GROUPE D'ÉTUDE D'ALGÈBRE ## FRANCIS PASTIJN ## Orthodox bands of modules *Groupe d'étude d'algèbre*, tome 1 (1975-1976), exp. nº 12, p. 1-13 http://www.numdam.org/item?id=GEA_1975-1976__1_A12_0 © Groupe d'étude d'algèbre (Secrétariat mathématique, Paris), 1975-1976, tous droits réservés. L'accès aux archives de la collection « Groupe d'étude d'algèbre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 27 mai 1976 #### ORTHODOX BANDS OF MODULES ## par Francis PASTIJN Summary. - In this paper, we shall consider orthodox bands of commutative groups, together with a ring of endomorphisms. We shall generalize the concept of a left module by introducing orthodox bands of left modules; we shall also deal with linear mappings, the transpose of a linear mapping and with the dual of an orthodox band of left modules. We shall use the notations and terminilogy of [1](chap 2, § 1) and [2]. ## 1. Definition. Let $(R, +, \circ)$ be a ring with zero element 0 and identity 1. Let S be a semigroup and $R \times S \longrightarrow S$, $(\alpha, x) \longrightarrow \alpha x$ a mapping satisfying the following conditions: - (i) $\alpha(xy) = (\alpha x)(\alpha y)$ for every $\alpha \in \mathbb{R}$ and every $x, y \in \mathbb{S}$, - (ii) $(\alpha + \beta)x = (\alpha x)(\beta x)$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$, - (iii) $(\alpha \circ \beta)x = \alpha(\beta x)$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$, - (iv) 1x = x for every $x \in S$. The so-defined structure will be called an orthodox band of left R-modules. Next theorem justifies our terminology. 2. THEOREM 1. - Let R, S and mapping $R \times S \longrightarrow S$ be as in 1. Then S is an orthodox band of commutative groups, and the maximal subgroups of S are left invariant by the elements of R. <u>Proof.</u> - Let x be any element of S , and lpha any element of R ; we then have $$(0x)(0x) = (0 + 0)x = 0x$$, $$(\alpha x)(0x) = (\alpha + 0)x = \alpha x = (0 + \alpha)x = (0x)(\alpha x),$$ $$(\alpha x)((-\alpha)x) = (\alpha - \alpha)x = 0x = (-\alpha + \alpha)x = ((-\alpha)x)(\alpha x).$$ This implies that for any $\alpha \in R$ and any $x \in S$, αx belongs to the maximal subgroup of S with identity 0x, the inverse of αx in this maximal subgroup must be $(-\alpha)x$. More specifically 1x = x belongs to the maximal subgroup of S with identity 0x, and its inverse in this maximal subgroup must be (-1)x. We conclude that S must be a completely regular semigroup and that all maximal subgroup of S are left invariant by the elements of R. For every x , $y \in S$ we have $$(xy)(xy) = (1 + 1)(xy) = ((1 + 1)x)((1 + 1)y) = x^2 y^2$$. Let e, f be any idempotents of S, then the foregoing implies that $$(ef)^2 = e^2 f^2 = ef$$, hence $E_S = \{x \in S ; x^2 = x\}$ must be a subsemigroup of S . Let x and y belong to a same maximal subgroup of S , then the foregoing implies $$xy = ((-1)x)x^2 y^2((-1)x)xyxy((-1)y)) = yx$$, hence S is a union of commutative groups. We conclude that S is an orthodox union of commutative groups [3]. Let e and f be any idempotent of S , and $x \in H_e$, $y \in H_f$. We put $(-1)x = x^t$ and $(-1)y = y^t$. then ef = $$(ef)^2 = (1 + 1)(ef) = (1 + 1)(x(x'f)) = x^2(x'f)^2$$ = $x^2 x'fx'f = (xf)(x'f)$ and analogously $$ef = (x'f)(xf)$$. Since ef, x'f and xf are elements of rectangular group D_{ef} [3], the foregoing implies that xf and x'f are mutually inverse elements of maximal subgroup H_{ef} . Dually, ey and ey' are mutually inverse elements of maximal subgroup H_{ef} . Since (xy)y' = xf and (xf)y = xy we have $xy \ xf$, hence $xy \ ef$. Analogously, since x'(xy) = ey and x(ey) = xy we have $xy \ ef$, hence $xy \ ef$. We conclude that $xy \ ef$. Green's relation $\ xf$ must then be a congruence on $\ ef$. Thus $\ ef$ is an orthodox band of commutative groups [3]. ## 3. Remark. Let S be an orthodox band of commutative groups. Then, by Yamada's theorem ([3] and [11]), there exists a band E, and a semilattice of commutative groups Q, both having the same structure semilattice Y, such that S is the spined product of Q and E over Y: $S = Q \times_Y E$. Let $Q = \bigcup_{n \in Y} G_n$ and $E = \bigcup_{n \in Y} E_n$, then S consists of ordered pairs (x_n, e_n) , $n \in Y$, $x_n \in G_n$, $e_n \in E_n$; multiplication is defined by $$(x_{\lambda}, e_{\lambda})(y_{\mu}, f_{\mu}) = (x_{\lambda}y_{\mu}, e_{\lambda}f_{\mu})$$ for any λ , $\mu\in Y$, $x_{\lambda}\in G_{\lambda}$, $y_{\mu}\in G_{\mu}$, $e_{\lambda}\in E_{\lambda}$, $f_{\mu}\in E_{\mu}$. The identity element of G_{μ} , $\kappa\in Y$ will be denoted by 1_{μ} . The following result will generalize a theorem of [4] about semilattices of left modules. In patching up next theorem and theorem 1, we actually get a characterization for orthodox bands of commutative groups. 4. THEOREM 2. - Let S be any orthodox band of commutative groups, and let \overline{Z} be the ring of integers. Let e be any idempotent of S, and x and x' mutually inverse elements of maximal subgroup H_e . Define mapping $\overline{Z} \times S \longrightarrow S$, $(k, x) \longrightarrow kx$ by $$kx = x^k$$ if $k > 0$, $= e$ if $k = 0$, $= x^{1-k}$ if $k < 0$. ## Then S is an orthodox band of left Z-modules. <u>Proof.</u> - Conditions (i), (ii), (iii) and (iv) of 1 are checked by some easy calculations. ## 5. Definitions and remarks. Let S be an orthodox band of left R-modules, and τ a congruence on semigroup S. The natural homomorphism of S onto S, will be denoted by $\tau^{\mathbb{N}}$. τ will be called R-stable if, and only if, $x \tau y$ implies $(\alpha x) \tau (\alpha y)$ for every x, $y \in S$ and every $\alpha \in R$. We can define a mapping $R \times (S/\tau) \longrightarrow S/\tau$, $(a, \overline{x}) \longrightarrow \alpha x = \overline{\alpha x}$. S/τ will then be an orthodox band of left R-modules. Let S and T be orthodox bands of left R-modules. Mapping Φ : S \longrightarrow T will be called R-linear if, and only if, - (i) $\Phi(xy) = (\Phi x)(\Phi y)$ for every x, $y \in S$ - (ii) $\Phi(\alpha x) = \alpha \Phi(x)$ for every $x \in S$ and every $\alpha \in R$. - $\bar{\mathfrak{Q}}(S)$ will then be an orthodox band of left R-modules. Subset A of S will be called R-stable if, and only if, $\infty x \in A$ for every $x \in A$ and every $\alpha \in R$. If A is an R-linear mapping of S into T, $\Phi(S)$ will be an R-stable subsemigroup of T, and the kernel of Φ will be an R-stable subsemigroup of S. Any R-stable subsemigroup of an orthodox band of left R-modules must of course be an orthodox band of left R-modules . If T is an R-stable congruence on S, the union of all T-classes containing an idempotent will be an R-stable subsemigroup of S. Mapping $\Phi: S \longrightarrow T$ will be R-linear if, and only if, $\Phi^{-1} \Phi$ is an R-stable congruence on S. Equivalence relation τ on S is an R-stable congruence if, and only if, τ^{k_j} is an R-linear mapping. Mapping $\Phi: S \longrightarrow E_S$, $x \longrightarrow 0x$ is an R-linear mapping of S onto the band consisting of all idempotents of S; Φ^{-1} Φ is then the R-stable congruence $\mathcal K$. Let S be the spined product of semilattice of commutative groups Q and band E . We shall use the same notations as in 3. Q is the greatest inverse semigroup homomorphic image of S , and the mapping $\Delta: S \longrightarrow Q$, $(x_{_{\mathcal{U}}}, e_{_{\mathcal{U}}}) \longrightarrow x_{_{\mathcal{U}}}$ is a homomorphism of S onto Q . We shall put $\Delta^{-1} \Delta = \sigma$. This congruence σ is the minimal inverse semigroup congruence on S , and we will show that σ is R-stable. Let G be the greatest group homomorphic image of Q , and $\Gamma: Q \longrightarrow G$, $x_{_{\mathcal{U}}} \longrightarrow x_{_{\mathcal{U}}}$ be a homomorphism of Q onto G , $\Gamma^{-1} \Gamma$ being the minimal group congruence on Q . If x and y are any elements of Q , then $x_{_{\mathcal{U}}} \cap x_{_{\mathcal{U}}} x_{_{\mathcal{U}$ put $(\Gamma\Delta)^{-1}(\Gamma\Delta) = \rho$; this congruence ρ is the minimal group congruence on S, and we will show that ρ is R-stable. 6. THEOREM 3. - The minimal inverse semigroup congruence on an orthodox band of left R-modules is R-stable. Proof. - Let x_{n} be any element of Q, and let us take any two elements (x_{n}, e_{n}) and (x_{n}, f_{n}) in $\Delta^{-1} \Delta x$. Let α be any element of R. Since R is an R-stable congruence on S, $\alpha(x_{n}, e_{n})$ belongs to the R-class $G_{n} \times e_{n}$ of S containing (x_{n}, e_{n}) , hence, $$\alpha(\mathbf{x}_{_{\mathcal{H}}}\ ,\ \mathbf{e}_{_{\mathcal{H}}})\ =\ (\mathbf{y}_{_{\mathcal{H}}}\ ,\ \mathbf{e}_{_{\mathcal{H}}})$$ for some $\mathbf{y}_{_{\mathcal{H}}}\in\mathbf{G}_{_{\mathcal{H}}}$. Analogously, $$\alpha(x_{_{\mathcal{H}}}, f_{_{\mathcal{H}}}) = (z_{_{\mathcal{H}}}, f_{_{\mathcal{H}}})$$ for some $z_{_{\mathcal{H}}} \in G_{_{\mathcal{H}}}$. Let $(1_{_{\mathcal{H}}}$, $g_{_{\mathcal{H}}})$ be C-related with $(1_{_{\mathcal{H}}}$, $e_{_{\mathcal{H}}})$ and R-related with $(1_{_{\mathcal{H}}}$, $f_{_{\mathcal{H}}})$, and let $(1_{_{\mathcal{H}}}$, $h_{_{\mathcal{H}}})$ be R-related with $(1_{_{\mathcal{H}}}$, $e_{_{\mathcal{H}}})$ and C-related with $(1_{_{\mathcal{H}}}$, $f_{_{\mathcal{H}}})$. Since, by the restriction of R × S \longrightarrow S to R × $(G_{_{\mathcal{H}}} \times g_{_{\mathcal{H}}})$, and R × $(G_{_{\mathcal{H}}} \times h_{_{\mathcal{H}}})$ respectively, $G_{_{\mathcal{H}}} \times g_{_{\mathcal{H}}}$ and $G_{_{\mathcal{H}}} \times h_{_{\mathcal{H}}}$ become left R-modules, we must have $$\alpha(1_{\mu}, g_{\mu}) = (1_{\mu}, g_{\mu})$$ and $\alpha(1_{\mu}, h_{\mu}) = (1_{\mu}, h_{\mu})$. Furthermore, we have $$(z_{n}, e_{n}) = (1_{n}, h_{n})(z_{n}, f_{n})(1_{n}, g_{n})$$ $$= (\alpha(1_{n}, h_{n}))(\alpha(x_{n}, f_{n}))(\alpha(1_{n}, g_{n}))$$ $$= \alpha((1_{n}, h_{n})(x_{n}, f_{n})(1_{n}, g_{n}))$$ $$= \alpha(x_{n}, e_{n}) = (y_{n}, e_{n}) ,$$ hence $z_{\mu} = y_{\mu}$, and $\Delta(\alpha(x_{\mu}, e_{\mu})) = \Delta(\alpha(x_{\mu}, f_{\mu}))$. - 7. COROLLARY 1. By mapping $R \times Q \longrightarrow Q$, $(\alpha, x_{n}) \longrightarrow \alpha x_{n} = \Delta(\alpha \Delta^{-1}, x_{n})$, Q becomes a semilattice of left R-modules, and Δ an R-linear mapping of S onto Q. - 8. COROLLARY 2. Let Q be any semilattice of left R-modules, and Y the structure semilattice of Q, let E be a band with the same structure semilattice Y, let $U_{\kappa\in Y}$ G_{κ} and $U_{\kappa\in Y}$ E_{κ} be the semilattice decompositions of Q and E respectively, let S be the spined product $Q\times_Y E$ of Q and E over Y. By mapping $R\times S\longrightarrow S$, $(\alpha$, $(x_{\kappa}, e_{\kappa}))\longrightarrow (\alpha x_{\kappa}, e_{\kappa})$ for every $\alpha\in R$, and every $\kappa\in Y$, $x_{\kappa}\in G_{\kappa}$, $e_{\kappa}\in E_{\kappa}$, S become an orthodox band of left R-modules. Conversely, any orthodox band of left R-modules can be so constructed. - 9. COROLLERY 3. Let S be an orthodox normal band of left R-modules, and let $S = \bigcup_{\mu \in Y} S_{\mu}$ be the semilattice decomposition of S. For any λ , $\mu \in Y$, $\lambda \geqslant \mu$, the structure homomorphism $Y_{\lambda,\mu}$ is an R-linear mapping of orthodox rectangular band of left R-modules S_{λ} into orthodox rectangular band of left R-modules S_{μ} . <u>Proof.</u> - In a semilattice of left R-modules the structure homomorphisms are R-linear [6]. The theorem now follows from corollary 2 and from a result about normal bands [10]. ## 10. Remark. Structure theorems for semilattices of left R-modules [6], together with corollary 2 yield structure theorems for orthodox bands of left R-modules. # 11. THEORE. 4. - The minimal group congruence on an orthodox band of left R-modules is R-stable. <u>Proof.</u> - Let $\widetilde{\mathbf{x}}_{\lambda}$ be any element of G , the greatest group homomorphic image of orthodox band of left R-modules S . Let us take any two elements \mathbf{x}_{λ} and \mathbf{y}_{μ} in Γ^{-1} $\widetilde{\mathbf{x}}_{\lambda}$. There exists a $\varkappa \in \Upsilon$, $\varkappa \leqslant \lambda \wedge \mu$, such that $\mathbf{1}_{\varkappa} \mathbf{x}_{\lambda} = \mathbf{1}_{\varkappa} \mathbf{y}_{\varkappa}$. Let α be any element of R . From $$(\alpha x_{\lambda})_{1_{\mathcal{H}}} = (\alpha x_{\lambda})(\alpha 1_{\mathcal{H}}) = \alpha(x_{\lambda} 1_{\mathcal{H}}) = \alpha(y_{LL} 1_{\mathcal{H}}) = (\alpha y_{LL})(\alpha y_{\mathcal{H}}) = (\alpha 1_{LL})_{1_{\mathcal{H}}},$$ and $\alpha x_{\lambda} \in G_{\lambda}$, $\alpha y_{\mu} \in G_{\mu}$, we conclude that $\alpha y_{\mu} \in \Gamma^{-1} \Gamma(\alpha x_{\lambda})$, and thus $\alpha x_{\lambda} = \alpha y_{\mu}$. This implies that the minimal group congruence $\Gamma^{-1} \Gamma$ on Q must be R-stable. Consequently, the minimal group congruence $(\Gamma \Delta)^{-1} \Gamma \Delta = \rho$ on S must be R-stable. 12 COROLLARY 4. - By mapping $R \times G \longrightarrow G$, $(\alpha, \widetilde{x}_{n}) \longrightarrow \alpha \widetilde{x}_{n} = \widetilde{\alpha x}_{n}$, G becomes a left R-module, and the mapping $\Gamma \Delta$ an R-linear mapping of S onto G. ## 13. Definitions. An orthodox band of right R-modules S can be defined in an analogous way as an orthodox band of left R-modules. Condition (iii) of 1 must then be replaced by (iii)'. $(\alpha \circ \beta)x = \beta(\alpha x)$ for every α , $\beta \in R$ and every $x \in S$. It will be more convenient to denote mapping $R \times S \longrightarrow S$, $(\alpha, x) \longrightarrow x\alpha$. (iii)', then, becomes (iii)' $x(\alpha \circ \beta) = (x\alpha)\beta$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$. If S is at the same time orthodox band of left R-modules, and orthodox band of right R-modules, then we shall say that S is an orthodox band of R-bimodules. Let $R^{\infty}=R\cup\{\infty\}$, and define addition in R^{∞} as follows. For any α , $\beta\in R$, we put $\alpha+\beta=\gamma$ in R^{∞} if, and only if, $\alpha+\beta=\gamma$ in R, and $$\alpha + \infty = \infty + \alpha = \infty$$. R^{∞} will be a group with "zero" ∞ . We next define mapping $R \times R^{\infty} \longrightarrow R^{\infty}$ by $(\alpha, \beta) \longrightarrow \alpha\beta = \gamma$ if, and only if, $\alpha \circ \beta = \gamma$ in R, and $$(\alpha, \infty) \longrightarrow \alpha^{\infty} = \infty$$. We also define mapping $R \times R^{\infty} \longrightarrow R^{\infty}$ by $(\alpha, \beta) \longrightarrow \beta \alpha = \gamma$ if, and only if, $\beta \circ \alpha = \gamma$ in R, and $$(\alpha, \infty) \longrightarrow \infty \alpha = \infty$$. By these two mappings R^{∞} becomes a semilattice of R-bimodules, the structure semilattice being the two element semilattice. We shall use R^{∞} later in this paper. The next theorem generalizes a result of [9]. 14. THEOREM 5. - Let S be an orthodox band of left R-modules, and T an orthodox band of right R-modules. Let $\mathcal{F}_{S,T}$ be the set of all partial mapping of S into T. Define a multiplication in $\mathcal{F}_{S,T}$ as follows: for every Φ , $\Psi \in \mathcal{F}_{S,T}$ dom $\Psi = \text{dom } \Phi \cap \text{dom } \Psi$, and for every $\mathbf{x} \in \text{dom } \Phi \Psi$ we put $\Psi \Psi(\mathbf{x}) = (\Psi \mathbf{x})(\Psi \mathbf{x})$. Define mapping $\mathbf{x} \times \mathcal{F}_{S,T} \longrightarrow \mathcal{F}_{S,T}$, $(\alpha, \Psi) \longrightarrow \Psi \alpha$ by $\text{dom}(\Phi \alpha) = \text{dom } \Phi$ and $(\Phi \alpha) = \text{dom } \Phi$ and $(\Phi \alpha) = \text{dom } \Phi$. So will then be an orthodox band of right R-modules if, and only if, T is a semilattice of right R-modules. <u>Proof.</u> - For any Φ , $\Psi \in \mathfrak{F}_{S,T}$ and any $\alpha \in R$ we have $\operatorname{dom}(\Phi Y)\alpha = \operatorname{dom} \Phi Y = \operatorname{dom} \Phi \cap \operatorname{dom} Y = \operatorname{dom} \Phi \alpha \cap \operatorname{dom} Y\alpha = \operatorname{dom}(\Phi \alpha)(Y\Phi)$, and for any $x \in dom(\Phi Y)\alpha$ we have $((\Phi\Psi)\alpha)x = ((\Phi\Psi)x)\alpha = ((\Phi\chi)(\Psi x))\alpha = ((\Phi\chi)\alpha)((\Psi x)\alpha) = ((\Phi\alpha)x)((\Psi\alpha)x) = ((\Phi\alpha)(\Psi\alpha)x)$ hence $(\Phi Y)\alpha = (\Phi \alpha)(Y\alpha)$. For any $\Phi \in \mathfrak{F}_{S,T}$ and any α , $\beta \in \mathbb{R}$ we have $\operatorname{dom} \ \Phi(\alpha + \beta) = \operatorname{dom} \ \Phi = \operatorname{dom} \ \Phi\alpha \cap \operatorname{dom} \ \Phi\beta = \operatorname{dom}(\Phi\alpha)(\Phi\beta) ,$ and, for any $x \in \text{dom } \Phi(\alpha + \beta)$ we have $(\Phi(\alpha + \beta))x = (Ex)(\alpha + \beta) = ((\Phi x)\alpha)((\Phi x)\beta) = ((\Phi \alpha)x)((\Phi \beta)x) = (\Phi \alpha)(\Phi \beta)x,$ hence $\Phi(\alpha + \beta) = (\Phi\alpha)(\Phi\beta)$. Furthermore, dom $\Phi(\alpha \circ \beta) = \text{dom } \Phi = \text{dom } \Phi = \text{dom}(\Phi \alpha)\beta$, and for any $x \text{ dom } \Phi(\alpha \circ \beta)$ we have $(\Phi(\alpha \circ \beta))x = (\Phi x)(\alpha \circ \beta) = ((\Phi x)\alpha)\beta = ((\Phi \alpha)x)\beta = ((\Phi \alpha)\beta)x$, hence $\Phi(\alpha \circ \beta) = (\Phi\alpha)\beta$. Finally, dom $\Phi 1 = \text{dom } \Phi$, and for any $x \in \text{dom } \Phi 1$ we have $(\Phi 1)x = (\Phi x)1 = \Phi x ,$ hence $\Phi 1 = \Phi$. We conclude that $\mathfrak{F}_{S,T}$ is an orthodox band of right R-modules. From the definition of the multiplication in ${}^{\mathfrak{F}}_{S,T}$ follows that ${}^{\mathfrak{F}}_{S,T}$ is commutative if, and only if, T is commutative. From this, follows the last part of the theorem. 15. THEOREM 6. - Let S be an orthodox band of left R-modules, S' the set of R-linear mappings of S into R, and S' the set of R-linear mapping of S into R°. Then S' is an R-stable subsemigroup of $\mathfrak{F}_{S,R}$ and S* is an R-stable subsemigroup of $\mathfrak{F}_{S,R}$. <u>Proof.</u> - We show that S^* is an R-stable subsemigroup of $\mathfrak{F}_{S,R^\infty}$. The proof of the rest is quite the same. Let x^* and y^* be any elements of S^* . Since R^∞ is a semilattice of commutative groups, x^*y^* must be a homomorphism of S into R^∞ . For any $x \in S$ and any $x^* \in S^*$ we shall from now put $x^*(x) = \langle x , x^* \rangle$. For any $x \in S$, any $\alpha \in R$ and any x^* , $y^* \in S^*$ we then have $$\langle \alpha \mathbf{x} , \mathbf{x}^* \mathbf{y}^* \rangle = \langle \alpha \mathbf{x} , \mathbf{x}^* \rangle + \langle \alpha \mathbf{x} , \mathbf{y}^* \rangle$$ $$= \alpha \langle \mathbf{x} , \mathbf{x}^* \rangle + \alpha \langle \mathbf{x} , \mathbf{y}^* \rangle$$ $$= \alpha (\langle \mathbf{x} , \mathbf{x}^* \rangle + \langle \mathbf{x} , \mathbf{y}^* \rangle)$$ $$= \alpha \langle \mathbf{x} , \mathbf{x}^* \mathbf{y}^* \rangle.$$ We conclude that for any x^* , $y^* \in S^*$, $x^* y^*$ must be an R-linear mapping of S into R^{∞} , hence $x^* y^* \in S^*$. S^* is a subsemigroup of $\mathfrak{F}_{S_*R^{\infty}}$. For any x , y \in S , any x* \in S* and any $\alpha \in$ R we have $$\langle xy , x^* \alpha \rangle = \langle xy , x^* \rangle \alpha$$ $$= (\langle x , x^* \rangle + \langle y , x^* \rangle) \alpha$$ $$= \langle x , x^* \rangle \alpha + \langle y , x^* \rangle \alpha$$ $$= \langle x , x^* \alpha \rangle + \langle y , x^* \alpha \rangle ,$$ hence $x^*\alpha$ must be a homomorphism of S into R . For any $x\in S$, any $x^*\in S^*$ and any α , $\beta\in R$ we have $$\langle \beta x , x^* \alpha \rangle = \langle \beta x , x^* \rangle \alpha$$ $$= \beta \langle x , x^* \rangle \alpha$$ $$= \beta \langle x , x^* \alpha \rangle .$$ We conclude that for any $x^* \in S^*$ and any $\alpha \in R$, $x^* \alpha$ must be an R-linear mapping of S into R^{∞} . Consequently S^* must be an R-stable subsemigroup of ${}^{\mathfrak{T}}S, R^{\infty}$. 16. COROLLARY 5. - S* is a semilattice of right R-modules. The structure semilattice of S* is isomorphic with the semilattice of prime ideals of S. The mapping $1^*: S \to R^{\infty}$, $x \to 0$ is the identity of S* and the mapping $0^*: S \to R^{\infty}$, $x \to \infty$ is the zero of S*. <u>Proof.</u> - R^{∞} is a semilattice of right R-modules, hence $\mathfrak{T}_{S,R^{\infty}}$ is a semilattice of right R-modules. Since S^{*} is R-stable in $\mathfrak{T}_{S,R^{\infty}}$, S^{*} must be a semilattice of right R-modules too. Let e* be any idempotent of S*, then $$V_{e^*} = \{x \quad S ; \langle x , e^* \rangle = \infty \}$$ is a prime ideal of S . For any $x \in S \setminus V_{e^*}$ $$\langle x, e^* \rangle \in R$$ and $\langle x, e^* \rangle = \langle x, e^{*2} \rangle = \langle x, e^* \rangle + \langle x, e^* \rangle$, hence $\langle x , e^* \rangle = 0$. Conversely, let P be any prime ideal of S, then we can define $e_P^* \in S^*$ by $\langle x , e_P^* \rangle = \infty$ for all $x \in P$, and $\langle x , e_P^* \rangle = 0$ for all $x \in S \backslash P$. Furthermore, if e^* and f^* are any two idempotents of S^* , we must have $V_{e^*f^*} = V_{e^*} \cup V_{f^*}$. Consequently, the semilattice E_{S^*} consisting of the idempotents of S^* is isomorphic with the U-semilattice of all prime ideals of S. Since E_{S^*} is isomorphic with the structure semilattice of S^* , the result stated in the corollary follows. 17. COROLLARY 6. - S' is a right R-module which is an R-stable subgroup of S*: is the maximal submodule of S* containing the identity 1* of S*. <u>Proof.</u> - All elements of S' are R-linear mappings of S into R, hence, they can be considered as R-linear mappings of S into R, and consequently S' \subseteq S'. Since S' is R-stable in $\mathcal{F}_{S,R}$, and since clearly $\mathcal{F}_{S,R}$ is R-stable in $\mathcal{F}_{S,R}^{\infty}$, S' must be R-stable in $\mathcal{F}_{S,R}^{\infty}$; from this we imply that S' is R-stable in S'. It must be evident that $1^*: S \longrightarrow R^{\infty}$, $x \longrightarrow 0$ is the identity of S'. Let x^* be any element of S', then $x^*(-1) \in S'$, and for any $x \in S$ we have $$\langle x , x^*(x^*(-1)) \rangle = \langle x , x^* \rangle + \langle x , x^*(-1) \rangle = \langle x , x^* \rangle + \langle x , x^* \rangle (-1) = 0$$ and analogously $$(x, (x*(-1))x*) = 0,$$ hence $x^*(x^*(-1)) = (x^*(-1))x^* = 1^*$. This shows that x^* and $x^*(-1)$ are mutually inverse elements of commutative group H_{1*} , the maximal subgroup of S^* containing 1^* . For any element $y^* \in H_{1*}$, we must have $V_{y^*} = \square$, hence any element $y^* \in H_{1*}$ belongs to $S^!$. We can conclude that $H_{1*} = S^!$. 18. THEOREM 7. - Let S be an orthodox band of left R-modules and τ any R-stable congruence on S. The mapping $\Phi: (S/\tau)^* \to S^*$, $\overline{x}^* \to \Phi \overline{x}^*$ defined by $\langle x , \Phi \overline{x}^* \rangle = \langle \tau^{\varphi} | x , \overline{x}^* \rangle$ for every $x \in S$ is an R-isomorphism of $(S/\tau)^*$ into S^* . Whenever $\iota_S \subseteq \tau \subseteq \sigma$, σ being the minimal inverse semigroup congruence on S, this mapping Φ is a surjective R-isomorphism of $(S/\tau)^*$ onto S^* . <u>Proof.</u> - Let us suppose that \bar{x}^* , \bar{y}^* are any elements of $(S/\tau)^*$, and x any element of S. We then have $$\begin{array}{l} \langle x \ , \ \Phi(\overline{x}^{*}, \overline{y}^{*}) \rangle = \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{x}^{*}, \overline{y}^{*} \rangle \\ \\ = \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{x}^{*} \rangle + \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{y}^{*} \rangle \\ \\ = \langle x \ , \ \Phi \overline{x}^{*} \rangle + \langle x \ , \ \Phi \overline{y}^{*} \rangle \\ \\ = \langle x \ , \ (\overline{\Phi} \overline{x}^{*})(\overline{\Phi} \overline{y}^{*}) \rangle \ , \end{array}$$ hence $\Phi(\bar{x}^*, \bar{y}^*) = (\bar{\psi}\bar{x}^*)(\bar{\psi}\bar{y}^*)$. Let us suppose that \bar{x}^* is any element of $(S/\tau)^*$, α any element of R and x any element of S, then $$\langle x , \Phi(\overline{x}^* \alpha) \rangle = \langle T^* x , \overline{x}^* \alpha \rangle$$ $$= \langle T^* x , \overline{x}^* \rangle \alpha$$ $$= \langle x , \Phi \overline{x}^* \rangle \alpha$$ $$= \langle x , (\Phi \overline{x}^*) \alpha \rangle ,$$ hence $\Phi(\bar{x}^* \alpha) = (\Phi \bar{x}^*) \alpha$. Since τ^{4} is an R-linear mapping of S onto S/ τ , $\bar{\Psi}\bar{x}^{;k}\in S^{;k}$ for any $\bar{x}^{;k}\in (S/\tau)^{;k}$. We conclude that $\bar{\Phi}$ is an R-linear mapping of $(S/\tau)^{;k}$ into $S^{;k}$. Let us now suppose that $\bar{x}^{;k}$, $\bar{y}^{;k}\in (S/\tau)^{;k}$, and $\bar{\Phi}\bar{x}^{;k}=\bar{\Phi}\bar{y}^{;k}$. If for some $\bar{x}\in S/\tau$ $\langle \bar{x}^{;k}\rangle\neq \langle \bar{x}^{;k}\rangle\neq \langle \bar{x}^{;k}\rangle$, then for any $\bar{x}\in (\tau^{ij})^{-1}$ \bar{x} we should have $\langle x , \overline{\Phi x} \rangle = \langle \tau^{b_1} x , \overline{x}^* \rangle = \langle \overline{x} , \overline{x}^* \rangle \neq \langle \overline{x} , \overline{y}^* \rangle = \langle \tau^{b_1} x , \overline{y}^* \rangle = \langle x , \overline{\Phi y}^* \rangle$ and this is impossible. We conclude that $\bar{\psi}\bar{x}^* = \bar{\psi}\bar{y}^*$ implies $\bar{x}^* = \bar{y}^*$, hence Φ is an isomorphism of $(S/\tau)^*$ into S^* . $$\langle (1_{_{\mathcal{H}}}, g_{_{\mathcal{H}}}), x^* \rangle = \langle (1_{_{\mathcal{H}}}, h_{_{\mathcal{H}}}), x^* \rangle = 0$$. From this follows that $\langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{e}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle = \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{h}_{_{\mathcal{H}}})(\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})(\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{g}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle \\ = \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{h}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle + \langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle + \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{g}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle = \langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle\ .$ In any case $(\mathbf{x}^{\sharp})^{-1}\ \mathbf{x}^{\sharp} \supseteq \sigma$. Hence the mapping $\mathbf{x}^{\sharp} \in (\mathbf{S}/\sigma)^{\sharp}$ defined by $\langle \sigma^{\mathfrak{H}}\ \mathbf{x}\ ,\, \mathbf{x}^{\sharp}\rangle = \langle \mathbf{x}\ ,\, \mathbf{x}^{\sharp}\rangle$ for all $\mathbf{x} \in \mathbf{S}$ is well-defined, and we shall have $\mathbf{x}^{\sharp} = \mathbf{x}^{\sharp}$. Thus, in this case \mathbf{x} must be surjective. - 19. COROLLARY 7. If S is an orthodox band of left R-modules, and Q the greatest inverse homomorphic image of S, then S* and Q* are R-isomorphic. - 20. THEOREM 8. Let S be an orthodox bend of left R-modules and τ any R-stable congruence on S. The mapping $\Psi: (S/\tau)^! \longrightarrow S^!$, $\overline{x}^* \longrightarrow \Psi(\overline{x}^*)$ defined by $\langle x , \overline{y}\overline{x}^* \rangle = \langle \tau^! x , \overline{x}^* \rangle$ for any $x \in S$ is an R-isomorphism of $(S/\tau)^!$ into $S^!$. Whenever $\iota_S \subseteq \tau \subseteq \rho$, ρ being the minimal group congruence on S, this mapping Ψ is a surjective R-isomorphism of $(S/\tau)^!$ onto $S^!$. - <u>Proof.</u> It is clear that mapping Ψ must be the restriction of mapping Φ (of theorem 7) to maximal submodule (S/τ) ' of $(S/\tau)^*$, hence Ψ is an R-isomorphism of (S/τ) ' into S. Since for every $x \in S$, and every $\overline{x}^* \in (S/\tau)$ ' we must have $\langle \tau \overset{h}{\nabla} x, \overline{x}^* \rangle \in R$. We conclude $f\overline{x}^* \in S$ ' for every $\overline{x}^* \in (S/\tau)$ ', thus, Ψ is an R-isomorphism of (S/τ) ' into S'. It will be sufficient to show that the mapping Ψ : $(S/\rho)' \longrightarrow S'$, $\bar{x}^* \longrightarrow \Psi \bar{x}^*$ defined by $\langle x , \sqrt[4]{x} \rangle = \langle \rho^{\frac{1}{2}} x , \overline{x}^* \rangle$ for every $x \in S$ will be an R-isomorphism of $(S/\rho)^*$ onto S^* . Let x^* be any element of S^* . Since x^* must be a homomorphism of S into the additive group R, we have $(x^*)^{-1} x^* \supseteq \rho$. Hence the mapping $\overline{x}^* \in (S/\rho)^*$ defined by $\langle \rho^{\frac{1}{2}} x , \overline{x}^* \rangle = \langle x , x^* \rangle$ for every $x \in S$ is well-defined, and we shall have $\sqrt[4]{x}^* = x^*$. Thus, in this case $\sqrt[4]{x}$ must be subjective. 21. CORALLARY 8. - If S is an orthodox band of left R-modules, Q the greatest inverse homomorphic image of S, and G the greatest group homomorphic image of S, then S' and Q' are both R-isomorphic with right R-module G' which is the dual of left R-module G. 22. THEOREM 9. - Let S be an orthodox band of left R-modules, and $S = \bigcup_{\varkappa \in Y} - \bigcup_{\varkappa} S = \bigcup_{\varkappa \in Y} G_{\varkappa} \times E_{\varkappa} \quad \text{its semilattice decomposition. For any} \quad \lambda \in Y \text{ , map-ping } 1_{\lambda}^{*}: S \longrightarrow R^{\infty} \quad \text{defined by} \quad \langle x \text{ , } 1_{\lambda}^{*} \rangle = 0 \quad \text{if, and only if, } \quad x \in \bigcup_{\varkappa \geqslant \lambda} S_{\varkappa} \text{ , and} \quad \langle x \text{ , } 1_{\lambda}^{*} \rangle = \infty \quad \text{otherwise, is an idempotent of } S^{*} \text{ . The maximal submodule } H_{1_{\lambda}^{*}} \quad \text{of } S^{*} \text{ containing } 1_{\lambda}^{*} \quad \text{is } \text{ R-isomorphic with } (\bigcup_{\varkappa \geqslant \lambda} S_{\varkappa})^{\text{!}} \quad \text{and with right } \text{ R-module } G_{\lambda}^{\text{!}} \text{ , the dual of left } \text{ R-module } G_{\lambda}^{\text{!}} \text{ .}$ <u>Proof.</u> - For any $\lambda \in Y$, $\bigcup_{n \geqslant \lambda} S_n$ is an R-stable subsemigroup of S, and G_λ will be the greatest group homomorphic image of $\bigcup_{n \geqslant \lambda} S_n$. From corollary 8 follows that $(\bigcup_{n \geqslant \lambda} S_n)'$ and G_λ' are R-isomorphic right R-modules. It is easy to show that $S(\bigcup_{n \geqslant \lambda} S_n)$ is a prime ideal of S. From results in the proof of corollary 5 then follows that I_λ^* must be an idempotent of S^* . We remark that for any $x^* \in S^*$, $s^* \in I_{I_\lambda^*}$ if, and only if, $$V_{x^*} = \{x \in S ; \langle x , x^* \rangle = \infty\} = S \setminus (U_{n \geqslant \lambda} S_{\Lambda}).$$ Hence the mapping $H_{1_{\lambda}^{*}} \longrightarrow (\bigcup_{n \geqslant \lambda} S_{n})^{!}$, $x^{**} \longrightarrow x^{**} \in \bigcup_{n \geqslant \lambda} S_{n}$ is an R-isomorphism of $H_{1_{\lambda}^{*}}$ onto $(\bigcup_{n \geqslant \lambda} S_{n})^{!}$. 23. COROLLARY 9. - We use the same notations as in 22. Let Q be the greatest inverse semigroup homomorphic image of S and Q = $\bigcup_{\kappa \in \Upsilon} G_{\kappa}$ its semilattice decomposition. For any λ , $\mu \in \Upsilon$, $\lambda \geqslant \mu$, let $\Phi_{\lambda,\mu}$ be the structure homomorphism of Q, and $\Phi_{\lambda,\mu}$ its transpose. Then $1^*_{\mu} \geqslant 1^*_{\lambda}$ in S^* . Let $\Phi_{\mu,\lambda}^*$: $H_{1^*_{\mu}} \longrightarrow H_{1^*_{\lambda}}$ be the structure homomorphism of S^* . For any $\lambda \in \Upsilon$ the mapping Ψ_{λ} : $H_{1^*_{\lambda}} \longrightarrow G_{\lambda}^!$, $X^* \longrightarrow \Psi_{\lambda} X^*$, defined by $$\langle (x_{_{\mathcal{H}}} , e_{_{\mathcal{H}}}) , x^* \rangle = \langle \Phi_{_{\mathcal{H}}, \lambda} x_{_{\mathcal{H}}} , \Psi_{\lambda} x^* \rangle$$ for all $(x_{_{\mathcal{H}}} , e_{_{\mathcal{H}}}) \in \cup_{_{\mathcal{H}} \geqslant \lambda} S_{_{\mathcal{H}}} ,$ is an R-isomorphism of $H_{1_{\lambda}^{*}}$ onto G_{λ}^{*} , and the following diagram is commutative. $$\stackrel{\Phi^*}{\underset{\mu}{\longrightarrow}}_{\lambda} \rightarrow \stackrel{\Pi_{1^*_{\mu}}}{\longrightarrow} \stackrel{\Psi_{\mu}}{\longrightarrow} \stackrel{G^{!}}{\underset{\lambda}{\longleftarrow}} \stackrel{t}{\longleftarrow}_{\lambda,\mu}$$ <u>Proof.</u> - The mapping $\bigcup_{n \geq \lambda} S_n \longrightarrow G_\lambda$, $(x_n, e_n) \longrightarrow \Phi_{n,\lambda} x_n$ is an homomorphism of $\bigcup_{n\geqslant\lambda} S_n$ onto its greatest group homomorphic image G_λ . Ψ_λ must then be an R-isomorphism of $H_{1\frac{\varkappa}{\lambda}}$ onto G_{λ}^{1} by theorem 8. Let x^* be any element of $H_{1^*_{1^*_{1^*_{1^*}}}}$, and x_λ any element of G_λ . We proceed to show that $$\langle x_{\lambda}, {}^{t} \Phi_{\lambda, \mu} Y_{\lambda} x^{*} \rangle = \langle x_{\lambda}, Y_{\lambda} \Phi_{\mu, \lambda}^{*} x^{*} \rangle$$. The cut $$\langle \mathbf{x}_{\lambda} , \mathbf{t}_{\Phi_{\lambda,\mu}} \, \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle = \langle \Phi_{\lambda,\mu} \, \mathbf{x}_{\lambda} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle$$ 24. COROLLARY 10. - We use the same notations as in 22 and 23. Let the structure semilattice of S be a lattice. Consider $V = \bigcup_{\kappa \in Y} G_{\kappa}^{1}$, and define multiplication in V by the following. For any x^{1} , $y^{1} \in V$, $x^{1} \in G_{\lambda}^{1}$, $y^{1} \in G_{\mu}^{1}$, put $$x'y' = (^{t}\Phi_{\lambda \vee \mu_{\bullet}\lambda} x')(^{t}\Phi_{\lambda \vee \mu_{\bullet}\mu} y')$$. Define mapping $R \times V \longrightarrow V$, $(\alpha, x') \longrightarrow x'\alpha$ in the usual way. Then V is a semilattice of right R-modules, and there exists an R-isomorphism of V into S*. If Y satisfies the minimal condition, V must be R-isomorphic with S^* . ## 25. Remarks. Corollaries 9 and 10 show that S could well be named the dual of S . If Y is a lattice, the structure semilattice of V is the V-semilattice Y. Results of [6] make the connections between structure theorems for S and structure theorems for V more explicit. Theorem 7 is quite analogous with a result in [5] (§ 5) about the character semigroup of a commutative semigroup, and theorem 9, corollary 9 and corollary 10 are in a certain way analogous with results of [7] and [8] (see also [2], chapter 5). Next theorem generalizes the concept of the transpose of an R-linear mapping. 26. THEOREM 10. - Let S and T be orthodox bands of left R-modules, and $\Theta: S \longrightarrow T$ an R-linear mapping. The mapping $T \oplus : T^* \longrightarrow S^*$, $t^* \longrightarrow T \oplus t^*$, defined by $\langle x, T_{\Theta}t^* \rangle = \langle \mathbb{Q}x, t^* \rangle$ for all $x \in S$, must be an R-linear mapping of T^* into S^* , and $T_{\Theta}(T^*)$ is embeddable in $(S/\Theta^{-1} \Theta)^* \cong (\mathbb{Q}S)^*$. <u>Proof.</u> - It must be clear that for any $t^* \in T^*$, we must have ${}^T\Theta t^* \in S^*$, since Θ is R-linear. It is not difficult either to show that $^{\mathrm{T}}\Theta$ is R-linear. Let t^* and v^* be any elements of T^* , then $t^*|\mathfrak{S}$ and $v^*|\mathfrak{S}$ are both elements of $(\mathfrak{S})^*$, since \mathfrak{S} is an R-stable subsemigroup of T. From the definition of $T^*\mathfrak{S}$ we have that $T^*\mathfrak{S}$ of $T^*\mathfrak{S}$ if, and only if, $v^*|\mathfrak{S} = t^*|\mathfrak{S}$. This implies that the mapping $T^*\mathfrak{S}(T^*) \longrightarrow (\mathfrak{S})^*$, $T^*\mathfrak{S}$ is an R-isomorphism of $T^*\mathfrak{S}(T^*)$ into $(\mathfrak{S})^*$. 27. COROLLARY 11. - Let S, T and Θ be as in theorem 10. The mapping $t\Theta: T' \longrightarrow S'$, $t^* \longrightarrow t\Theta t^*$, defined by $\langle x, t\Theta t^* \rangle = \langle \Theta x, t^* \rangle$ for all $x \in S$, must be an R-linear mapping of T' into S', and $t\Theta(T')$ is embeddable in $(S/\Theta^{-1} \Theta)' \cong (\Theta S)'$. 28. COROLLARY 12. - We use the same notations as in 26 and 27. Let $\rho_{\rm S}$ and $\rho_{\rm T}$ be the minimal group congruences on S and T respectively. Let $\Psi_{\rm S}$: $({\rm S}/\rho_{\rm S})^{\dagger} \longrightarrow {\rm S}^{\dagger}$, $\overline{{\bf x}}^* \longrightarrow \Psi_{\rm S}$ $\overline{{\bf x}}^*$, be the R-isomorphism defined by $\langle {\bf x} \ , \ \Psi_{\rm S} \ \overline{{\bf x}}^{*} \rangle = \langle \rho_{\rm S}^{\dagger} \ {\bf x} \ , \ \overline{{\bf x}}^{*} \rangle$ for all ${\bf x} \in {\rm S}$, and $\Psi_{\rm T}$: $({\rm T}/\rho_{\rm T})^{\dagger} \longrightarrow {\rm T}^{\dagger}$, $\overline{{\bf t}}^* \longrightarrow \Psi_{\rm T} \ \overline{{\bf t}}^*$, defined by $\langle {\bf t} \ , \ \Psi_{\rm T} \ \overline{{\bf t}}^* \rangle = \langle \rho_{\rm T}^{\dagger} \ {\bf t} \ , \ \overline{{\bf t}}^* \rangle$ for all ${\bf t} \in {\rm S}$. Then there exists an R-linear mapping $\Lambda:(S/\rho_S) \longrightarrow (T/\rho_T)$ such that the following diagrams are commutative: <u>Proof.</u> – Since $\rho_T^{E_I}$ Θ is an R-linear mapping of S into left R-module T/ρ_T , $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)$ must be an R-stable group congruence on S, and, since ρ_S is the minimal group congruence on S, we must have $\rho_S \subseteq (\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)$. This implies that Λ is a well-defined R-linear mapping of S/ρ_S into T/ρ_T . Λ is then an R-linear mapping of $(T/\rho_T)^{I}$ into $(S/\rho_S)^{I}$ which is defined by $\langle \rho_S^{\xi_f} \; x \; , \; {}^t \Lambda \overline{t} {}^* \rangle \; = \; \langle \Lambda \rho_S^{\xi_f} \; x \; , \; \overline{t} {}^* \rangle \quad \text{for all} \quad x \in \mathbb{S} \; , \; \text{and all} \quad \overline{t} {}^* \in (\mathbb{T}/\rho_{\underline{T}})^{\; \text{!}} \; .$ But since $\Lambda \rho_{\rm S}^{4} = \rho_{\rm T}^{4} \Theta$, we then have $$\begin{split} \langle \rho_{\mathrm{S}}^{\, \, \dagger} \, \, \mathbf{x} \, \, , \, \, \, ^{t} \Lambda \overline{\mathbf{t}}^{\, \ast} \rangle &= \, \langle \rho_{\mathrm{T}}^{\, \, \dagger} \, \, \Theta \mathbf{x} \, \, , \, \, \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \Theta \mathbf{x} \, \, , \, \, \Psi_{\mathrm{T}} \, \, \, \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \mathbf{x} \, \, , \, \, (^{t} \Theta \Psi_{\mathrm{T}}) \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \rho_{\mathrm{S}}^{\, \, \dagger} \, \mathbf{x} \, \, , \, \, (\Psi_{\mathrm{S}}^{-1} \, \, ^{t} \Theta \Psi_{\mathrm{T}}) \overline{\mathbf{t}}^{\, \ast} \rangle \end{split}$$ for all $x \in S$ and all $\overline{t}^* \in (T/\rho_T)^*$, hence ${}^t\Lambda = \Psi_S^{-1} {}^t\Theta \Psi_T$. #### REFERENCES - [1] BOURBAKI (N.). Elements de mathematiques : Algèbre, chap. 2 : Algèbre lineaire Nouvelle édition. Paris, Hermann, 1967 (Act. scient. et ind., 1236; Bourbaki, 6). - [2] CLIFFORD (A. H.) and PRESTON (G. B.). The algebraic theory of semigroups, Vol. 1. Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). - [3] CLIFFORD (A. H.). The structure of orthodox unions of groups, Semigroup Forum, t. 4, 1972, p. 283-337. - [4] FIRSOV (J. M.). Everywhere defined semimodules [in Russian], "Summaries of talks of the All-Union algebraic symposium [1975. Gomel]", Vol. 2, p. 360-361. Gomel, 1975. - [5] HEWITT (E.) and ZUCKERMAN (H. S.). Finite dimensional convolution algebras, Acta Math., Uppsala, t. 93, 1955, p. 67-119. - [6] PASTIJN (F.) and REYNAERTS (H.). Semillatices of modules (to appear). - [7] SCHWARZ (S). The theory of characters of finite commutative semigroups, [in Russian], Czech. math. J., t. 4, 1954, p. 219-247. - [8] WARNE (R. J.) and WILLIAMS (L. K.). Characters on inverse semigroups, Czech. math. J., t. 11, 1961, p. 150-155. - [9] WUYTACK (F.) and DEPUNT (J.). Operators over I-collections of modules, Bull. Soc. math. Belgique, t. 17, 1965, p. 37-54. - [10] YAMADA (M.) and KIMURA (N.). Note on idempotent semigroups II, Proc. Japan Acad., t. 34, 1958, p. 110-112. - [11] YAMADA (M.). Strictly inversive semigroups, Bull. Shimane Univ. (Natural Science), 1963, no 13, p. 128-138. Francis PASTIJN Dienst Hogere Meetkunde Rijksuniversiteit Gent Krijgslaan 271, S. 9 B-9000 GENT (Belgique)