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PARTITION IDEALS OF ORDER 1, 
THE ROGERS-RAMANUJAN IDENTITIES AND COMPUTERS

by George E. ANDREWS(*)

.....

Groupe d ’étude d’ALGEBRE

1re année, 1975/76, n° 6, 8 p . 3 mai 1976

1. Introduction.

T he Rogers-Ramanujan identities are two of the most surprising results in the

theory of partitions. They may be stated as follows (see [5~y p. 175-176).

THEOREM 1. - Let A~ .(n) dénote the number of partitions of n into parts

~ i (mod 5). Let B~ . .(n) dénote the number of partitions of n into parts
20142014 ,1 2014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014 2014201420142014201420142014-

where 1 appears at most i - 1 times and the différence between any two parts is

at least 2. Then - or 1, A2 ,1 .(n) = B2 ,J. .(n) .
For example, when n = 12, i = 1, y B2,1(12) enumerates the six partitions :

12 , 10+2~9+3~8+4~7+5~ 6 + 4 + 2 , while A~ .(l2) enumerates the

six partitions 12 , 8 + 2 + 2 , 7 + 3 + 2 , 3 + 3 + 3 + 3, 3 + 3 +2 + 2 + 2 ,
2+2+2+2+2+2.

Recently, the theory of such identities has been studied in a lattice-theoretic

framework [6], and partition functions such as A2 ,1 .(n) have been associated with

"partition ideals of order 1".

In section 2, we shall present a short survey of the theory of partition ideals.

In section 3, we shall associate with each partition idéal C a certain sequence

a n (C) that will be of great use to us in section 4 y where we describe computer
searches for identities of the Rogers-Ramanujan type.

In section 5, y we present two partition theorems, that we have discovered from such

computer searches.

2. Partition ideals.

We require a number of définitions which we shall always associate with the rela-

ted intuitive concept about partitions.

Définition 1. - let S denote the set of ail sequences

of nonnegative integers only finitely many of which are nonzero.

Explanation 1. - The éléments of S correspond to the intuitive concept of parti-

tions 
. 

by the stipulation that fi denotes the number of times i appears as a
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part. Thus, (1,2,1,0,3~0,0,0,0,...) corresponds to 1+2+2+3+5+5+5.

It is a straight-forward exercise to show that S is a distributive lattice under

the partial ordering {fi}  (g.) which means fi  g, for all i  1. Furthermo-

re, the S 2014)N given by 1 f.. i is a positive 
tion on S p. 230).

Explanation 2. - The positive valuation 03C3 maps each element of S onto the num-

ber that is being partitioned. For example,

Définition 2. - The semi-ideals of S are called partition ideals.

Recall [5L p. 56 that a semi-ideal C of a lattice L is a subset of L such

that, if x E C and y ~ x , then y E C .

Définition 3. - If C is a partition ideal, we define p(C , n) to be the cardi-

nalityof (n ; n E C , n} .

We call p(C, n) the C-partition function.

Explanation 3. - p(C , n) is the nunber of partitions of n whose associated

(f.) sequence is in C .

Définition 4. - We say that two partition ideals Cl and C2 are equivalent, and

we write C - C if p(C , n) n) for all 

Example 1. - Let 03B22,i = {{fj} ; f1  i - 1 and f . + fj+1  1 f or j}
and {{fj}} ; f . &#x3E; 0 (mod 5)) . Then theorem 1
asserts

note that there is a certain "local" property of some partition ideals ; intui-

tively, we may determine whether is in a 2 2 or not by examining each f.
alone for 1 % 1 and asking whether f. = 0 whenever 1 z 0 , x 2 (mod 5) . On the

1

other we must examine pairs fi , to check whether {f.} E a 2 . This
difÎ’erence is empressed in the following definition of the order of a partition
i de al .

Definition 5. - If C is a partition ideal, then Chas order k provided k

is the least integer such that whenever {f} ~ C , then there exists m such that
~

(f! ) # C where
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Given the above setting, we may ask several fundamental questions about the equi-
valence classes of partition ideals produced by the equivalence in définition 4 (see
[6J ~ 2). The one of concern to us here if3 the following [6] p. 20 :

Second fundamental problem. - Fully characterize those équivalence classes of par-
tition ideals modula ~ that contain a partition ideal of order 1.

3. Partition ideals of order 1.

The following theorem are proved in detail in [6] p. 20-23. They form the centr al

core for our computer search described in section 4.

THEOREM 2. - Let C be a partition idéal of order 1. Let y == sup{fi p ç 
is thus a nonzero integer or + 00 ). Then for Iql  1

where a 
n 
(C) i8 the number solutions j of the equation j(dj + 1) = n .

3. - The ideals in S (semi-ideals closed under union) are the partition
ideals of order 1.

THEOREM 4. - Su ose C and C’ are two partition ideals of order 1 , then C - C 1

if, and only n (c) = 03B1n(C’) for all n.

The reader may question the significance of theorem 4. At first glance one assumes

that checking p(C , n) = p(C’ , n) for all n should be no more or less difficult

than checking t~ 
n 
(C) = ~, 

n 
(C ’ ) f or all n.

The following example should point up the difference.

Example 2. - Let  = ({f.}: 1 f or all 1) , e = {{fj}} : f. = 01 1 1 1

if i is even) . A famous elementary theorem of Euler [5] p. 154, asserts that

0""’~ . Full elevation of p(i~ , n) and p(0, n) is tedious even for small n

since p(0, 3) = p(4~ , 3) = 2 , p(0, 50) = p(~ ~ 50) = 3658 ,

p(0 , 100) = p(~ , 100) = 444793 . On the other hand, by the definition a (0) we
n

see immediately that a (0) = 1 i f n is even, and 0 if n is odd, while a (~)
n 

~ 

n

also equals 1 if n is even, and 0 if n is odd ; hence Euler’s theorem is

immediate froID theorem 4.

4. Com uter searches for e uivalent artition ideals.

To attack the second fundamental problem described in section 2, we begin with a

simple observation that has its origins in the work of Euler, but has been explici-

tly stated only recently by BENDER and KNUTH [8] p. 41. Namely, for any sequence of

integers, b~ , ... , there corresponds a sequence, al , ... , such that
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Thé existence and uniqueness of thé an is clear : a1 == b1 , and given an for

n  k 
(l + b (l - qn)an . Using thé logarithmic derivative, we see immedia-

tely that

where

Now, we may utilize these observations by noting first that every nonempty partis

tion idéal C has associated with it a unique sequence of integers such

that

Furthermore theorem 4 may be extended to all nonempty partition ideals. Also since

a computer can generally easily compute p(C f n) for small n (say 1  n $ 30 )

we may use (4.1) and (4 .2) to compute a (C) for small n for arbitrary partition
n

ideals, Now, when C is of order 1, the a (C) must satisfy the rather restrictive
n

conditions set forth in the following theorem. Consequently for many ct with order

&#x3E; 1 , we can show that C ’ £ C (C of order 1) by a simple examination of a few

values of a (C1) . Flore important, the first few a (C1) will often suggest an
’ 

n n

equivalent partition ideal C of order 1 if such exists.

THEOREM 5. - If c is a partition ideal of order 1, then for all n &#x3E; 0

(ii) a (C) $ d(n) the number of divisors of n, y and
n 

-

Proof. - All o£ these facts are obvious from the definition that a (C) is the

number of solutions oi’ the equation j(dj + 1) == n where d . J == f J ..
Now let uJ examine some results from thc computer search. We first considered the

possibility of generalizing work of B. GORDON [ 11].

THEOREM 6 (Gordon’ s theorem). - If

and

then(for 1 $. a ~ k )
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Let us look at partition ideals (provided ... ~ ~-1)

Notethat 03B2k(k - 1 , k - 2 , ... y 1 , y 0) = 03B2k,k . Technically the
y ... , h..) constitute all those linked partition ideals with all

spans and modulus equal to 1 [7], § 4. The following table lists several small va-
lues for k and (h.. y ... , h, ) and the associated first sixteen

The above table provides only a few of the many cases treated by the computer.

The cases of obvious interest are the first, second, sixth, twelfth, nineteenth,

twenty sixth and twenty seventh line s. All other lines have negative entries for so-

me a n and s o by theorem 5 the related partition idéal in not equivalent to any

partition ideal of order 1.

The tenth line, however, is intriguing especially when 11e remark that the

a16 , ... 9 a are 2, 1, -1, 2, --2, 1, 2, -1, 2, -2, 0 , 2, -2, 4 . suggests

that there may be some relationship of interest between two partition ideals one

"approximately" 03B24(3 , 1 , 1 , 1) and one "approximately"
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twelve are from theorem 6 in the cases k = a = 3, 4. Lines six and tucnty six are

from an elementary partition identity due to J. L. GLAISHER [10]. Line nineteen
corresponds to a result proved The first time that our search produced an

unknown theorem was the case k = 6 5, h2 = h3 = h4 = h5 = 1 . We con-
tinue our discussion in section 5, where we prove a general partition identity which

includes this result from line twenty seven as essentially a special case.

5. A new partition identity.

To illustrate some of the methods available to us in proving partition theorems,
we prove a general family of partition identities related to line twenty seven of

the table in section 4.

7. - pet 0 ~ OL  k y ~.~1 ail be integers. Let 1.A- (n) dénote. thé

number of partitions of n into parts ~ 0 , ~ + 1) (mod + 2) ) . Let

B (n) dénote the number of partitions of n considered as (f. ) ~ S such that
A. ,a ~ ’ ’- ’"" - -20142014 

" 

’ 
’ ~ ’ ’ 

~"" ~ 
" 

~’ ~ 
’" ~ ’ 

""~ "20142014’ ~’ ’ 
" ’ ’ " 

~" ’ ~"’ 
" 

1 ~~ ’ !!".!.! - .. -

f1  2a03BB + 03BB - 1 , and for each i y if f. = 203BBh - 03BB + r , with 0  r  203BB , then

f. 1 ~ 2À(k - h) + X - 1 . Then .A 9 (n) = 9 (n) for all n .

Remarks. - When X = 1 , y theorem 7 reduces to the main theorem in [2] ; the simila-
rity of the general proof to the case À = 1 allows us to be somewhat sketchy in

the follouing. Actually line twenty seven in our table is not covered by theorem 7 ;

howevery 9 the result

may be easily deduced from the following proof.

Proof. - begin by studying .b (m ~ n) , p the number of partitions enumerated

by ~ ~ k9a ~n~ with exactiy m parts.

First we recall that the empty partition of zéro is the only partition of a nonpo-

sitive integer and is also the only partition with a nonpositive number of parts.
Therefore for 0 ~ a ~ k

Next we observe that Àbk ~(m y n) counts those partitions in question that at

most À - 1 ones (i. e. in such partitions f~ s 2Àk + À - 1
times. If we transform the partitions enumerated by n) by deleting all

the ones that appear and subtracting 1 from each of thé remaining parts, we see that

such a transformation establishes a bijection between certain finite sets of parti-

tions, and the cardinalities of the sets in question show that
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Following the reasoning of the preceding paragraph, we may observe that for

0  a ~ À, n) - counts those partitions for which

(2a - 1)03BB  f 1  (2a + 1)X ’ in which case f 2  2À(k - a) + X - 1 . The same bijec-
tion used above shows that

By a double mathematical induction ( first on n , then on a ) we see that (5 .1 ~ ,
(5.2) and (5.3) uniquely détermine the n) .

Now let us define

Then straightforward techniques developed sho« that for 0 ~ a~ k

We now deduce from ( 5 . 5 ) , y (5.6) and (5.7) the identities satisfied by the coeffi-

cients of xm qn , and we find that these identities are just (5.l)y (5.2) and

(5.3) ; 9 hence by the uniqueness of the solutions of (5.l)y (5.2) and ( 5 . 3 ) , it fol-

lo ws that

Finally for

(by [5J ] p , 169-170) and by comparing coefficients s of qn in the extrêmes of (5.9)

we establish theorem 7.

Another theorem arising from our computer search is as follows t
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TEEOREK 8. - Let k~2 . Let OL(n) dénote the number of partitions of n into

parts ~0 , -1 (mod k) Let S~(n) dénote the number
of partitions of n of the form n = b1 + ... + bs , where 
(assume b 1: 0) with j the least nonnegative residue of - b. modula k . Then

03B1k(n) = 03B2k(n) for ail n.

The methods of [3J suffice to prove this result.

6. Conclusion .

In this short survey vre have tried to show how some of the lattice theoretic deve-

lopment of partition identities has been implemented through computers to search for

identities of this type. We hope in the future to study this method further so that

we may discover new partition identities that require genuinely new methods for their

establishment.
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