GROUPE D'ÉTUDE D'ALGÈBRE

JAK ALEV

Systèmes de générateurs normalisants

Groupe d'étude d'algèbre, tome 1 (1975-1976), exp. nº 4, p. 1-9

http://www.numdam.org/item?id=GEA_1975-1976__1_A4_0

© Groupe d'étude d'algèbre

(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude d'algèbre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SYSTÈMES DE GÉNÉRATEURS NORMALISANTS

par Jak ALEV

1. Introduction

Tous les anneaux sont unitaires. Toutes les algèbres de Lie sont de dimension finie sur un corps de caractéristique 0.

<u>Définition</u> 1.1.- Soient A un anneau, et Z(A) son centre. Une famille finie d'éléments de A, x_1 , x_2 , ..., x_n est un <u>système centralisant</u> si

- (i) $x_1 \in Z(A)$,
- (ii) $x_i \in Z(A/(x_1, x_2, \dots, x_{i-1}))$ avec $2 \le i \le n$.

Soit $N(A) = \{a : aA = Aa\}$. Une famille finie d'éléments x_1, x_2, \dots, x_n de A, est un système normalisant si

- (i) $x_1 \in N(A)$,
- (ii) $x_i \in N(A/(x_1, x_2, \dots, x_{i-1}))$ avec $2 \le i \le n$.

Un système centralisant est normalisant.

Remarque 1.2. - Si x_1 , x_2 , ..., x_n est un système normalisant, on a $(x_1, x_2, \ldots, x_n) = x_1 A + x_2 A + \ldots + x_n A = Ax_1 + Ax_2 + \ldots + Ax_n ,$ comme on peut le voir par récurrence sur n.

Exemple 1.3 (Mc CONNELL). - Soit U l'algèbre enveloppante d'une algèbre de Lie s'ésoluble de dimension finie sur un corps algébriquement clos et de caractéristique zéro. Alors, tout idéal bilatère de U est engendré par un système normalisant.

2. Le théorème d'intersection de Krull.

LEMME 2.1 (GOLDIE). - Soient A un anneau commutatif noethérien, et I , J , K trois idéaux de A tels que :

Il existe une suite d'éléments i_1 , i_2 , ..., i_n , ... \in I; <u>il existe</u> $x \in A$ tels que

$$x - i_n x \in (J + K)^n$$
, $n = 1, 2, 3, ...$;

alors, il existe une suite d'éléments p_1 , p_2 , ..., p_n , ... \in I + J tels que $x - p_n x \in K^n$, n = 1, 2, 3, ...

Ce lemme est équivalent au théorème d'intersection de Krull. En effet, prenons I=K=0 et $x\in \bigcap_{n\geq 1}J^n$. Les conditions du lemme sont satisfaites. Il existe

alors p_1 , p_2 , ..., p_n , ... \in J, tels que $x = p_n x$, ce qui est le théorème d'intersection de Krull. Inversement, la condition $x - i_n x \in (J + K)^n$ implique par récurrence sur n, que $x \in (I + J + K)^n$, et alors $x \in \bigcap_{n \geqslant 1} (I + J + K)^n$. D'après le thèorème d'intersection de Krull, il existe un élément $a_n \in (I + J + K)^n$ tel que $x = a_n x$. On peut écrire

$$a_n = p_n + k_n$$
 avec $p_n \in I + J$ et $k_n \in K^n$.

 D^{1} où $x - p_{n} x \in K^{n}$.

La démonstration de ce lemme n'utilise ni la décomposition primaire, ni le lemme d'Artin-Rees. C'est cette démonstration que Mc CONNELL généralise grâce aux systèmes centralisants et obtient alors comme corollaire :

THÉORÈME 2.2 [2]. - Soient A un anneau noethérien à droite, et I un idéal engendré par un système centralisant. Soit $x \in Z(A) \cap I^{\omega}$ $(I^{\omega} = \bigcap_{n\geqslant 1} I^n)$. Il existe alors un élément $t \in I$ tel que x = xt.

COROLLAIRE 2.3. - Soient A un anneau premier, noethérien à droite, et I un idéal, I \neq A, engendré par un système centralisant. Alors, I $^{\omega}$ \cap Z(A) = 0.

<u>Preuve</u>. - En effet, si $x \in Z(A) \cap I^{\omega}$, il existe, d'après le théorème 2.2, $t \in I$ tel que x = xt, d'où

$$x(1 - t) = 0$$
 et $xA(1 - t) = 0$.

Donc x = 0.

3. - Anneaux pondérés.

<u>Définition</u> 3.1. - Soient A un anneau, et S une partie génératrice de A . On dit que A est pondéré s'il existe une application h : A \longrightarrow N telle que

- (i) h(a) = 0 si, et seulement si, a = 0,
- (ii) h([s, a]) < h(a), $(\forall s \in S)$ et $(\forall a \in A)$, $a \neq 0$.

Lorsqu'il en est ainsi on dit que h est une fonction de hauteur sur A

Exemple 3.2 (Mc CONNELL). - Soit U l'algèbre enveloppante d'une algèbre de Lie nilpotente S; U est un anneau pondéré.

LEMME 3.3. - Soit A un anneau pondéré par rapport à la partie génératrice S. Alors

- (i) Tout anneau quotient A/I est pondéré,
- (ii) Si I est un idéal bilatère non nul de A , I \cap Z(A) \neq 0 .

Preuve.

- (i) Définissons $\overline{h}(\xi) = \min\{h(a) ; \overline{a} = \xi\}$. \overline{h} est une fonction de hauteur sur $\overline{A} = A/I$, par rapport à la partie génératrice \overline{S} , image de S dans \overline{A} .
 - (ii) Soit $0 \neq y \in I$ de hauteur minimum. Alors

$$\forall s \in S$$
, $h(sy - ys) < h(y)$

Mais comme sy - ys \in I , on obtient sy - ys = 0 . Donc y \in Z(A) .

THÉOREME 3.4. - Soit A un anneau pondéré, noethérien bilatère. Tout idéal bilatère I de A, est engendré par un système centralisant.

<u>Preuve.</u> - Soit $0 \neq a_1 \in I \cap Z(A)$. Par récurrence, on construit une suite d'éléments de I, a_1 , a_2 , ..., a_k , tels que

- (i) $a_i \in Z(A)$,
- (ii) $a_{i} \in Z(A/(a_{1}, ..., a_{i-1}))$ avec $2 \le i \le k$,
- (iii) $(a_1) \subset (a_1, a_2) \subset (a_1, a_2, a_3) \dots$

Mais l'anneau étant noethérien bilatère, il existe un entier n tel que $I=(a_1\ , \ a_2\ , \ \dots\ , \ a_n)$.

COROLLAIRE 3.5. - Soit A un anneau pondéré, premier et noethérien à droite. Si I est un idéal bilatère de A , $I \neq A$, $I^{\omega} = 0$.

<u>Preuve.</u> - En effet, si $I^{\omega} \neq 0$, on a $I^{\omega} \cap Z(A) \neq 0$, d'après le lemme 3.3; I^{ω} est engendré par un système centralisant, d'après le th. 3.4; et alors $I^{\omega} \cap Z(A) = 0$, d'après le corollaire 2.3. Donc $I^{\omega} = 0$.

En particulier, le théorème d'intersection est vrai dans l'algèbre enveloppante U d'une algèbre de Lie S nilpotente.

4. Propriété d'Artin-Rees et localisation.

<u>Définition 4.1.</u> - Soient A un anneau noethérien à droite, et I un idéal bilatère de A. On dit que I vérifie la <u>propriété</u> d'Artin-Rees si, pour tout idéal à droite E, il existe un entier n tel que

$$E \cap I^n \subseteq EI$$
.

THEOREME 4.2.

- (i) Soient A un anneau noethérien à droite, et I un idéal de A engendré par un système centralisant. Alors I a la propriété d'Artin-Rees (cf [6]).
- (ii) Soient A un anneau noethérien à droite, et I un idéal de A engendré par un système fini d'éléments normalisants (i. e. d'éléments de N(A)). Alors I a la propriété d'Artin-Rees [2].

La propriété d'Artin-Rees donne une caractérisation de l'algèbre enveloppante U d'une algèbre de Lie 9 nilpotente.

THÉORÈME 4.3. - Soient 8 une algèbre de Lie de dimension finie et U son algèbre enveloppante. Les conditions suivantes sont équivalentes

- (i) S est nilpotente,
- (ii) tout idéal de U a la propriété d'Artin-Rees.

<u>Définition</u> 4.4. - Soient A un anneau, P un idéal premier de A , et $\mathbb{C}(P) = \{c \ ; \ c + P \ est \ régulier \ dans \ A/P\} \ .$

On dit que P est <u>localisable</u> si, quels que soient $r \in R$ et $c \in C(P)$, il existe $r_1 \in R$ et $c_1 \in C(P)$ tels que

$$rc_1 = cr_1$$
.

THÉORÈME 4.5 [8]. - Soient A un anneau noethérien à droite, et P un idéal premier de A. Supposons qu'il existe un idéal bilatère I, tel que I = P, et que I soit engendré par un système centralisant. Alors P est localisable si, et seulement si, P/I est localisable.

COROLLAIRE 4.6. - Si A est un anneau noethérien à droite, et P un idéal premier de A engendré par un système centralisant, alors P est localisable.

<u>Définition</u> 4.7. - Un anneau A est dit <u>classique</u>, si tout idéal premier de A est localisable.

Exemple 4.8. - L'algèbre enveloppante U d'une algèbre de Lie g nilpotente de dimension finie est un anneau classique.

5. Le Primidealsatz et le Hauptidealsatz de Krull.

<u>Définition</u> 5.1. - Soient A un anneau, et $J(A) = \{a : aA \subset Aa\}$. Une famille finie d'éléments de A, x_1 , x_2 , ..., x_n , forme un <u>système idéalisant</u> si

(i) $x_1 \in J(A)$,

(ii) $x_i \in J(A/(x_1, ..., x_{i-1}))$ avec $2 \le i \le n$.

Si P est un idéal premier d'un anneau A, on définit ht(P) par le sup des longueurs des chaînes d'idéaux premiers

$$P = P_0 \Rightarrow P_1 \Rightarrow \dots \Rightarrow P_k$$
.

On a alors le théorème suivant.

THEORÈME 5.2 [8]. - Soit A un anneau classique noethérien à droite. Si I est un idéal de A engendré par un système idéalisant (x_1, x_2, \dots, x_n) , et P un idéal premier minimal sur I, alors $ht(P) \le n$

Le cas n = 1, est le Hauptidealsatz.

6. Anneaux locaux réguliers.

<u>Définition</u> 6.1. - Un anneau A est dit <u>local</u>, si les éléments non inversibles de A forment un idéal noté par \mathfrak{M} .

On va noter par K(A) le sup des longueurs des chaînes d'idéaux premiers

$$P_0 \subset P_1 \subset \dots \subset P_k$$
.

On va noter par K-dim(A) la dimension de Krull de A, définie par GABRIEL et RENTSCHLER.

Enfin, un système normalisant (resp. centralisant), x_1 , x_2 , ..., x_n , est dit

une A-suite normalisante (resp. centralisante), si

- (i) x est régulier dans A,
- (ii) x_i est régulier dans $A/(x_1, x_2, \dots, x_{i-1})$ avec $2 \le i \le n$

<u>Définition</u> 6.2. - Soit A un anneau local, noethérien à droite, et D. son idéal maximal. On dit que A est un anneau <u>local régulier de dimension</u> n, si D. peut être engendré par une A-suite normalisante de n éléments.

On désigne par J(A) le radical de Jacobson de A.

LEMME 6.3. - Soient A un anneau noethérien à droite, et $x \in N(A) \cap J(A)$, x régulier. Si I = xA = Ax, on a

- (i) l'anneau A est premier, si I est premier,
- (ii) l'anneau A est intègre, si I est complètement premier.

<u>Preuve.</u> - D'après 4.2, I a la propriété d'Artin-Rees. Soit $x \in I^{\omega}$. Prenons E = xA. Il existe un entier n tel que

$$E = E \cap I^n \subseteq EI$$
.

On a alors $xA \subseteq xI$.

II existe $t\in I\subset J(A)$, tel que x=xt ; d'où x(1-t)=0 , et x=0 , car 1-t est inversible dans A , puisque $t\in J(A)$. Donc $I^\omega=0$.

(i) Supposons I premier, et aAb = 0 avec $a \neq 0$.

Alors si $aAb \subset I$, on a $b \in I$, ou bien $a \in I$.

Supposons $a \in I$, alors il existe n entier $\geqslant 0$, tel que $a \in I^n$ et $a \not\in I^{n+1}$; on a alors $a = x^n$ c avec $c \not\in I$, comme x^n est régulier, on a cAb = 0, d'où $cAb \subseteq I$ et $b \in I$.

Donc dans tous les cas, $b \in I$.

Montrons que b=0. Sinon, $b\in I^m$ et $b\notin I^{m+1}$, $b=dx^m$, $d\in I$, d'où cAd=0 et $cAd\subseteq I$, avec $c\notin I$ et $d\notin I$, ce qui contredit le fait que I est premier.

Donc b = 0, et A est premier.

(ii) La démonstration est parallèle à celle de (i).

THÉORÈME 6.4 [9]. - Soit A un anneau noæthérien à droite, et mun idéal maximal tel que

- (i) $\mathfrak{M} = J(A)$,
- (ii) A/M artinien,
- (iii) M est engendré par une A-suite normalisante contenant n éléments. Alors gl dh A = dh A M = K(A) = K-dim(A) = n et A est un anneau premier. Si A est local, alors A est intègre.

La démonstration de ce théorème utilise le lemme suivant :

LEMME 6.5. - Soit A un anneau noethérien à droite, et $I \subseteq J(A)$. Si I est engendré par une A-suite normalisante avec n éléments, on a

- (i) gl dh A = gl dh A/I + n,
- (ii) K-dim A = K-dim A/I + n.

Preuve du théorème 6.4. - D'après le lemme, on a

gl dh
$$A = gl dh A/\mathfrak{N} + n$$

$$K$$
-dim $A = K$ -dim $A/\mathfrak{D} + n$

d'où

gl dh
$$A = K-dim A = n$$
.

Nous allons démontrer que

$$K(A) = dh_A A/\mathfrak{M} = n,$$

et A est un anneau premier par récurrence sur n.

Si $\underline{n=1}$ on a $\overline{\mathbb{M}}=Ax=xA$, l'idéal $\overline{\mathbb{M}}$ est premier, et d'après le lemme 6.3, l'anneau A est premier. $(0)\subseteq \overline{\mathbb{M}}$ est une chaîne d'idéaux premier, d'où $K(A)\geqslant 1$. Mais $K(A)\leqslant K$ -dim A=A. Donc K(A)=1. Montrons maintenant que dh_A $A/\overline{\mathbb{M}}=1$. Si $A/\overline{\mathbb{M}}$ était projectif, il existerait un idéal à droite B de A tel que $A=\overline{\mathbb{M}}\oplus B$. Mais alors $B\overline{\mathbb{M}}=0$ et alors Bx=0. Comme x est un élément régulier on aurait B=0, contradiction. Donc dh_A $A/\overline{\mathbb{M}}\geqslant 1$. Mais comme gl dh A=1, on a dh_A $A/\overline{\mathbb{M}}=1$.

Supposons n > 1. Soit, x_1 , x_2 , ..., x_n , une A-suite normalisante de $\overline{\mathbb{M}}$ et $I = x_1$ $A = Ax_1$. Considérons $\overline{A} = A/I$. $\overline{\mathbb{M}}$ est l'unique idéal maximal de \overline{A} . $\overline{\mathbb{M}} = J(\overline{A})$. $\overline{A}/\overline{\mathbb{M}} \cong A/\overline{\mathbb{M}}$ artinien, et $\overline{\mathbb{M}}$ est engendré par la \overline{A} -suite normalisante \overline{x}_2 , \overline{x}_3 , ..., \overline{x}_n . Donc $K(A) = dh_{\overline{A}} \overline{A}/\overline{\mathbb{M}} = n - 1$, et \overline{A} est un anneau premier. I est alors un idéal premier, et il s'ensuit que A est un anneau premier, d'après le lemme 6.3.

On a

$$K(A) \ge K(\overline{A}) + 1 = n$$
 et $K(A) \le n = K$ -dim $A \cdot D^!$ où $K(A) = n$.

D'autre part,

$$dh_{\overline{A}} \overline{A}/\overline{M} = dh_{\overline{A}} \overline{A}/\overline{M} + 1 = n$$

et puisque A/M et A/M sont des A-modules isomorphes, il s'ensuit que,

$$dh_A A/\widetilde{w} = n$$
.

Supposons maintenant que A soit local, et montrons que A est intègre par récurrence sur n .

Si $\underline{n=1}$ $\underline{\mathfrak{M}}=Ax=xA$. Comme $\underline{\mathfrak{M}}$ est complètement premier, A est intègre, par le lemme 6.3.

Soit n > 1. Posons $\overline{A} = A/Ax_1$. Par hypothèse de récurrence \overline{A} est intègre, et I complètement premier ; A est alors intègre, toujours d'après le lemme 6.3.

Exemple 6.6 [9]. - Soit 3 une algèbre de Lie nilpotente de dimension finie sur

un corps k, U son algèbre enveloppante, et P un idéal complètement premier de U engendré par une A-suite centralisante. Alors, U_P est un anneau local régulier, et son idéal maximal est engendré par une U_P -suite centralisante. Quand on prend pour P l'idéal dans U engendré par un idéal R de S, on trouve la situation ci-dessus avec la précision supplémentaire que U_P est alors un anneau local régulier de dimension $\dim R$. On peut se demander si en prenant k algébriquement clos, pour tout idéal premier P de U, U_P est un anneau local régulier. WALKER montre que c'est le cas pour l'algèbre enveloppante de l'algèbre de Lie nilpotente de dimension S.

Remarque 6.7.

(i) Si V(A) désigne le cardinal d'un système de générateurs à droite minimal de l'idéal maximal $\mathfrak M$ d'un anneau local régulier de dimension n , on n'a pas nécessairement V(A) = n , comme dans le cas commutatif.

En effet, en prenant A = k[x, y, z] avec xy - yx = z, et 2k l'idéal complètement premier engendré par la A-suite centralisante z, x, y, $A_{\widehat{M}}$ donne lieu à un anneau local régulier de dimension 3, mais $V(A_{\widehat{M}}) = 2$, car xA + yA.

(ii) K. L. FIELDS a donné un exemple [5] d'un anneau noethérien à droite local A tel que

gl dh
$$A = 2$$
 et $dh_A A/w = 1$.

Aussi, il ne semble pas être connu si la finitude de la dimension globale implique, ou non, que l'anneau soit intègre, bien que cela soit le cas si l'idéal singulier à droite de l'anneau est nul.

7. Le théorème d'Eisenbud-Evans.

D. EISENBUD et G. EVANS ont obtenu le résultat suivant.

THÉORÈME 7.1. - Soit A un anneau commutatif noethérien de dimension de Krull n, et supposons que A = B[X]. Soit I un idéal de A. Il existe alors n éléments, g_1 , g_2 , ..., $g_n \in I$, tels que

$$\sqrt{I} = \sqrt{(g_1, g_2, \dots, g_n)}$$

où la racine d'un idéal j , (\sqrt{J}) , est l'idéal des éléments nilpotents modulo J . La version non commutative que nous donnons de ce théorème fait apparaître n + 1 paramètres, g_1 , g_2 , ... , g_{n+1} . D'autre part, on utilise la notion de K-dim au lieu de la dimension de Krull classique. Enfin on utilise la notion de radical d'un idéal rad $I = \bigcap_{T \subseteq P} P$ au lieu de \sqrt{I} . On obtient alors le théorème suivant.

THÉORÈME 7.2. - Soit A un anneau semi-premier tel que K-dim A \leq n , et I un idéal bilatère de A engendré par un système normalisant, x_1 , x_2 , ..., x_m . Il existe alors n + 1 éléments, g_1 , g_2 , ..., g_{n+1} , dans I tels que

rad I = rad
$$(g_1, g_2, \dots, g_{n+1})$$
.

La démonstration du théorème utilise le lemme suivant

LEMME 7.3. - Soit I un idéal bilatère de A, engendré par un système normalisant x_1 , x_2 , ..., x_m . Soient c_i , $1 \le i \le m$, des éléments réguliers de A, et J un idéal bilatère de A tels que c_i $x_i \in J$, $1 \le i \le m$. Alors, l'élément régulier c_i a la propriété c_i c_i

<u>Preuve.</u> - On raisonne par récurrence sur m .Si m = 1 , alors I = \mathbf{x}_1 A = A \mathbf{x}_1 . Comme \mathbf{c}_1 $\mathbf{x}_1 \in \mathbf{J}$, on a \mathbf{c}_1 \mathbf{x}_1 A = \mathbf{x}_1 I \subset J .

Supposons m > 1 , alors I = I' + x_m A , où I' = x_1 A + ... + x_{m-1} A . D'après l'hypothèse de recurrence, on a c_1 c_2 ... c_{m-1} I' \subset J , d'où

$$c_1 c_2 \dots c_{m-1} c_m I' \subset J$$
.

Soit $i \in I$, alors $i = i' + x_n$ a. Donc,

$$c_1 c_2 ... c_{m-1} c_m (i' + x_m a) = c_1 c_2 ... c_m i' + c_1 c_2 ... c_m x_m a \in J$$
.

Preuve du théorème 7.2. - On procède par récurrence sur n . Si n = 0 , l'anneau A est artinien semi-premier, donc semi-simple. Tout idéal bilatère de A est engendré par un idempotent central.

Supposons n>1, l'anneau A est semi-premier de K-dimension fini. Alors A est un anneau de Goldie, et admet donc un anneau total de fractions Q semi-simple. QI est un idéal à gauche de Q, engendré par un idempotent. On a

$$QI = Q(c^{-1} g_1) = Qg_1$$
, où $g_1 \in I$.

Il existe alors des éléments réguliers c_i tels que $x_i = c_i^{-1}$ a_i g_1 , $1 \le i \le m$, et alors

$$c_{i} x_{i} = a_{i} g_{1}$$

d'où $c_i x_i \in (g_1)$, et d'après le lemme 7.3, $c = \prod_{c_i} est$, tel que $cI \subset (g_1)$. Si (c) = A, on a $(g_1) = I$.

Si $(c) \neq A$, rad $(c) \neq A$. Considérons $\overline{A} = A/\text{rad}(c)$; K-dim $\overline{A} \leqslant n-1$, car rad(c) contient l'élément régulier c. L'idéal \overline{I} est engendré par le système normalisant, \overline{x}_1 , ..., \overline{x}_m . Par hypothèse de recurrence, on a

rad
$$\overline{I} = \text{rad}(\overline{g}_2, \dots, \overline{g}_{n+1})$$
 avec $g_k \in I$, $2 \le k \le n+1$.

Pour finir la démonstration, il suffit de montrer que rad $I = rad(g_1, g_2, \dots, g_{n+1})$.

Si P est un idéal premier qui contient g_1 , g_2 , ..., g_{n+1} , $(c)I \subset (g_1) \subset P$, ce qui implique $I \subseteq P$ ou $(c) \subseteq P$. Mais comme $\overline{P} \supseteq \overline{I}$, on a encore $P \supseteq I$. Du théorème précédent, il résulte le théorème suivant.

THÉORÈME 7.4. - Si 8 est une algèbre de Lie résoluble de dimension n sur un corps algébriquement clos, et de caractéristique zéro, et si U désigne son algèbre enveloppante, alors pour tout idéal bilatère de U il existe g_1 , g_2 , ..., g_{n+1} éléments de I tels que

$$\sqrt{I} = \sqrt{(g_1, g_2, \dots, g_{n+1})}$$
.

<u>Preuve.</u> - On a K-dim $U \leqslant n$, et tout idéal bilatère de U est engendré par un système normalisant. D'autre part, dans U, tout idéal premier est complètement premier, et le théorème précédent donne alors

$$\sqrt{I} = \sqrt{(g_1, \dots, g_{n+1})}$$
.

Remarque 7.5. - Dans le cas où 3 est nilpotent, on a le même résultat qu'en 7.4 sans l'hypothèse pour le corps d'être algébriquement clos.

BIBLIOGRAPHIE

- [1] ALEV (J.). Un théorème d'Eisenbud-Evans dans les algèbres enveloppantes (à paraître).
- [2] Mc CONNELL (J. C.). The intersection theorem for a class of non-commutative rings, Proc. London math. Soc., 3rd Series, t. 17, 1967, p. 487-498.
- [3] Mc CONNELL (J. C.). Localization in enveloping rings, J. London math. Soc., t. 43, 1968, p. 421-428.
- [4] DIXMIER (J.). Algèbres enveloppantes. Paris, Gauthier-Villars, 1974 (Cahiers scientifiques, 37).
- [5] FIELDS (K. L.). On the global dimension of residue rings, Pacific J. Math., t. 32, 1970, p. 345-349.
- [6] GABRIEL (P.) et NOUAZÉ (Y.). Idéaux premier de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. of Algebra, t. 6, 1967, p. 77-99.
- [7] GOLDIE (A. W.). A note on the intersection theorem, J. London math. Soc., t. 34, 1959, p. 47-48.
- [8] SMITH (P. F.). Localization in group rings, Proc. London math. Soc., 3rd Series, t. 22, 1971, p. 69-90.
- [9] WALKER (R.). Local rings and normalizing sets of elements, Proc. London math. Soc., 3rd Series, t. 24, 1972, p. 27-45.

Jak ALEV 24 rue Jean Colly 75013 PARIS