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ORTHODOX BANDS OF MODULES
par Francis PASTIJN
Summary. - In this paper; we shall consider orthodox bands of commutative groups,
together with a ring of endomorphisms. We shall generalize the concept of a left mo-
dule by introducing orthodox bands of left modules ; we shall also deal with linear
mappings, the transpose of a linear mapping and with the dual of an orthodox band of

left modules.

We shall use the notations and terminilogy of [1](chap 2, § 1) and [2].

1, Definition.

let (R, +, °) be a ring with zero element O and identity 1 . Let S be a
semigroup and R x S == S , (o ’ x) —>» ox a mapping satisfying the following

conditions ¢
(1) ofxy) = (x)(ay) for every o € R and every x , y €8 ,
(ii) (o + B)x = (ox)(px) for every o, B € R and every x € S ,
(2ii) (o o B)x = o(Px) for every o, B € R and every x € S ,
(iv) 1x = x for every x € S .
The so-defined structure will be called an orthodox band of left R-modules. Next

theorem justifies our terminology.

2, THEOREM 1. -~ Let R, S and mapping R x 3 ~—> 3 be as in 1. Then 3 is ah

orthodox band of commutative groups, and the maximal subgroups of S are left inva-

riant by the elements of R .

Proof. - Let x be any element of S , and o any element of R ; we then have

(ox)(0ox) = (0 + 0)x = Ox ,

(ax)(Ox) = (ad+0)x =ox = (0 + a)x

(Ox)(ox) ’
((- o)x)(ax) .

This implies that for any o € R and any x € S, ax Dbelongs to the maximal sub-

(ax)((- )x) = (- 0)x = 0x = (- o + ¥)x

group of S with identity Ox , the inverse of aox in this maximal subgroup must

be (- a)x . hore specifically 1x = x belongs to the maximal subgroup of S with
identity Ox , and its inverse in this maximal subgroup must be (- 1)x . We conclude
that S must be a coumpletely regular semigroup and that all maximal subgroup of S

are left invariant by the elements of R .
For every x , ¥y € S we have

(xy)(xy) = (1 + Dxy) = ((1+ D)1+ 1)y) = x° 5° .
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Let e , f Dbe any idempotents of 3 , then the foregoing implies that

(ef)2 I , hence B, = {xe S ; x° = x}

S
must be a subsemigroup of S . Let x and y belong to & same maximal subgroup of

S , then the foregoing implies
2 2
xy = ((- 1)x)x y (- Dx)xyxy((- 1)y)) = yx ,

hence S is a union of commutative groups. e conclude that S is an orthodox unim

of commutative groups [3].

Let e and f be any idempotent of 5, and x e H , y el . e put (-1)x =x'

f
and (- L)y = y' . then
ef = (ef)%=(l + )(ef) = (1 + 1)(zE't)) = Xz(x'f)z
:=X2 x'fx'f = (xf£)(x'7)

and analogously
ef = (x'f)(xf) .

Since ef , x'f and xf are elements of rectangular group Def [37], the foregoing
implies that =xf and x'f a&are mutually inverse elements of maximal subgroup Hef .
Dually, ey and ey' are nutually inverse elements of maximal subgroup Hef .

Since (xzy)y' = xf and (xf)y = xy we haeve xy R xf , hence xy R ef . Analogously,
gince X‘(xy) = ey and x(ey) =Xy we have xy £ ey , hence xy £ ef . We conclude
that xy # ef . Green's relation ¥ must then be a congruence on S . Thus S is

an orthodox band of commutative groups [3].

3. Remark.

Let S be an orthodox band of commutative groups. Then, by Yamada's theorem ([3]
and [ll]), there exists a band E , and a semilattice of commutative groups Q ,
both having the same structure semilattice Y , such that 3 is the spined product
E.Let Q=U G and E=U En , then S

ney n nweY

n) , ney, x, € G% » €, € E% s multiplication

of Q and E over T : 3 =@ xy
e

consists of ordered pairs (X% ,
is defined by

£)

(X/\ 9 e)\)(yp-' 9 f 7\ u‘

W)Z(X)\yu,e
. « The i i t
for any A, p€ Y , Xy € Gk , 3“ € GM )y & € Eh , fp € Eu The identity element of

G

" ® €Y will be denoted by ln .

9

The following result will generalize a theorem of [47] about semilattices of left
modules, In patching up next theorem and theorem 1, we actually get a characteriza-

tion for orthodox bands of commutative groups.

4. THEOREM 2. - Let S be any orthodox band of commutative groups, and let 2 be

the ring of integers. Let e be any idempotent of S , and x and x' mutually

inverse elements of maximal subgroup He . Define mapping Z x S —> S ,
(k, x) = kx by
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k .
kx = x if k>0,
= € if k

=x'¥ if k<o .

i

Then S is an orthodox band of left Z-modules.

Proof. -~ Conditions (i), (ii), (iii) and (iv) of L are checked by some easy calcu-

lations.

5. Definitions and remarks.

Let S be an orthodox band of left R-modules, and T a congruence on semigroup
S « The natural homouorphism of 3 onto S, will be denoted by Tq . T will be
called R-stable if, and only if, x T y implies (ox) T (qy) for every x , y € S
and every o € R . We can define a mapping R x (S/1) —= s/7, (a, X) —> w=0x .
S/T will then be an orthodox band of left R-modules.

Let S and T Ybe orthodox bands of left R-modules. Mapping & ¢ S — T will

be called R~-linear if, and only if,

o

(1) a(xy) = («x)(gy) for every x , y € 3

N

(ii) o(x) = ad(x) for every x € 5 and every o € R .
3(S) will then be an orthodox band of left R-modules.

Subset 4 of 5 will be called R-3table if, and only if, ox € A for every
X€ o and every « € R . If ¢ 1is an R-linear mapping of S into T , a(s)
will be an R-stable subsemigroup of T , and the kernel of & will be an R-stable
subsemigroup of S . Any R-~stable subsemigroup of an orthodox band of left R-modu-
les must of course be an orthodox band of left R-modules . If T i3 an R-stable
congruence on S , the union of all T-classes containing an idempotent will be an
R-stable subsemigroup of S .

Mapping & : S —3 T will be R~linear if, and only if, é_l ® 1is an R-stable

4

congruence on S . BEquivalence relation T on S 1is an R-stable congruence if, and

only if, Th is an R-linear mapping.

Mapping & ¢ S —> ES , X —>» 0x 1is an R-linear mapping of S onto the band

consisting of all idempotents of S ; Q-l ® d1s then the R-stable congruence ¥ .

Let S ©be the spined product of semilattice of commutative groups Q and band
E . 'Te shall use the same notations as in 3. Q dis the greatest inverse semigroup
homomorphic image of S , and the mapping o4 : 3 —> Q , (xK , en) — X, is a
homomorphism of S onto Q . We shall put 27l a2 o . This congruence < is the
minimal inverse semigroup congruence on S , and we will show that o is R-stable.
Let G be the greatest group homomorphic image of Q , and I : Q —> G ,
x, -—é»§; be a homomorphism of Q onto G , rtr being the minimal group

congruence on Q ., If Xh and y are any elements of Q , then XX F_l I yu if,

and only if, there exists a wn € % sy n< AA W, such that X, 1% = yu 1% . We shall
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put (Ta) (ra) = p ; this congruence 9 is the minimal group congruence on S ,

and we will show that p is R-stable.

6. THEOREM 3. - The minimal inverse senigroup congriuence on an orthodox band of
left R-modules is R-stable.

Proof. - Let X, be any element of Q , and let us take any two elements (x%, eu)
and (X% ’ fn) in A_l Ax . Let o be any element of R . Since ¥ is an R-stable

congruence on S , a(xu , ex) belongs to the ¥-class Gu x e of S containing
Iq

(X% , en) s hence,

a(x% , en) = (yn , en) for some y e G, .

Analogously,

olx

.0 L ) = (z% , fn) for some z €G .

n n

Let (1% ) g%) be £-related with (1% , en) and R-related with (1K , fn) , and
let (1% , hn) be ®related with (1K , en) and F-related with (1n , f%) .
Since, by the restriction of R x S —> 3 to R x (G% x gn) , and R x (Gn x hn)

respectively, G% x &, and G% x hn become left R-modules, we must have

a(ln , g%) = (1% , gn) and a(l% , h%) = (ln , h%) .

Furthermore, we have

(Zn ’ e%) (1n ’ hn)(zu ’ fn)(ln ’ gn)

(a(s, , ) alx, , )01, &)

of(1 n)(x, , £ )1, g,))

il

oz(xn,e)=(ym,en),

, £))..

n n

n

hence z =y , and A(a(xn , en)) = 0oz

7. COROLLARY L. - By mapping R x Q@ —> Q-, (o , x%) —> & = A(oﬂ—l x%) , Q

becomes a semilattice of left R-modules, and A an R-linear mapping of S onto Q.

8. CORVLLARY 2. — Let Q be any semilattice of left R-modules, and Y the struc-

ture semilattice of Q , let E be a band with the same structure semilattice Y ’

let Uue G and LLE be the semilattice decompositions of Q and E respecti-

E
Y n
vely, let S ©be the spined product Q xy.E of Q and E over Y ., By mapping

Rx 3 —=>5, («, (Xn , e%)) -— (oxy , e%) for every we R , and every ne Y ,
. 1or every and every

€ En » S become an orthodox band of left R-modules. Conversely, any

n
orthodox band of left R-modules can be so constructed.

x €G , e
" "

9. COROLLERY 3. - Let 3 be an orthodox normal band of left R-modules, and let

S = U%EY S, be the semilattice decomposition of S . For any A, pe¥, A=y,

the structure homomorphism V¥

A, is an R-linear mapping of orthodox rectangular
?
band of left R-modules Sk into orthodox rectangular band of left R-modules Su .
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Proof. -~ In a semilattice of left R-modules the structure homomorphisms are
R-linear [6]. The theorem now follows from corollary 2 and from a result about normal
bands [10].

10. Remark,

Structure theorems for semilattices of left R-modules [6], together with corolla-—

ry 2 yield structure theorems for orthodox bands of left R-modules.

11, THEORE. 4. - The minimal group congruence on an orthodox band of left R-modules

éfi R~stable.

Proof. - Let X, be any element of G , the greatest group homomorphic image of

A
orthodox band of left R-modules 3 . Let us take any two elements Xy and yu in
~1 ~ X
] T .L 5 & g = . 1
r X, There exists &« ne Y, wn<AAy, such that l% Xh 1n v, Let o be

any element of R . from

(axk)l% = (ax)\)(aln) = oz(x)\ 1) = oz(yu L) = (ozyu\(aym) (ozl'u)l% ,

and ox, € G, , oy, € G“‘ , we conclude that Oly“j r F(ozx}\) , and thus oX = G -
This implies that the minimal group congruence I' ™ T' on Q must be R-stable.

Consequently, the minimal group congruence (FA)—l I'Nh=p on S must be R-stable.

12, COROLLLRY 4. ~ By mapping R x G —3 G , (a, 'x”n) — a’i’u = 65:% , G becomes a
left R-module, and the mapping I'A an R-linear mapping of S onto G .

13. Definitions.

An orthodox band of right R-modules S can be defined in an analogous way as an
orthodox band of left R-modules. Condition (iii) of 1 must then be replaced by
(iii)'s (o o B)x = B(ax) for every o, Be R and every x € S . It will be more

convenient to denote mapping R x S — S, (¢, x) — %00 » (iii)', then, becomes
(iii)! x(a o B) = (x0)B for every o , BeR and every x €8S .

If S is at the same time orthodox band of left R-modules, and orthodox band of

right R-modules, then we shall say that S is an orthodox band of R-bimodules.

Let R =R u {»} , and define addition in R° as follows. For any o, B € R,

we put o+ B =% in R if, and only if, o+ 8=y in R, and
0+ ®=®4 o=,
R will be a group with ''zero" e , We next define mapping R x R — R by
(¢, B) ~> of =y if, and only if, @ e P=+~v in R,
and
(2, @) => o=@,

We also define mapping R x R —> R by
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(¢ y B) —> Ba =y if, and only if, B o a=vy in R,
and
(Qr’oo)__..}c.oazco'
By these two mappings R° becomes a semileottice of R~-bimodules, the structure semi-

lattice being the two element semilattice. We shall use R later in this paper.

The next theorem generalizes a result of [9].

14, THEORIM 5. - Let S be an orthodox band of left R-modules, and T an orthodox
band of right R-modules., Let $§

T be the set of all partial mapping of S into

3,T s,T
dom &Y = dom ¢  dom ¥ , and for every x € dom 3¥ we put o¥(x) = (Qx)(YX) . Define

3
T . Define a multiplication in § as follows : for every & , Ye &

mapping R x SS T — SS T (o, ¢) —> ¢ by dom( &) = dom & and
(QQ)X = (ux)w , for every x € dom & ﬁ% 7 will then be an orthodox band of right
9

R-modules if, and only if, T 1is a semilattice of right R-modules.

Proof. - for any ¢, ¥ € & p and any « €R we have
dom(3¥)e = dom &Y = dom & ndom ¥ = dom da N dom Yo = dom(¢a)(¥8) ,
and for any x € dom(&¥)w we have
((e¥)a)x = ((a¥)x)a = ((ex)(¥x))a = ((&x)a) ((¥x)a) = ((22)x)((¥a)x) = ((sa)(¥a))x ,
hence (&¥)a = (30)(Ya) . For any & e %0 and any @, P € R we have
dom §(or+ B) = dom & = dom S n dom 3B = dom(éa)(3B) ,
and, for any x € dom %(a + B) we have
(a(a+ p))x = (x)(a+ ) = ((x)a)((x)B) = ((2a)x)((2f)x) = (da)(8B)x ,
hence &(o + ) = (w)(@8) . Furthermore,
dom 3o o B) = dom & = dom ¢a = dom(a)B ,
and for any x dom ¥(o ° B) we have
(8(e o B))x = (ex)(a o ) = ((&x)a)B = ((2a)x)B = ((2a)B)x ,
hence @(a o B) = (2a)p . Finally, dom 3l = dom & , and for any x € dom 81 wc have
(¢1)x = (@)1 = @x ,

hence &1 = & . We conclude that § is an orthodox band of right R-modules.

S,T
From the definition of the multiplication in 5, T follows that & 3,7 is commuta-
tive if, and only if, T is commutative. From thls, follows the last part of the

theorem,

15. THEOREM 6. - Let S be an orthodox band of left R-modules, S' the set of

R-linear mappings of S into R , and S' the set of R-linear mapping of S into

R” . Then S' i3 an R-stable subsemigroup of SS R and S* is an R-stable sub-

semigroup of SS,RW .
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Proof. -~ We show that s* is an R-stable subsemigroup of SS R® °*
?

the rest is quite the same. Let x¥* and y* be any elements of s¥* . since R*® is

The proof of

a semiluttice of commutative groups, =x¥y* must be a homomorphism of S into R .
. 3% <& 2
For any x € 3 and any x¥ € S " we shall from now put X'L(X> = {x , x*) « For any

« *
xe€S, any o€ R and any x¥* , y*¥ € 3" we then have

{ox , x* y¥) = {ox , x*) + {ox , ¥

= alx , x¥*) + alx ,.

1t

y
ol x , %) + (x , y*
= alx , x¥ y¥) .

We conclude that for any x* , y* e s* , x* y* mu:t be an R-linear mapping of S
*

3 ® 2, %e 3 . el
into R , hence x¥ y¥e S . S is a subsemigroup ol 58 R® °
9

For any x , y€ S , any x¥ € S* and any ae R we have

<Xy 9 x* Ol> = <Xy ’ X*)O{
(<X ’ *)+ &, X%>)0/
x, xha+ y , x5Ha

(x , x*a) + {y , x*0) ,

s . ~ . [ee) *
hence x% ¢ must be a homomorphism of 3 into R . For any x e S , any x*e S

and any o, B€ R we have

Bx , x*)a
Blx , x*)o

:B(X 9 X';'c (Y) .

Bx , x* @)

]

We conclude that fo- any x¥€ S% and any o€ R, x* o must be an R-linear map—

ping of S into R . Consequently s* pust be an R-stable subsemigroup of iSS R *
9

AL
ki3

16, COROLLARY 5, - S is a semilattice of right R-modules. The structure semi-

*
lattice of S° is isomorphic with the semilattice of prime ideals of S . The map-

% ® R . . * .
ping 1 : S —=—>R , x —> 0 is the identity of S” and the mapping
% kL
0" S—-)Rm, X —>» o is the zero of S .

Proof. - R is a semilattice of right R-modules, hence Sy g® is a semilattice
st H

of right R-modules. Since S¥ is R-stable in § s” must be a semilattice

S,R”?
of right R-modules too.

Let e* be any idempotent of s* , then
Ve* ={x S; &,e"s= }

is a prime ideal of S . For any x € S\Ve_)e

<X ’ e*)e R and (X 3 e-)(—> = (X ) e*2> = <X 9 e%> + (X 9 e*> )

hence (x , e*) = 0 . Conversely, let P be any prime ideal of S , then we can de-

st ¥* " . a
fine efe S by x , e‘f;):w for all x€ P, and <(x , e¥) = 0 for all x € S\Pe

Furthermore, if e* and f%* are any two idempotents of s¥* , we must have
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v Consequently, the semilattice E

ef¥ = Vs U Ven o S

of S¥ is isomorphic with the u-semilattice of all prime ideals of 3 . Since Es%

is isomorphic with the structure semilattice of s* , the result stated in the corol-

consisting of the idempotents

lary follows.

17. COROLLARY 6., - S' is a right R-module which is an R-stable subgroup of 3% :

a¥

S' dis the meximal submodule of s* containing the identity ¥ of S° .

Proof. - L11 elements of S' are 2-linear mappings of S into R , hence, they
can be considered as R-linear mappings of S into R , and consequently S' & s¥,
Sl ' ) R . 0‘ . A 'S - f‘ 3

ince S' 1is R-stable in gS,R , and since clearly SS,R is R-stable in Ss,Rw ’

S' must be R-steble in & from this we imply that S' is R-steble in S* .

Tt must be evident that 1% : S —> R, x —> 0 is the identity of S' . Let

x* be any element of S' , then x%(- 1) € 8' , and for any x € S we have
&, x#(x(- 1)) = &, x*) + &, (= 1)) = &, x*) + &, x*)(-1) =0
and analogously
x, (xx(=1))x*) =0,

hence x*(x¥(= 1)) = (x*(- 1))x* = 1* . This shows thet x* and x*(- 1) are mu-

tually inverse elements of commutative group H the maximal subgroup of 8%

1%
containing 1% . For any element y* € Hl* , we must have Vy* = 0O, hence any ele-

ment y¥* € Hl* belongs to S' . We can couclude that Hl* =3' .

18, THEOREM 7. - Let S be an orthodox band of left R-modules and T any R-stable

congruence on S . The mégping o 2 (8/1)% — s¥ , Xt —> 3x* defined by

x , &%) = (M x, X*) for every x € S is an R-isomorphism of (s/1)* into s¥.

Whenever Uy €S TE0, o being the minimal inverse semigroup congruence on S,

this mapping & is a surjective R-isomorphism of (S/T)* onto S .

Proof. - Let us suppose that X¥ , y* are any elements of (s/1)* , end x any

element of S . We then have

x , a(x* 7)) (Th X , TF )
(™ x , %)+ (M x , )
x , &) + (x, &y

&, (&) (%),

1l

nence &(%# ¥%) = (ex*)(ay*) . Let us suppose that x¥* is any element of (s/0)*,

o any element of R and x any element of 3 , then

1l

L} YA
(" x , x* )
(1" x , ¥«
(x , &xa

&, (&Ha) ,

is an R-linear mapping of S onto s/t ,

x , a(x* a))

hence o(¥* q) = (ex*)a . Since T
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§x* € 8 for any x* e (S/7)* . We conclude that ¢ is an R-linear mapping of
(3/7)" into 5% . Let us now suppose that x* , y* e (S/7T)% , and &x¥ = &y¥ . If

for some x € 8/7 (&, x%) # (X, y¥) , then for any x € (Tf’““)—l x we should have

Il

x ) = (T‘:\ X, x%) = (x 9 x*4) # (x ’ yE) = <T.‘ X, 37*> &, y*)
and this is impossible. We conclude that ¢¥* = dy* implies X#* = y* , hence & is

an isomorphism of (8/T)%* into s* .
It will be sufficient to show that the mapping ¢ : (S/a)* —_ s* , X* - Ix*
defined by <(x , @x%) = Q;q x , x*) for every x € 3, will be an R-isomorphism of

a*
(S/O) onto S . Let =x%* Dbe any element of s¥ , and (x% , e%) and (Xn , fn)

4, oY

any two o-related elements of S . Since (Xn ’ en) and (Xu ' fn) are W@-related
in S , they generate a same principal ideal of S , and thus ((x% , e%) , X¥) = @
if, and only if, <(Xm , fn) , x*) = » , Let us supnose that (x% , en) and

(xK , £,) both belong to S\V 4 . Let (1% , &) be f£-related with (x% ,e,)
and R-related with (1% , £,) , and (1% , b)) R-related with (xn , e,) and
£-related with (1n , f%) ; (1n , g%) and (1% , hn) are both @-related with

(Xn ’ e%) , and (X% y fn) . Hence (ln ’ g%) ’ (1% , h%) € b\fx* , since these two
elements are idempotents of S , and since x* is an homomorphism of S\VX* into

R , we have

(1, b g) » x = (1, k), 2 =0.

From this follows thet
Gy o) s 1) = (0, , 0 )(x, , £, 8) , x

= ((l% 9 h%) ’ X—;‘r>;" <(XH, ’ f%) 5 X%> + <(l% 9 g%) 9 X%> = <(X

il

" ? fn) , X¥)

In any case (x*)_l x% 2 o , Hence the mepping x* € (S/o)* defined by
@ x, X*) = (x , x*¥) for all x € S is well-defined, and we shall have ox¥* = x¥*,

Thus, in this case ¢ must be surjective.

19. COROLLARY 7. - If S is an orthodox band of left R-modules, and @ the greatest

al

. . s - * 3% . .
inverse homomorphic image of 3 , then S and Q" are R-isomorphice.

20. THEOREM 8. — Let S be an orthodox bsnd of left R-modules and T any R-stable

congruence on S . The mepping ¥ : (s/7)' —» s', x* —> ¥(¥x*) defined by

(x , ¥x%) = (Tﬁ x , x*) for any x € S is an R-isomorphism of (s/t)* into S' .

Whenever 2g ST<Sp, p Dbeing the minimal group congruence on S , this mapping

Y is a surjective R-isomorphism of (S/T)' onto S' .

Proof. - It is clear that mapping Y must be the restriction of mapping ¢ (of
theorem 7) to maximal submodule (S/7)!' of (8/7)* , hence Y is an R-isomorphism
of (8/7)' into s . Since for every x € 3 , and every x* e (S/T)' we must have
(R x , %) € R . We conclude fx* € 8' for every Xx*e (s/7)* , thus, ¥ is an

R-isomorphism of (S/T)!' into S' .

It will be sufficient to show that the mapping ¥ : (S/p)! —3 8' , X¥ —> ¥x¥
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defined by <(x , Yx*) = (p§ x , x*¥) for every x € S will be an R-isomorphism of
(S/p)' onto 3' . Let x* be any element of S' . Since x* must be a homomorphism
of S into the additive group R , we have (x*)_l x* 2 p ., Hence the mapping

T* e (8/p)' defined by (s x , T*) = (x , x¥) for every x €S i -rell-defined,

and we shall have Y¥x¥ = x¥* ., Thus, in this case Y must be su-jective.

2l. CORALLARY 8, — If S 1is an orthodox band of left R-modules, Q the greatest

inverse homomorphic image of S, and G the greatest group homomorphic imgage of S,

then S' and Q' are both R-isomorphic with right R-module G' which is the
dual of left R-module G .

22. THEOREII 9. - Let S be an orthodox b.nd of left R-modules, and
S=U ,.-U s=U
"

GM x E% its semilattice decomposition. For any A € Y , map-

neY neyY
ping 1% : 5 — R® defined by <(x , 1#) = 0 if, and only if, x € Uy>k S% , and
(x , li) = @ otherwise, is an idempotent of s* . The maximal submodule H Cof 3%

I
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containing 1% is R-isomorphic with (Uu>x S%)' and with right R-module Gi , the

dual of left R-module Gh .

Proof. — For any A e Y, U is an R-stable subsemigroup of S , and GX

3
u>h

will be the greatest group homomorphic image of U « From corollary 8 follows

3
nWZN K
that (Un>K S%)' and Gi are R-isomorphic right R-modules. It is easy to show
that S\(Uy>k Sn) is a prime ideal of S . From results in the proof of corollary 5

then follows that li must be an idempotent of S%* . We remark that for any x% € S%

s* € . if, and only if,

3 1 - ) s - - :
Hence the mapping H, —> (U%2A Su) , X - x¥e UnZA S, 1is an R-isomorphism

A

w >

/
of Hli onto \Un2k y

23. COROLLARY 9. - We use the same notations as in 22. Let @ be the greatest inver-

se semigroup homomorphic image of 35 and Q = UneY Gn its semilattice decomposition.
. t .

For any Ay, €Y, AZ=2p, let Qk u be the structure homomorphism of @ , and

_—— =y _— , ==

* .
3 a3 s . I > % 1 3 . e s . “w -
A its transpose. Then lu > 1k in 3 Let QM,K ng — Hlm be the struc

A
ture homomorphism of s* . For any A €Y the mapping 'YA : Hl* —_— Gi ,

¢

x* —3 Yk x* , defined by A
<(XK , e%) s X""> = <¢V‘,,)\. X% ’ Y}\, X""'> EO—I‘_ai]; (X% 9 e%> € U%?}\ SK 9
is an R-isomorphism of Hl* onto Gi , and the following diagram is commutative.
Yu
- '
I s Gu
g g E
i Q
s B A Ay
1
Bo =7 &
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- Y 3 Cap. .
Proof. The mapping Un?k S% —_— GK ’ (XK ’ em) -3 Qn,% x, 1is an homomorphism
of Un>k Sn onto its greatest group homomorphic image Gk . YX must then be an

R-isomorphism of Hl* onto Gi by theorem 8.
A
Let x%* Dbe any element of Hl* , and X, any element of Gk . Ye proceed to show
that K

t

%) — 3 e
<XX ’ @A’u ¥, x*) = S )

Moy

Indeed
t | S _ L1
(x5 » @k,u ¥, x ) = (g LB YM x*)

"
for all u 2w , @n,u X, =X 1p ’ eule E%
= (x, , eh) , x¥) for all e € E, ,
= <xx , ex) , X¥ 1§> for all e, € E,
ik * B

= i(xk ’ ex)e, @M?§ x*> for all e, € By
= (x Y. ¢F . x¥*) .

A7OTN g

We conclude that t@ " Y =Y, & .

24. COROLLARY 10. — We use the same notations as in 22 and 23. Let the structure se-

milattice of S be a lattice. Consider V = L&EX G; , and define nmultiplication in

V Dby the following. For any x' , y' eV, x' € Gi , y' € G& , put

t t
Tyt — X' @ 1 .

Define mapping R x V —> V , (a, x') —» x'a in the usual way. Then V is a

semilattice of right R-modules, and there exists an R-isomorphism of ¥V into S¥% .

If Y satisfies the minimal condition, V must be R-isomorphic with S* .

25+ Remarks.

Corollaries 9 and 1O show that S  could well be named the dual of § . If Y is
a lattice, the structure semilattice of V is the V-semilattice Y . Results of
[ 6] make the connections between structure theorems for S and structure theorems

for V more explicit.

Theorem 7 is quite analogous with a result in [ 5] (§ 5) about the character semi-
group of a commutative semigroup, and theorem 9, corollary 9 and corollary 10 are in

a certain way analogous with results of [7] and [8] (see alsc [2], chapter 5).

Next theorem generalizes the concept of the transpose of an R-linear mapping.

26, THEOREM 10. - Let S and T be orthodox bands of left R-modules,and

®: S ~-»T an R-linear mapping. The mapping To s TF s¥ , t¥ —> TC&* ,
defined by <(x , TC&*} = (Gx , t*) for all xe S , must be an R-linear mapping of
7% into 5%, and Te(T#) is embeddable in (/071 @)% = (@s)* .

Proof. - It must be clear that for any t%* € ¥ , we must have T@k* e s¥ , since
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® is R-linear. It is not difficult either to show that T@ is R~linear.

Let % and v* be any clements of T* , then t*/€5 and v*|@ are both ele-
ments of (@)% , since @S is an R-stable subsemigroup of T . From the definition
of T@ we have that TCk* = T@V* if, and only if, v*|@S = t*|@ . This implies
. that the mepping ~O(T*) —» (@8)* ., T
into (&8)#* ,

is an R-isomorphism of T@(T*)

27. COROLLARY 11. —Let S , T and G be as in theorem 10. The mapping

Y. T -— 3, ¥ Sy , defined by (x , t@t*> = (@ , t¥) for all x€ S ,
must be an R-linesr mapping of T' into S' , and t@CP') is embeddable in

(/&7 @) = (@)

28. COROLLARY 12. - We usec the same notations as in 26 and 27. Let and Pp be

P
S
the minimal group congruences on S and T respectively. Let YS : (S/ps)' —> 3!,

X% 3 ¥ x% , be the R-isomorphism defined by (x , iy k) = (pg x , x¥) for all
x €3, and ¥y : (0/g)' — 1", T -3y, T¥, defined by

b, ¥ T*) = (R t, T*%) forall t esS .
9 T T 9 i,

Then there exists an R-linear mapping A ¢ (S/pS) — (T/QT) such that the follow-

ing diagrans are commutative :

s —2 50 st 4___:___ T
‘ A
Psl lPT Ys i

Proof. ~ Since d? @ is an R-linear mapping of S into left R-module T/pT y

(pé @)~ -1 (QT ®) must be an R-stable group cong.uence on S , and, since Pg is

the minimal group congruence on 5 , we must have pg € (g? @)—1 (pg @) . This implies
that A is a well-defined R-linear mapping of S/pS into T/pT . N 1is then an
R-linear mapping of (T/’pT)' into (S/ps)‘ which is defined by

<p§r x , Py = (Apg x , %) for all x €S, and all T%* € (’I‘/pT)'

But since Apg = g? ® , we then have

(Y =, TaT) = (ol ex, T
= (&x , ¥y B
= @, Cory)To)
= Gl x, (4 Cou)E
= \Pg X Ay ip

gl t@Y

for all xe S and all t¥*e (T/pT)' , hence tA =Y e
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