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PARTITION IDEALS OF ORDER 1,
THE ROGER3~-RAMANUJAN IDENTITIES AND COMPUTERS

( 3¢
by George E. AUDREWS')

1, Introduction.

The Rogers-Ramanujan identities are two of the most surprising results in the
theory of partitions. They mey be stated as follows (see [5], p. 175-176).

THEOREM 1., - Let A2 i(n) denote the number of partitions of n into parts

== , b Al

#£0,i,- i (mod 5). Let B,

where 1 appears at most i - 1 +times and the difference between any two parts is

at least 2 . Then for i =2 or 1, Az’i(n) S Bg,i(n) .

i(n) denote the number of partitions of n into parts
R ——l

For example, when n =12, i=1, 12) enumerates the six partitions :

B2,1(

12, 10+2,9+3,8+4,7+5, 6+4+ 2, vhile A2 l(12) enumerates the
14

six partitions 12 , 8 + 2+ 2 , T+ 3 +2 ,3+3+3+3,3+3+2+2+ 2,

24+ 2+ 2+2+24+2

Recently, the theory of such identities has been studied in a lattice-theoretic
framework [ 6], and partition functions such as A2 i(n) have been associated with

’
"partition ideals of order 1",

In section 2, we shall present a short survey of the theory of partition ideals.
In section 3, we shall associate with each partition ideal C a certain sequence
an(C) that will be of great use to us in section 4, where we describe computer

searches for identities of the Rogers-Ramanujan type.

In section 5, we present two partition theorems, that we have discovered from such

computer searches,.

2. Partition ideals.

We require a number of definitions which we shall always associate with the rela-

ted intuitive concept about partitions.

Definition 1. -~ We let S denote the set of all sequences

¢ _ *® _
tfl § fe 9 f3 ’ "'} - {fi}l=l - {fi}

of nonnegative integers only finitely many of which are nonzero.

Explanation 1. = The elements of S correspond to the intuitive concept of parti-

tions by the stipulation that fi denotes the number of times 1 appears as a

(#*) Sponsored by United States Army under Contract N° DAAG29-75-C-0024,
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parte Thus, {1, 2,1,0,3,0,0,0,0, ...} corresponds to L+2+2+3+5+5+5.

It is a straight-forward exercise to show that S is a distributive lattice under
the partial ordering {fi} < {gi} which means f, < g; for all i 21 . Furthermo-
re, the mepping o : S — N given by o({f,}) =2, f, « i is a positive v-lue-

_ ~ i izl i
tion on S ([9], p. 230).

Explanation 2. ~ The positive valuation ¢ maps each element of S onto the num-

ber that is being partitioned. For example,

o({L ,2,0,1,0,0,0, «..}) =1.1 4+ 2.2+ 1.4

il

1+2+2+4
=9c

Definition 2. - The semi-ideals of S are called partition ideals.

Recall [Y], p. 56 that a semi-ideal C of a lattice L is a subset of L such
that, if x € C and y <x, then y €C ,

Definition 3. — If C is a partition ideal, we define p(C , n) to be the cardi=-
nality of {m; mecC, o(n) =n}.

e call p(C , n) the C-partition function.

Explanation 3. - p(c , n) is the number of partitions of n whose associated

{fi} sequence is in C .

Definition 4. —~ We say that two partition ideals Cl and C2 are equivalent, and

we write € ~C, if p(cl , n) = p(c2 , n) for all n >0 .

Example 1. - Let @ i {{f } s f,€i-1 and fJ + £, 81 forall 3}
and let 02 i = {{f } fJ > 0 implies j #0 , (mod 5)} « Then theorem 1
?
asserts
~ A ~ ¢
Ba~ %, and &~ .

We note that there is a certain "local" property of some partition ideals ; intui-
tively, we may determine whether {fi} is in 512'2 or not by examining each f,
alone for i > 1 and asking whether fi =0 whenever i =0, x 2 (mod 5) « On the
other hand, we must examine pairs f, , f, , to check whether {fi} € &%’2 . This
difference is empressed in the following definition of the order of a partition

ideal.

Definition 5., — If C is a partition ideal, then C has order k provided k
is the least integer such that whenever {fi} ¢ C , then there exists m such that

{fi} # C where
{;fi y i=m,m+1, «.. ,m+k~-1,
f! =

0 , otherwise.
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Given the above setting, we may ask several fundamental questions about the equi-
valence classes of partition ideals produced by the equivalence in definition 4 (see

[6] § 2). The one of concern to us here is the following [6] p. 20 :

3econd fundamental problem., - Fully characterize those equivalence classes of par-

tition ideals modulo ~ that contain a partition ideal of order 1.

3, Partition ideals of order 1.

The following theorem are proved in detail in [ 6] p. 20-23. They form the central

core for our computer search described in section 4.

THEOREN 2. - Let C be a partition ideal of order 1. Tet v, = subgy jq Ty
1

( Yy is thus a nonzero integer or + ® ). Then for |ql <1

n . 4(a, +1) - - a8 (€)=t
o B(E 000" = (T g (1= 0 CUNE L -t =T (- @)

where an(C) is the number of solutions j of the equation ,j(dj + 1) =n.

THEORE: 3, — The ideals in S (semi-ideals closed under union) are the partition

ideals of order 1.

THEOREM 4. - Suppose C and C!' are two partition ideals of order 1, then C ~ C!
if, and only if, an(c) =0 (C') for all n .

The reader may question the significance of theorem 4. At first glance one assumes
that checking p(C , n) = p(C' , n) for all n should be no more or less difficult
than checking &n(C) = dn(C‘) for all n .

The following example should point up the difference.

Example 2. - Let 0 = {{fi} : £, €1 for all i}, o= {{fi} : £, =0

if i 4is even}. A famous elementary theorem of Euler [ 5] p. 154, asserts that

O ~® . Full elevation of p(® , n) and p(® , n) is tedious even for small n
since p(9, 3) =p(®@, 3) =2, plo, 5) =p(® , 50) = 3658 ,

p(©, 100) = p(®@ , 100) = 444793 . On the other hand, by the definition gn(o) we
see immediately that an(O) =1 if n is even, and O if =n is odd, while an(Q)
also equals 1 if n is even, and O if n is odd ; hence Euler's theorem is

immediste from theorem 4.

4. Computer searches for equivalent Eartition ideals.

To attack the second fundamental problem described in section 2, we begin with a
simple observation that has its origins in the work of Euler, but has been explici-
tly stated only recently by BENDER and KNUTH [8] p. 41. Namely, for any sequence of

integers, bl , b «.es 4 there corresponds a sequence, 8 9 85 5 see such that

2 9
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n =3 n "en
q = nn:l (]- - q ) .

The existence and uniqueness of the a, is clear : a; = bl , and given a, for

n <k , we determine a as that integer that is the coefficient of qk in

1+ Zm b
n=1 n

a
(l + Zn:l bn qp)ﬂn<k (1 - qn) n . Using the logarithmic derivative, we see immedia-
tely that

(4.1) b =25, bn_j Dj
where
(4.2) Dj = Zd',] dad .

Now, we may utilize these observations by noting first that every nonempty partie
tion ideal C has associateé with it a unique sequence of integers an(C) such

that

@ n w n an(C)—l
(4.3) 1+2 p(C,ma =T, (1-4q) .

n=1

Furthermore theorem 4 may be extended to all nonempty partition ideals. Also since
a computer can generally easily compute p(C , n) for small n (say 1<£n <30 )
we may use (4.1) and (4.2) to compute an(C) for small n for arbitrary partition
ideals. Now, when C 1is of order 1, the an(C) must satisfy the rather restrictive
conditions set forth in the following theorem. Consequently for many C' with order
> 1, we can show that C! L C (C of order 1) by a simple examination of a few
values of an(C‘) « More important, the first few an(C') will often suggest an

equivalent partition ideal C of order 1 if such exists.

THEOREI 5. - If C 1is a partition ideal of order 1, then for all n > 0

(1) a,(c) 20,

(ii) an(C) < d(n) the number of divisors of n , and

(iii) ZlSan aj(C) <n.

Proof. — All of these facts are obvious from the definition that an(C) is the

number of solutions of the equation j(d. + 1) = n where d. = su f. .
q J( j ) j P{fi}ec 3
Now let us examine some results from the computer search. We first considered the
possibility of generalizing work of B. GORDON [11].
THEORE: 6 (Gordon's theorem). - If

a _ T . - . _ .. .
k’a_{{fij ; for all i 31, £, =0 if i a (mod 2k + 1)} ,

I
o
H

and

(Bk,a={{fj_}; f, €a=-1, and forall 121, fi+fi+1sk-1},

then(for 1 <a<k)
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Let us look at partition ideals (provided hO 2-h1 2h, = ..e Z-hk 1)

@k(ho ? hl ? o0 hk_l)

= {{fi} ; for all i =1, f,

\< - . .=- . <1- .
; Sk-1, end if £, =J then £, h.}

LT
Note that @k(k -1 ,k=2, «v.. ,1,0)= B i . Technically the

Bk(ho , hl y vee 4 hk—l) constitute all those linked partition ideals with all

spans and modulus equal to 1 [7], & 4. The following table lists several small va-

lues for k and (hO ) eee hk—l) and the associated first sixteen

a (B (ny &k 5 eoo yB_))=a .

k hO’hl""’hk—l a; a, a3 a4 as 8 a7 ag a9 210 211 212 a13 al4 a15 216
3 200 0 020 01 00 2 0 O 1 0 O 2 0
3 210 0 ¢ 1 1 0 0 1 0 O 1 1 0 © 1 0 ©
3 211 0 01t 01 1-2 2 2 ~2 1 -1 0 8 -4 -6
3 220 0 0 1 1-1 1 2=2-1 5 0 4 3 2 -6 4
3 221 6 6t 00 2-1-1 3 0 -1 2 =3 0 8 =2
3 222 6 61 0 0O 1 OO0 1 0 O 1 0 O 1 0
4 3000 0 01 1 1-2 2 2-2 0 1 4 -1 -6 9 =2
4 3100 0O 0 02 1-21 2 1 <5 0 10 2 =13 <5 22
4 3110 0O 0 01 2-1-1 2 2 -1 -5 2 10 1 =11 =10
4 3111 6 0 0 1 1 0 0 1 0 0 O 1 1 0 0 -1
4 3200 0 0 0 2 0~-1 2 1=-2 =2 5 5 =7 =7 13 7T
4 3210 00 011 00OT1 O O O 1 1 0 O
4 3211 0O 0 01 0 1 1-1-1 2 2 -1 =2 1 1 1
4 3220 0 0 061 1-1 110 =2 O 5 1 =5 =1 4
4 3221 0O 0 061 00 2 0-=2 0 3 2 -3 -1 3 -3
4 3222 0 0 01 0 0 1 1-1 -1 2 2 =1 =2 3 0
4 3300 00 0 2 0-1 1 2-1 =2 1 6 -1 -8 4 10
4 3310 0 0 0 1 1 0-1 1 2 0 =3 -1 5 5 =4 =7
4 3311 0 0 0101 0 0 O 1 0 0 O 1 0 1
4 3320 0 001 1-1 0 21 =2 =3 4 6 =3 -6 0
4 33 21 0 0 061 0 0 1 1-1 -1 1 3 0 =3 1 1
4 3322 00 061 000 20 -2 0 3 1 -2 0 3
4 3330 00 01 1~1 01 2 -1 =3 2 4 1 -5 =2
4 3331 0 0 0 L 60 1 0O 0 0 O 2 0 -1 -1 2
4 3332 0O 0 01 0 0 0 1 1 -1 =1 2 1 -1 0 2
4 3333 000 1 000 1 0 0 O 1 0 0 O 1
6 551111 6 0 00620 00 0 O i 0o o0 0 O

The above table provides only a fow of the many cases treated by the couputer.
The cases of obvious interest are the first, second, sixth, twelfth, nineteenth,
twenty sixth and twenty seventh lines. All other lines have negative entries for so-
me a and so by theorem 5 the related partition ideal in not equivalent to any
partition ideal of order 1.

The tenth line, however, is intriguing especially when we remark that the
Big 1 ser aBO are 2, 1, -1, 2, -2, 1, 2, -1, 2, -2, 0, 2, -2, 4. Thioc suggests
that there may be some relationship of interest between two partition ideals one

"approximately" @4(3 , 1, 1, 1) and one "approximately"
{{fi} : fi >0 implies i =0, 4 , 5 (mod 8)} .

Line one corresponds to a valid partition identity found in [4]. Lines two and
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twelve are from theorem 6 in the cases k = a =3 , 4 . Lines six and twenty six are
from an elementary partition identity due to J. W. L. GLAISHER [ 10]. Line nineteen
corresponds to a result proved in [1]. The first time that our search produced an
unknown theorem was the case k = 6 ho = h1 =5, h2 = h3 = h4 = h5 =1, We con-
tinue our discussion in section 5, where we prove a general partition identity which

includes this result from line twenty seven as essentially a special case.

5. A new partition idéntity.

To illustrate some of the methods available to us in proving partition theorems,
we prove a general family of partition identities related to line twenty seven of

the table in section 4.

4

THEOREL 7. - Let O« <k, A3zl all bo integers. Let A (n) dcnote.the

nurber of partitions of n into parts #0 , + A(2a + 1) (mod K(4k +2)) « Let

(n) denote the number of partitions of n considered as {f } € S such that

K k,a
fl <2+ A=1, and for each 1 , if f. =2M - A+ 1, with O r < 2\ , then
£, <2Mk -h) + A =1 . Then e (n) 7a(n) for all n .

Remarks. — When A = 1 , theorem 7 reduces to the main theorem in [2] ; the simila-
rity of the general proof to the case A =1 allows us to be somewhat sketchy in
the following. Actually line twenty seven in our table is not covered by theorem 7 3

however, the result

1+ Zn>]. p(‘B6(515,l,l’1;l) ’ n)qn = H::l ((l - qA’:Zn-6)2(1 - q22n))/(]_ -— qn) ’

(e

may be easily deduced from the following proof.

Proof. - We begin by studying X K, 8 (m , n) the number of partitions enumerated

by B K, a (n) with exectly m parts.

First we recall that the empty partition of zero is the only partition of a nonpo-
sitive integer and is also the only partition with a nonpositive number of parts.

Therefore for 0 < a <k

(5.1) \B, (m,n)—{

Next we observe that ka O(m , n) counts those partitions in question that at
?

most A -1 ones (i. e. fi < A =1). Thus, in such partitions f2 L2k + A -1

1 if m=n=0,

0 if m<€0, ng0, but (m, n) # (0, 0).

times. If we transform the partitions enumerated by xbk a(m , n) by deleting all

9
the ones thet appear and subtracting 1 from each of the remaining parts, we see that
such a transformation establishes a bijection between certain finite sets of parti-

tions, and the cardinalities of the sets in question show that

(5.2) Wy, 0'm n) = hbk,k(m y n o= m) + by k(m -1,n -m)

T kbk k(m -A+ 1, n=-m.
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Following the reasoning of the preceding paragraph, we may observe that for
0<agh, ka,a(m , n) - Apk,a—l(m , n) counts those partitions for which

(22 = 1)A £ £, < (2a + 1)A, in which case f, < oMk - a) + A = 1 . The same bijec-
tion used above shows that

(5.3) Kbk,a(m , n) - Kbk,a—l(m , 1)
= Kbk’k_a(m -(2a =1)r, n=-m)+ Kbkgk—a(m -(a=1)A=-1,n-mn)

Foeee + ka’k_a(m -(ca-1)A=2A2+1,n-m) .

By a double mathematical induction (first on n , then on a ) we see that (5.1),

(5.2) and (5.3) uniquely determine the kbk a(m , n) .
9
Now let us define

(5.4) R (x30)

_ ﬂ;;l (l—xqm)_l Z;;o (_l)rXZKquk(2k+1)r(r+l)-(2&+1)rX(l_xk(2a+l)qk(2r+l)(2a+l))

§ (1_X2>\q2)\) ( 1_x2)\q4->\) e ( l_x2)\q2r>\) .
(1-4°M) (1-g*M) 1. (10"

Then straightforward techniques developed in [2] show that for 0L a gk
(5.5) Wi, al05 @) =R (x5 0) =1

MR (e q)

2
(5.6) kRk,a(x s q) = (1 + xq + <2 Q"+ eee + X

(5.7) B alx s @) =R, (x5 q)

_ X(2a-1)x q(za-l)x (1 + xq + I LML qzx-1>

% 3R ka(®d 3 @)
We now deduce from (5.5), (5.6) and (5.7) the identities satisfied by the coeffi-
cients of X qn , and wé find that these identities are just (5.1), (5.2) and

(5.3) ; hence by the uniqueness of the solutions of (5.1), (5.2) and (5.3), it fol-
lows that

m
(5.8) XRk,a(X ;oa) = Zﬁ,n;o Abk,a(m , )X 4 .

Finally for 0 £ a <k

n n .
(509) Zn>’o }\Bk’a(n)q_ = Zn,m;O ')\.bk,a(m ’ n)q = )\Rk,a(l ’ Q)

(zi;o (- 1)F qx(2k+l)r(r+l)—(2a+l)rk(1 _ qh(2r+l)(23+1)))/n:;l (1 -q%

@

ny~1 n
- nn:l,n#O,iX(Za*l)(mod A(4k+2) (1 -a)7" = Zn;O )xAk,a(n)q !

(by [5] p. 169-170) and by comparing coefficients of qn in the extremes of (5.9)
we establish theorem 7.

Another theorem arising from our computer search is as follows :
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THEOREM 8. - Let k 2 2 . Let ﬂk(n) denote the number of partitions of n into
parts =0 , =1 (mod k) but #k(k - 1) (mod k%) . Let @k(n) denote the number

of partitions of n of the form n = bl + eee + bS , where bi - bi+1 > j(k - l)
(assume bs+l = Q) with j the least nonnegative residue of - bi modulo k .« Then

ﬂk(n) = @k(n) for all n .

The methods of [3] suffice to prove this result.

6. Conclusion

In this short survey we have tried to show how some of the lattice theoretic deve-
lopment of partition identities has been implemented through computers to search for
identities of this type. We hope in the future to study this method further so that
we may discover new partition identities that require genuinely new methods for their
establishment.
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