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THE SYSTEM OF IDEMPOTENTS OF A REGULAR SEMIGROUP
by Alfred H. CLIFFORD

K. 3. S. NALBOORIPAD [5], [6] has characterized the system Eq

idempotents of a regular semigroup S as a "biordered set". His main purpose in

of idempotents of

doing this was to generalize to regular semigroups W. D. Munn's fundamental repre-
sentation of inverse semigroups [4]. However, we shall not be concerned with this

aspect of the theory in the present account.

We may also regard E, as a partial groupoid, with the product ef (e , f € ES)

S
undefined if ef & E% . Such a partial groupoid is called a "regular partial band"
by G. BAIRD [ 1], who proposed the interesting problem of characterizing a regular
partial band axiomatically. The author [2], [3] developed the matter further, and

the present talk is an exposition of this work.

In § 1, a (regular) warp is defined as a partial groupoid satisfying certain axioms
and it is shown that ES is a regular warp fo. any regular semigroup S . Further
needed properties of warps are given in § 2. Nambooripad's axioms for a biordered
set are stated in § 3, and it is shown that every regular warp determines a biorde-
red set. In & 4 a method is given for comstructing all regular warps determining a
given biordered set. In § 5 a method is given for completing a regular warp to a
regular partial band. § 6 deals with fundamental regular warps. In the final § 7, an

example is given of a regular warp which i3 not a regular partial band.

Let S be a regular semigroup and S = S/u , where p 1is the greatest idempo-

tent-separating congruence on 3 . Then, ES and Eg are isomorphic as biordered
sets, but not in general as partial groupoids. Thus, the partial groupoid approach
gives a finer classification of regular semigroups than does the biordered set
approach. In spite of § 7, the method of § 4 shows that the notion of regular warp
is a quite natural one, and the results of § 3 and 5 show that it is an adequate

approximation to that of regular partiel band.

1. Axioms for a warp ;the warp of a semigroup.

By a warp, we mean a partial groupoid E satisfying axioms (Wl)—(WS) below. If
e, T €E, then" 1 ef " means that the product ef of e and f is defined in
E . Except when emphasis is desired, a statement like " def and ef = g " will

be abbreviated to "ef =g " .

(wl) Let e, f, g be elements of E such that 3 ef and 3 fg . If either
(ef)g or e(fg) is defined, then so is the other, and they are equal. (We then

write c¢fg for thcir common value in E ).
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(Wz) ee=e forall e in E .

(WB) If ef=e or ef =f , then 1 fe.
(w4) If either
(1) ef=f, eg=g, and 1 (fe)(ge), or
(ii) fe=f, ge =g, and 3 (ef)(eq),
then, 1 fg .

Definition 1.1 — For any pair of elements e , £ of E , we define the sandwich

set Sle , £) of e and f +to be the set of all g in E such that
(1) ge =g=fg, and
(ii) he = h = fh(h € E) = (eg)(eh) = eh and (nf)(gf) = nf .

(WS) Let g€ S(e, f) . If ef and (eg)(gf) are both defined, then they are
equal.

A warp B is called regular, if it satisfies (Rl) and (RZ)' The empty set is
denoted by U .

(Rl) For every pair of elements e , f of E, sle, £) #0.

(R2) If ges(e, f) and 3 (eg)(gf) , then 1 ef .

If a and b are elements of a semigroup, we write a L b, if a and b are
inverse to each other, that is, abs = a and bab =1b . If S is a semigroup, ES
denotes the set of idempotents of S . ES becomes a partial groupoid, when we de-
fine the product of two elements e and f of BE to be ef , if ef € ES , and

otherwise undefined.

THEOREM l.l. — Let S be a semigroup such that ES #0 .

(i) Eq 1is a warp.
(i1) For e , f in By , define
Sl(e , f) = {g €Ey : ge=g=7~fg and egf = ef} ,
82(e , £)=1{g € Eq: ge=¢g=1g and g L ef} .
Then Sl(e , f)=82(e , f) s 8(e, f) .

(1ii) If e, f € ES , and ef is a regular element of S , then
e , f) = Sl(e , £f) #0, and (R2) holds the pair (e , f) .

(iv) If S 1is regular, then ES is a regular warp.

Proof. - (i) Axioms (Wl) and (Wz) are immediate. As for (WB)’ if ef = e then
fefe = fee = fe , so 3 fe ; similarly if ef =T . To show that E, satisfies

S
(W4), assume ef = f , eg =g , and 3 (fe)(ge) . Then

fge = fege = (fege)(fege) = fgfge .
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Since geg = g8 = g ,

fg fgeg = fgfgeg = fgfg &

Il

Il

Thus, 13 fg . The proof if fe =f , ge = g, and 1 (ef)(eg) , is dual. Ve defer

the proof of (WS) until we have proved (ii) and (iii).
(ii) Let e, £, g Dbe elements of E such that ge = g = fg . Then
glef)g = (ge)(fg) = gg =g,

(ef)g(ef)

e(fge)f = egf .

Hence g L ef if, and only if, egf = ef , showing that gl(e , T) = sz(e , £) .
Let g € Sl(e , £) , and let h be an element of Eg satisfying he = h = fh .
Then

(eg)(eh) = egh

(nf) (gf)

egfh = efh = eh ,

hgf = hegf = hef

i
=
=

Hence g € S(e , ) , =0 gl(e , f) e sle, f) .

(iii) Since ef is regular, it has an inverse a in S : aefa = a and
efaef = ef . Let h = fae . Then hh = f(aefa)e = fae = h , so he Ey . Clearly
he = h = fh . Since ehf = efaef = ef , it follows that h € gl(e , T) , s0
Sl(e , £) #0 .

To show that $(e , f) < Sl(e , f) , let ge e, f) . From. he = h = fh and

g e sle , £f) , and the definition of 8(e , f) , we conclude that (eg)(eh) = eh .

Using this and ehf = ef , we have

egf = egef = ensehf = ef .

Hence g € Sl(e , £) .

To show that <R2) nolds for the pair (e , £f) , let g e S(e , £) , and assume
1 (eg)(gf) , i. e., egfe Ey . Since s(e , f) = gl(e , ), egf = ef , and hence
ef € ES .

Having concluded the proof of (ii) and (iii), we return to the proof of (WS)' Let
e, fe€E and g€ $(e , f) . Assume that 3 ef and 3 (eg)(gf) . But then
ef € B, , and, in particular, ef is regular. By (iii), g € Si(e , £) , and so
(eg)(gf) = egf = ef . This concludes the proof of (i), and (iv) is immediate from

(iii).

2. Some Erogerties of warps.

Throughout this section, E denotes a warp, and the letters e , f, g, h,1i,3]
denote arbitrary elements of E . 3ince the axioms for a warp are all left-right
self-dual, the dual of any true proposition is also true, and in general will not be
stated. The dual of proposition n will be called proposition n* . Except in co-

rollary 2.8, we use only axioms (wl)-(w4).
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PROPOSITION 2.1. - ef = £ and 1 fg == e(fg) = g .

Proof. - The hypotheses imply that ef , fz , and (ef)g are all defined. By
(W), e(fe) = (ef)e = g .

We define the relations wr and - w’q' on E as follows

e wrfg_-——;fe

il
o

7

(2.1)
e wﬂ, féee ef=c¢e .

r y

. r ry=-1
Furthermore, we define w=w n« , R=w n ()

y and €= & n (wﬂ')—l .
We let «(e) = {f €BE : fu e} , and similarly for wﬂ'(e) and w(e) .

By proposition 2.1, o and w'e' are quasi-orders on E (reflexive, transitive
relations), and thus ® and £ are equivalence relations. It is immediate from
(2.1) that

(2.2) e w f and fw'q'ez.—_—:':e:f.

In particular, w is anti--symmetric, hence a partial order on E . When BE = ES ’
R and £ are just Green's relations restricted to ES , and w 1is the usual par-
tial order < on ES . Denoting by (Re the R-class containing e , and defining

~

Re < Rf b= @ o f ; then < is the usuval partial order on R-classes.

The sandwich set 8(e 5 f) of e and f is the set of all g in w'e(e) n wr(f)
such that eh uur eg and hf w’z gf for every h in wz (e) n o (f) « The follow-
ing is an immediate consequence.

PROPOSITION 2.2. - If ge s(e , f) , then

gle , f) = {ne wﬁ'(e) No(f) : eh Reg and hf £ gf} .

A subset F of a partial groupoid E 1is called a partial subgroupoid of E if

e, f€F and def imply ef € F . By a subwarp of a warp E , we mean a partial
subgroupoid F of E such that if e , f € F then 5F(e , £) € s8(e, £) , where
SF(e ’ f) denotes the sandwich set of e and f relative to F . Then (WS) holds
for F , and since (Wl)-(WAf) hold for any partial subgroupoid of a warp, it follows

that a subwsrp of a warp is also a warp.

PROPOSITION 2.3. - For any e in E, w(e) is a subwarp of E .

Proof. - If £, g€ wle) and 3 fg, then e(fg) = fg = (fg)e by proposition

2.1, so fg e w(e) . Since
F£) n Fle) € F(1) n FE) = i),
it follows that

Sw(e)(f , g) =8(f, &) .

ewrfz—%efﬁe and ef wf ,

—

PROPOSITION 2.4.
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Proof. - By (2.1), fe = e ; and by (w3), 1 ef . Also, 3 e(fe) . By (wl),
(ef)e = e(fe) = ee = e . Since e(ef) = ef by proposition 2.1, we conclude that

ef Re . That ef wf follows from proposition 2.1.

PROPOSITION 2.5. - If e « f and 4 ge , gf , then, ge W gf . Hence e R f
and 1 ge , gf imply ge R gf .

Proof. - By (2.1), fe =e . By (Wl), (gf)e = g(fe) = ge . By proposition 2.1,

(gf)(ge) = (ef)[ (gf)e] = (gf)e = ge , that is ge o gf .

PROPOSITION 2.6. — Let f , g€ o' (e) . Then 4 fg if, and only if, & (fe)(ge) ,
and if they both exist, (fe)(ge) = (fg)e .

Proof. - Assume first that 13 fg . By (wl), fg = f(eg) = (fe)g . By proposition
2.1, ec(fg) =fg, so 1 (fg)e by (WB). By (Wl), (rg)e = [(fe)gle = (fe)(ge) .

Conversely, if 1 (fe)(ge) then i fg by (W4).
By an E-square we mean an array (. f)
y square ' v (G ow
gRh,ef g, and £8£ h.

of elements of E such that e ® f ,

PROPOSITION 2.7. - Let (Z i) be an E-square. If any one of the statements

eh=f, fge=e , he =g, gf =h 1is true, then they are all true, and the

E-square is a rectangular band.

Proof. - 0f course, all horizontal and vertical products ( ef=f, ge=¢, etc)
hold by definition of R and £ . By cyclical symmetry, it suffices to show that
eh = f imples fg = e . But e(hg) = eg=e and eh = f imply, by (Wl), that
fg = (eh)g = e(hg) = e .

i

f
g & )

Id
PROPOSITION 2.8. - If g€ «'(e) n w(f) and 3 ef , then (eg oat

is a rec-

tangular band.

Proof. = B3 eg and 1 gf by (WB), and gf R g £ eg by proposition 2.1 and its
/)
dual. From (ge)f = ef and & ef , we have g(ef) = (ge)f = gf . From g @ e,
igf, ef and proposition(Z.SYewe have gf o ef , and so 4 (ef)(gf) .

since f(gf) = gf , (ef)(ef) = e[£(gf)] = e(gf) . Since 1 eg , we may write this
egf . From g® gf and 1 eg, e(gf) , we have from proposition 2.5 that eg R egf j;

dually, gh® egf , so (gg ng

gleaf) = (ge)(ef) = glef) = ef ,

) is an E—square. By (Wl),

and the square is a rectangular band, by proposition 2.7.

COROLLARY 2.9. - A regular warp can be described as a partial groupoid satisfying
. - 1
axioms (Wl) (W4), (Rl) and (RZ)'

(Ré).if cesle, £f), and one of ef and (eg)(sf) exists, so does the other,

and they are equal.
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Proof. - Clearly (Ré) implies (WS) and (Rz). Conversely, (Ré) is a consequence of
(WS)’ (RZ)’ and proposition 2.7.

Tor each f in E we define (f) : uF(f) - E and Tz(f) : u&(f) -3 E by
(2.3) x7 (f) = xf for all xe€ W (), xTz(f) = fx for all =x € u&(f) .
By proposition 2.1, Tr(f)[T&(f>] is a projection of @r(f)[uﬁ(f)] onto (f) .

If e R fle &8 f] , we define ™ (e , f)[Tﬁ(e , )] to be the restriction of
)
()™ (£)] to wle) « Thus

x7* (e , = xf for all x € wle) , where e R f ,

(2.4) xTﬁ(e f)

fx for all x € w(e) , where e £ f .

Il

If B and E' are warps, a bijection 6 : E = E!' is called an isomorphism if,
for all e, f in E, Bdef if, and only if, 1 (ew)(fw) , in vhich case
(eq)(£g) = (ef)o .

PROPOSITION 2.10.

(1) If eRf and fReg, then T (e, (e, g) = T(e, &),

(ii) (e , e) = e, » the jdentity transformation of w(e) ,

(iii) Tr(e , f) is an isomorphism of w(e) onto «(f) , with inverse Tr(f , €)e

Proof.

(1) For every x in wle) , (xf)g= x(fg) = xg , by (Wl),

(ii) Evident,

(iii) That (e , £) is a bijection of w(e) onto o(f) , with inverse
(£ , e) , is immediate from (i) and (ii). Let x , y € wle) . e o f implies
X,V € u?(f) . By proposition 2.6, 13 xy if, and only if, 1 (x£)(yP) , in which
case they are equal.

We call an E-square (2 i) T-commutative, if the diagram

w(e) Tr(e y f)

w(f)
(2.5) lTL(e , &) #(¢ , n)
w(g)

N

o(1)

\

T
T(g,h)
commutes. This notion is easily seen to be independent of which corner we begin in.

As stated, it is equivalent to requiring that

(2.6) n(xf) = (gx)h , for all x € w(e) .

PROPOSITION 2.11. — If an E-square is a rectangular band, it is T-commutative.

Proof. - Assume (Z i) is a rectangular band, and 1et x @ o{e) . Then x & f,
and xf € w(f) by proposition 2.4. Likewise xf drdn , and h(xzf) € w(h) . Frou

f(xf) = xf we have
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n(xf) = (ef)(xf) = el £(x)] = &(xf) = (gx)f = (gx)(en) = [(gx)eln = (ex)h .

3. The biordered set determined by a regular warp.

. We begin with Nawbooripad's definition [5] of a biordered set, making, however,

slight changes in notation.

Let E be a set, and let o  and u& be quasi-orders on E . Define

-1 NS
)

(3.1) R=o n(), =0 n (o , w=w n o .

For each e on E , define W(e) ={feB: £ W e} , and similarly for & and

w. Tor each e in E, let T (e) and Tz(e) be partial transformations of E ,
and let T = {T°(e) : e € E} {Tz(e) : ec E} . The system ( E, o , 1)
is called a biordered set, if axioms (Bl)-(BS) below are satisfied, together with

$heir duals. By the dual of a statement P involving ( E, o, o , T ) we mean

the statement P* obtained from P by interchanging @ and u& , and Tr(e) and

o)
™(e) , for each e in E .
(B,) For all e f in E ew f and f u& e =—==e = .
1 ’ 9 -7

(B2) For all e in E, T (e) is an idempotent mapping (= projection) of W (e)-
onto w(e) , such that

(a) f,ge ™ (e) and f o g == £17 (e) o gt (e) ,
(b) fe 7(e) = fr(e) R £ .

Before stating the remaining axioms, we define the basic partial binary operation on

E as follows. For e , f in E , the product ef 1is defined if, and only if, e

and f are related by o or u& , and then

eTr(f) if e o f ,
&

e if e w f,
£ if fd e,

a

£r¥(e) if £ & e .

Il

(3.2) ef

We proceed to show that this definition is single-valued. From (BZ) we see that
Tr(e) induces the identity transformation on its image u{e) sy SO fTr(e) =f for
all f in «le) . In particular, eT (e) = e ; and dually, eTA(e) = e . Hence all

four parts of (1.2) agree that ee =e .

Assume now that e # £ , and that the pair (e , f) belongs to two or more of the
relations « , of , (u?)—l y (u&)—l . By (Bl) and the assumption e # f , the
conjunctions o« rl(u&)_l and u& rw(uF)_l are impossible. Hence exactly one of the
following must hold : e wf , fwe , e Rf , el T,

As remarked above, e w f implies eTr(f) = e , and the first two cases in (3.2)
give the same value, namely ef = e . Dually, f we gives fe = f .
Assume e R f ; and let g = eT (f) . By (BZ)’ g€ w(f) and also g R e . From

2R e and e Rf we have g R f . But, then f « g , and g £ ,80 g=71 by
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(Bl>' Hence the first and third cases of (3.2) give the consistent result ef = f
Dually, for e £ f , we find that the second and fourth cases of (1.2) give ef = e.

It is readily seen that the quasi-orders o« and u& , and the partial transfor-
mations T (e) and Tn(e) can be expressed in terms of the basic product (3.2) as

follows

e W f{=3fe

= € 9
(3.3) 4
e w fé&def =¢e,
et (f) = ef for all e in G (£) ,
(3.4) p P
etV(f) = fe for all e in & (f) .

In stating the remaining axioms, basic products will be used instead of the
T-mappings, but the relations o and u? will be retained. Moreover, we shall
repeat (BZ)’ breaking it into its substatements (321), (B22), (BZB)’ and similarly

for the other axioms. The letters e , £, g denote arbitrary elementssof E .

The sandwich set $(e , f) of a pair od elements e , f of E 1is defined to be
)
the set of all g in u&(e) A & (f) such that eh o eg and hf  gf for all h
. & r
in «'(e) n (£) .

(Bl) e £ and £ e = e=1f.

(B fe € w(e) for all f in w(e), and ge = g for all g in wle) .

21)
(B22) £f,ge w(e) and f o g = fe o ge

(1323) fe «(e) = feR T .

(B3l) g Gr f Gr e — gf = (ge)f .

(BBZ) f, g€ W (e) and f uﬁ g == (ge)(fe) = (gf)e .

(B4l) s(e , £) # 0 (the empty set), for all e , £ in E .

(By,) e, fe W (g) =>s(e, flg =8(eg, fg) «

We omit the final axiom (B5) since NAMBOORIPAD has subsequently found that it is a

consequence of the other axioms.

THEOREM 3.1. — Let E be a regular warp. Define & and o by (2.1), and

1 (f) and () , for each f in E , by (2.3). Then ( E, o, o , T) is a

biordered set.

Proof (with one omission). - (B1> is immediate from (2.1). (le), (B22), and (323)
follow from propositions 2.1, (2.5)%, and 2.4, respectively. (BBl) follows from
axioms (Wl) and (WB)' For ¢ & f & e implies ef =f and eg=g, so 3 ge and
gf = glef) = (ge)f . (BBZ) follows from proposition 2.6. (B41) is the same as (Rl)'
we omit the rather long proof of (B42), see ([3] proposition 2.10).

We call ( B, o ’ uﬁ , T ) the biordered set determined by the regular warp E
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4. Construction off all regular warps determining a given biordered set.

Most of the important concepts introduced for warps in § 2 are really biordered
set concepts : the quasi-orders W end u& , the partial translations Tr(f) and
Tz(f) , and the sandwich sets $(e , f) . The same holds for the restricted transla-
tions T (e , £f) and T’e(e , £) , both denoted by e(e , £) in [6], which play an
important role in Nawbooripad's construction. Proposition 2.10 and its dual hold for
them ; the proof of part (i) is immediate from axiom (B31)' Consequently, the notion

of a T-commutative BE--square is also biordered set-theoretical.

We saw in § 3 that every regular warp determines a biordered set. To every biorde-
red set, there corresponds at least one regular warp (as we shall see), but in gene-
ral more than one. For example, consider a completely simple semigroup S . The
biordered set ES is simply a rectangular array, with « =R and uﬁ =2, and the

basic products are all the horizontal and vertical products. Every E,-square is

S

r-commutative. Regarding ES as a regular warp, the number of further products

which exist can vary between the two extremes :

(&

19 a1l of them, when, for example, S is a rectangular band,

2% none of them, when, for example, 3 = m( @ s I, 03 X), where X = (xhi) ’

and G is the free group on the symbols X3 (rne ,iel).

In the present section,; we begin with a biordered set E , and give a method for
describing all possible (regular) warps E(.) which determine E . Clearly the
partial binary operation (.) must include the basic products (3.2).

e f

; ge gf
e , fe uf(g) . Column-singular is defined dually, and singular means either row- or

By a row-singular E-square we mean one of the form ( ) , where e Rf and

column-singular. An E-gquare (z ﬁ) is called row-degenerate, (; ;) is column-

degenerate, and degencrate means either kind.

A set A of T-commutative E-square is called effective if it has the following
three properties.
e f g h e T
(Q >{1'1" (g h) € & and (i j) € ¢, then (i j)ea.
1 e . ;
g g i e 1i
If (f h)ed and (h j)ed,then (f ) e,

(Q2) If (Z i) € & and x € wle) , then (zx € 4, where x = h(xf) = (gx)h.

(Note (2.6))

X

(Q’j) A contains all singular and all degenerate E-squares.

The partial binary operation (.) on a biordered set E corresponding to an
effective set & of T-commutative E-squares is defined as follows. Let e , f € E.
If, for some g in S(e , f) and some x in E , (ez if) € &, then we define
e . f=x.The uniqueness of e , f (if it exists) follows from proposition 2.2.

THEOREM 4.1. - Let E be a biordered set, and let & be an effective set of
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T-commutative B-squares. Under the partial binary operation (.) corresponding to

a, E(.) Dbecomes a regular warp determining the biordered set E , and d consists

of those E-squares which are 2 x 2 rectangular bands in E(.) .

Conversely, if E(.) is any regualr warp determining I, thon' the set & of all

E-squares which are 2 x 2 rectangular bands in B(.) is an effective set, and (o)

coincides with the partial binary operation (.) in E corresponding to d.

Proof of converse. — Let E(e¢) be a regular warp determining E , and write ab

for a °b . Let O be the set of a2ll E-squares which are 2 x 2 rectangular

bands.
To show (Q,), let (¢ f) ed and (& h) e a
17! g h i j *

Then, by (Wl), ej = e(ih) = (ei)h = eh = f , and (i g) e @ by proposition 2.7.
The second part of (Ql) is proved dually.

To show (Q.), let (° f) e @ and x € wle) . Then x € u&(g) n & (£) . By propo-
2 g h

(X xf

sition 2.8, ( gxf) e & . From (gx)e = gx , and eh = f , we have

(ex)f = (gx)(etn) = [(gx)elh = (gx)h =x ,
so (F Eﬁ) e .
gx X

To show (Q), let e R f and e , f € u&(g) . Then el(gf) = (eg)f =ef =1 , so
e T

ge &f
degenerate B-squares.

) € & . Dually for column-singular E-squares. Trivially, @& contains all

let e, fe E, and let ge€ s(e , f) . If 3 ef , then, by proposition 2.8 and
(Ré) in corollary 2.9, (eg fg) e @, and hence ef = e . f . Conversely, if

ie. T, then (% egf f) for some g e (e, £) , by definition of ()

e
Then e . f = (eg)%gf) = ef , by (Ré).

For a proof of the direct part of the theorem, see ([3] p. 17-26).

5, The universal regular IG-semigroup on & regular warp.
By an IG-semigroup, we mean a semigroup which is generated by its idempotents.
Let E be a regular warp. Let SE be the free semigroup on the set E . If

a, b€ SE , write a ~Db , if we can pass from a to b by a finite sequence of

elementary transitions of the following two kinds.

I. Replace two adjacent terms e , £ in a word by the single term ef , if it

exists, or the reverse.

II. Insert an element of g(e , f) Dbetween two adjacent terms e , f in a word,

or the reverse.

Then ~ 4is a congruence on EE , and we define B(E) = SE/A" It can be shown

that the natural mapping of E into B(E) is injective, and we shall regard E as
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a subset of B(E) .

If E and B' are biordered sets, a bijection © : E ——3E' is called an iso-
morphism if it preserves " ’ u& , and T (in the obvious sense) in both direc-
tions. In terms of basic products, this is equivalent to, for e, £ in E , ef
exists if and only if (e6)(£f6) exists, and then (ee)(fe) = (ef)® . If E and E
are warps, a mapping © : E ——3 E' 1is called a homomorphism if the existence of
ef in E implies that of (eB)(£f8) in B' , and then (e8)(f0) = (ef)d .

THEOREM 5.1.

10 B(E) is a regular IG-semigroup with EB(E) = E as sets, and product in

EB(E) extends that in E .

20 If 3 1is any regular semigroup, and 6 is a bijective homomorphism and

biorder isomorphism of E onto E

q then there is a unique semigroup homomorphism
§: B(E) — S extending 6 .

30 EB(E) ig the smallest partial regular band on the set E extending the
partial binary operation on the warp E .

We omit the proof, but remark that 3° is immediate from 2°, taking © to be the
inclusion of E in some regular semigroup 3 , identifying E with ES . If

e, f, g are elements of E such that ef =g in B(E) , then
ef = (eB)(f8) = (ef)f =gf =g in S,

so that ef = g in E_, . By theorem 5.1, we have a method for extending the partial

]
product in a regular warp E in a minimal fashion to make it a partial regular band

(namely, calculate EB(E) ).

An alternative construction of B(E) has been given by NANBOORIPAD in a paper not
yet published.

6. Fundsmental regular warp.
A regular semigroup S is called fundamental if the identity is the only congruen—
ce on S contained in Green's relation ¥ . A regular warp E is called fundamental

if the converse of proposition 2.11 holds : every T-commutative E-square is a

rectangular band. It can be shown that a partial groupoid E is isomorphic with the

warp ES of some fundamental regular semigroup S if, and only if, it is a funda-

mental regular warp ([2] theorem 6.7).

If 5 is a regular semigroup, p a congruence on S contained in # , and
S = S/p , then the mapping e +—> ep 1is a biorder isomorphism of the biordered set

ES onto the biordered set Eg . It is also a bijective homomorphism of the warp ES

onto the warp E§ . But it need not be an isomorphism. It may happen that e,f € E%,

ef ¢ By , but (ep)(fp) € Eg . For example, let S be completely simple, and take

p-_-;gu
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Let E be a biordered set, and let & be the set of all T-commutative E-squares
(§ 4). It is easy to show thet § is effective. (Ql) follows from transitivity of
® and £ , and a staondard commutative diagram argument. For (QZ), the T-commutati-
vity of (gz Ef) follows from the observation that if x we ® f , then Tr(x , xf)

i3 the restriction of T (e , f) to &{x) , and dually. As for (Q3)’ the T-commu-
f
gf

)
tativity of (gz ), where e R f ani e, fe «(g) , is equivalent to

(gf)(xf) = ((ge)x)(gf) for all x € w(e) .
By (Wl), both sides are found to reduce to (gx)f .

Let (*) denote the binary operation on E corresponding to & . From proposition
2.11 or theorem 4.1, we see that (%) is an extension of every warp operation on E
that corresponds to the given biorder structure on E ; that is, E(¥) is the
greatest (regular) warp determining E . 0f all the warps determining E , E(*) is
the only one that is fundamental. Since no enlargement of (*) can take place on
passing from E(%*) to EB(E) (§ 5), it follows that E(*) is a regular partial
band.

T. & regular warp which is not a regular Eartial band.

Let E = {eix s ieI, Ae A} bean I x A rectangular band, with products de-
fined by

PCLI L (all i, 3 in I3 A, p in A ).
A
The biordered set ( B ’ W , W, T ) determined by E can be described as follows

Il

r .. r
egy Y ejp‘¢==¢ i=3 (so w =R) ,

n

w (so W =2),

Il
1l

&
eih w ejp¢=:$ A

e.. T(e, )=e
iA iw ip ?

)
ey T ejx = ejx ,
g(eix R eju) = {ejh} .

The set E itself is an I x A E-array. The basic products are either horizontal

- . . - R - . & .
(eik °i eip) or vertical (eik ® i eix) Endowed with the basic partial bina
ry operation, E is a regular warp which is isomorphic with the warp of idempotents
Ey of the Rees matrix semigroup S =m( ¢ ; I, A3 P ), vhere G is the free
group on X = {XXi s 1ie€elI, A€ A} , and P = (Pki) is defined by Pxi =Xy o

Every E-square is T-commutative, and there are no non-degenerate singular

E-squares. & set @ of E-squarcs is effective if, and only if, it contains all

degenerate E-squares and satisfies (Ql)' (Q2> is trivially satisfied.

Now let, I = A= {l, 2, 3, 4} . Let & consist of all degenerate BE-squares and
the following
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. :
€11 %12 22 €23 (933 34 €12 C14 21 e23\
e S22 " \%32 °33) ' \%3 Saa |’ \°32 4] 7 |%a1 %43
No two of them have a row or a column in common, SO (Ql) is vacuously satisfied, and

so 6 is an effective set of ( T-commutative) E-squares.

Let (%) be the partial binary operation on E corresponding to & , and let
B(E)(e) be the universal regular IG-semigroup of E(*) . By proposition 2.8, each
member of & is a 2 x 2 rectangular band in E(*) . Calculating in B(E) , we

have

since e,, £e,, ,e,, Re, ,

14 ° %1% %14 ° %34 ° %43 7 a1 14~ %34 7 %43 7 V41
=€y ° €33 ° €y since e, % €43 = 33 1
=€y, ° ©3n ° €3 ° ey since €35 s e23 = €33 »
=@, ° e21 since el4 * 932 = e,

and ep3 ¥ €41 = 21
= ell gince e12 * 321 = ell .

e e
But 11 14 §d, so e
®41 %44

is not an isomorphism, and we conclude from theorem C, that E(¥) cannot be embedded

is undefined. Hence the bijeetion it E(4#)-a Eg

* e

14 7 T41

in a regular semigroup ; i. €., E(*) is not a regular partial band in the sense of
Baird [1].

In the following diagram one sees the five non-degenerate members of &, and one
e e

sees also the miSsing square 11 14
®41 %44

€11 €12 €13 €14

o1 €22 €23 €24

©31 32 3?3 34

®41 T %42 €43 44
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