD Dept of Mathematics Tulane University NEW ORLEANS, La 70118 (Etats Unis)