GROUPE D'ÉTUDE D'ALGÈBRE

FRANCIS PASTIJN

Orthodox bands of modules

Groupe d'étude d'algèbre, tome 1 (1975-1976), exp. nº 12, p. 1-13 http://www.numdam.org/item?id=GEA_1975-1976__1_A12_0

© Groupe d'étude d'algèbre

(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Groupe d'étude d'algèbre » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

27 mai 1976

ORTHODOX BANDS OF MODULES

par Francis PASTIJN

Summary. - In this paper, we shall consider orthodox bands of commutative groups, together with a ring of endomorphisms. We shall generalize the concept of a left module by introducing orthodox bands of left modules; we shall also deal with linear mappings, the transpose of a linear mapping and with the dual of an orthodox band of left modules.

We shall use the notations and terminilogy of [1](chap 2, § 1) and [2].

1. Definition.

Let $(R, +, \circ)$ be a ring with zero element 0 and identity 1. Let S be a semigroup and $R \times S \longrightarrow S$, $(\alpha, x) \longrightarrow \alpha x$ a mapping satisfying the following conditions:

- (i) $\alpha(xy) = (\alpha x)(\alpha y)$ for every $\alpha \in \mathbb{R}$ and every $x, y \in \mathbb{S}$,
- (ii) $(\alpha + \beta)x = (\alpha x)(\beta x)$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$,
- (iii) $(\alpha \circ \beta)x = \alpha(\beta x)$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$,
- (iv) 1x = x for every $x \in S$.

The so-defined structure will be called an orthodox band of left R-modules. Next theorem justifies our terminology.

2. THEOREM 1. - Let R, S and mapping $R \times S \longrightarrow S$ be as in 1. Then S is an orthodox band of commutative groups, and the maximal subgroups of S are left invariant by the elements of R.

<u>Proof.</u> - Let x be any element of S , and lpha any element of R ; we then have

$$(0x)(0x) = (0 + 0)x = 0x$$
,

$$(\alpha x)(0x) = (\alpha + 0)x = \alpha x = (0 + \alpha)x = (0x)(\alpha x),$$

$$(\alpha x)((-\alpha)x) = (\alpha - \alpha)x = 0x = (-\alpha + \alpha)x = ((-\alpha)x)(\alpha x).$$

This implies that for any $\alpha \in R$ and any $x \in S$, αx belongs to the maximal subgroup of S with identity 0x, the inverse of αx in this maximal subgroup must be $(-\alpha)x$. More specifically 1x = x belongs to the maximal subgroup of S with identity 0x, and its inverse in this maximal subgroup must be (-1)x. We conclude that S must be a completely regular semigroup and that all maximal subgroup of S are left invariant by the elements of R.

For every x , $y \in S$ we have

$$(xy)(xy) = (1 + 1)(xy) = ((1 + 1)x)((1 + 1)y) = x^2 y^2$$
.

Let e, f be any idempotents of S, then the foregoing implies that

$$(ef)^2 = e^2 f^2 = ef$$
, hence $E_S = \{x \in S ; x^2 = x\}$

must be a subsemigroup of S . Let x and y belong to a same maximal subgroup of S , then the foregoing implies

$$xy = ((-1)x)x^2 y^2((-1)x)xyxy((-1)y)) = yx$$
,

hence S is a union of commutative groups. We conclude that S is an orthodox union of commutative groups [3].

Let e and f be any idempotent of S , and $x \in H_e$, $y \in H_f$. We put $(-1)x = x^t$ and $(-1)y = y^t$. then

ef =
$$(ef)^2 = (1 + 1)(ef) = (1 + 1)(x(x'f)) = x^2(x'f)^2$$

= $x^2 x'fx'f = (xf)(x'f)$

and analogously

$$ef = (x'f)(xf)$$
.

Since ef, x'f and xf are elements of rectangular group D_{ef} [3], the foregoing implies that xf and x'f are mutually inverse elements of maximal subgroup H_{ef} . Dually, ey and ey' are mutually inverse elements of maximal subgroup H_{ef} . Since (xy)y' = xf and (xf)y = xy we have $xy \ xf$, hence $xy \ ef$. Analogously, since x'(xy) = ey and x(ey) = xy we have $xy \ ef$, hence $xy \ ef$. We conclude that $xy \ ef$. Green's relation $\ xf$ must then be a congruence on $\ ef$. Thus $\ ef$ is an orthodox band of commutative groups [3].

3. Remark.

Let S be an orthodox band of commutative groups. Then, by Yamada's theorem ([3] and [11]), there exists a band E, and a semilattice of commutative groups Q, both having the same structure semilattice Y, such that S is the spined product of Q and E over Y: $S = Q \times_Y E$. Let $Q = \bigcup_{n \in Y} G_n$ and $E = \bigcup_{n \in Y} E_n$, then S consists of ordered pairs (x_n, e_n) , $n \in Y$, $x_n \in G_n$, $e_n \in E_n$; multiplication is defined by

$$(x_{\lambda}, e_{\lambda})(y_{\mu}, f_{\mu}) = (x_{\lambda}y_{\mu}, e_{\lambda}f_{\mu})$$

for any λ , $\mu\in Y$, $x_{\lambda}\in G_{\lambda}$, $y_{\mu}\in G_{\mu}$, $e_{\lambda}\in E_{\lambda}$, $f_{\mu}\in E_{\mu}$. The identity element of G_{μ} , $\kappa\in Y$ will be denoted by 1_{μ} .

The following result will generalize a theorem of [4] about semilattices of left modules. In patching up next theorem and theorem 1, we actually get a characterization for orthodox bands of commutative groups.

4. THEOREM 2. - Let S be any orthodox band of commutative groups, and let \overline{Z} be the ring of integers. Let e be any idempotent of S, and x and x' mutually inverse elements of maximal subgroup H_e . Define mapping $\overline{Z} \times S \longrightarrow S$, $(k, x) \longrightarrow kx$ by

$$kx = x^k$$
 if $k > 0$,
 $= e$ if $k = 0$,
 $= x^{1-k}$ if $k < 0$.

Then S is an orthodox band of left Z-modules.

<u>Proof.</u> - Conditions (i), (ii), (iii) and (iv) of 1 are checked by some easy calculations.

5. Definitions and remarks.

Let S be an orthodox band of left R-modules, and τ a congruence on semigroup S. The natural homomorphism of S onto S, will be denoted by $\tau^{\mathbb{N}}$. τ will be called R-stable if, and only if, $x \tau y$ implies $(\alpha x) \tau (\alpha y)$ for every x, $y \in S$ and every $\alpha \in R$. We can define a mapping $R \times (S/\tau) \longrightarrow S/\tau$, $(a, \overline{x}) \longrightarrow \alpha x = \overline{\alpha x}$. S/τ will then be an orthodox band of left R-modules.

Let S and T be orthodox bands of left R-modules. Mapping Φ : S \longrightarrow T will be called R-linear if, and only if,

- (i) $\Phi(xy) = (\Phi x)(\Phi y)$ for every x, $y \in S$
- (ii) $\Phi(\alpha x) = \alpha \Phi(x)$ for every $x \in S$ and every $\alpha \in R$.
- $\bar{\mathfrak{Q}}(S)$ will then be an orthodox band of left R-modules.

Subset A of S will be called R-stable if, and only if, $\infty x \in A$ for every $x \in A$ and every $\alpha \in R$. If A is an R-linear mapping of S into T, $\Phi(S)$ will be an R-stable subsemigroup of T, and the kernel of Φ will be an R-stable subsemigroup of S. Any R-stable subsemigroup of an orthodox band of left R-modules must of course be an orthodox band of left R-modules . If T is an R-stable congruence on S, the union of all T-classes containing an idempotent will be an R-stable subsemigroup of S.

Mapping $\Phi: S \longrightarrow T$ will be R-linear if, and only if, $\Phi^{-1} \Phi$ is an R-stable congruence on S. Equivalence relation τ on S is an R-stable congruence if, and only if, τ^{k_j} is an R-linear mapping.

Mapping $\Phi: S \longrightarrow E_S$, $x \longrightarrow 0x$ is an R-linear mapping of S onto the band consisting of all idempotents of S; Φ^{-1} Φ is then the R-stable congruence $\mathcal K$.

Let S be the spined product of semilattice of commutative groups Q and band E . We shall use the same notations as in 3. Q is the greatest inverse semigroup homomorphic image of S , and the mapping $\Delta: S \longrightarrow Q$, $(x_{_{\mathcal{U}}}, e_{_{\mathcal{U}}}) \longrightarrow x_{_{\mathcal{U}}}$ is a homomorphism of S onto Q . We shall put $\Delta^{-1} \Delta = \sigma$. This congruence σ is the minimal inverse semigroup congruence on S , and we will show that σ is R-stable. Let G be the greatest group homomorphic image of Q , and $\Gamma: Q \longrightarrow G$, $x_{_{\mathcal{U}}} \longrightarrow x_{_{\mathcal{U}}}$ be a homomorphism of Q onto G , $\Gamma^{-1} \Gamma$ being the minimal group congruence on Q . If x and y are any elements of Q , then $x_{_{\mathcal{U}}} \cap x_{_{\mathcal{U}}} \cap x_{_{\mathcal{U}$

put $(\Gamma\Delta)^{-1}(\Gamma\Delta) = \rho$; this congruence ρ is the minimal group congruence on S, and we will show that ρ is R-stable.

6. THEOREM 3. - The minimal inverse semigroup congruence on an orthodox band of left R-modules is R-stable.

Proof. - Let x_{n} be any element of Q, and let us take any two elements (x_{n}, e_{n}) and (x_{n}, f_{n}) in $\Delta^{-1} \Delta x$. Let α be any element of R. Since R is an R-stable congruence on S, $\alpha(x_{n}, e_{n})$ belongs to the R-class $G_{n} \times e_{n}$ of S containing (x_{n}, e_{n}) , hence,

$$\alpha(\mathbf{x}_{_{\mathcal{H}}}\ ,\ \mathbf{e}_{_{\mathcal{H}}})\ =\ (\mathbf{y}_{_{\mathcal{H}}}\ ,\ \mathbf{e}_{_{\mathcal{H}}})$$
 for some $\mathbf{y}_{_{\mathcal{H}}}\in\mathbf{G}_{_{\mathcal{H}}}$.

Analogously,

$$\alpha(x_{_{\mathcal{H}}}, f_{_{\mathcal{H}}}) = (z_{_{\mathcal{H}}}, f_{_{\mathcal{H}}})$$
 for some $z_{_{\mathcal{H}}} \in G_{_{\mathcal{H}}}$.

Let $(1_{_{\mathcal{H}}}$, $g_{_{\mathcal{H}}})$ be C-related with $(1_{_{\mathcal{H}}}$, $e_{_{\mathcal{H}}})$ and R-related with $(1_{_{\mathcal{H}}}$, $f_{_{\mathcal{H}}})$, and let $(1_{_{\mathcal{H}}}$, $h_{_{\mathcal{H}}})$ be R-related with $(1_{_{\mathcal{H}}}$, $e_{_{\mathcal{H}}})$ and C-related with $(1_{_{\mathcal{H}}}$, $f_{_{\mathcal{H}}})$. Since, by the restriction of R × S \longrightarrow S to R × $(G_{_{\mathcal{H}}} \times g_{_{\mathcal{H}}})$, and R × $(G_{_{\mathcal{H}}} \times h_{_{\mathcal{H}}})$ respectively, $G_{_{\mathcal{H}}} \times g_{_{\mathcal{H}}}$ and $G_{_{\mathcal{H}}} \times h_{_{\mathcal{H}}}$ become left R-modules, we must have

$$\alpha(1_{\mu}, g_{\mu}) = (1_{\mu}, g_{\mu})$$
 and $\alpha(1_{\mu}, h_{\mu}) = (1_{\mu}, h_{\mu})$.

Furthermore, we have

$$(z_{n}, e_{n}) = (1_{n}, h_{n})(z_{n}, f_{n})(1_{n}, g_{n})$$

$$= (\alpha(1_{n}, h_{n}))(\alpha(x_{n}, f_{n}))(\alpha(1_{n}, g_{n}))$$

$$= \alpha((1_{n}, h_{n})(x_{n}, f_{n})(1_{n}, g_{n}))$$

$$= \alpha(x_{n}, e_{n}) = (y_{n}, e_{n}) ,$$

hence $z_{\mu} = y_{\mu}$, and $\Delta(\alpha(x_{\mu}, e_{\mu})) = \Delta(\alpha(x_{\mu}, f_{\mu}))$.

- 7. COROLLARY 1. By mapping $R \times Q \longrightarrow Q$, $(\alpha, x_{n}) \longrightarrow \alpha x_{n} = \Delta(\alpha \Delta^{-1}, x_{n})$, Q becomes a semilattice of left R-modules, and Δ an R-linear mapping of S onto Q.
- 8. COROLLARY 2. Let Q be any semilattice of left R-modules, and Y the structure semilattice of Q, let E be a band with the same structure semilattice Y, let $U_{\kappa\in Y}$ G_{κ} and $U_{\kappa\in Y}$ E_{κ} be the semilattice decompositions of Q and E respectively, let S be the spined product $Q\times_Y E$ of Q and E over Y. By mapping $R\times S\longrightarrow S$, $(\alpha$, $(x_{\kappa}, e_{\kappa}))\longrightarrow (\alpha x_{\kappa}, e_{\kappa})$ for every $\alpha\in R$, and every $\kappa\in Y$, $x_{\kappa}\in G_{\kappa}$, $e_{\kappa}\in E_{\kappa}$, S become an orthodox band of left R-modules. Conversely, any orthodox band of left R-modules can be so constructed.
- 9. COROLLERY 3. Let S be an orthodox normal band of left R-modules, and let $S = \bigcup_{\mu \in Y} S_{\mu}$ be the semilattice decomposition of S. For any λ , $\mu \in Y$, $\lambda \geqslant \mu$, the structure homomorphism $Y_{\lambda,\mu}$ is an R-linear mapping of orthodox rectangular band of left R-modules S_{λ} into orthodox rectangular band of left R-modules S_{μ} .

<u>Proof.</u> - In a semilattice of left R-modules the structure homomorphisms are R-linear [6]. The theorem now follows from corollary 2 and from a result about normal bands [10].

10. Remark.

Structure theorems for semilattices of left R-modules [6], together with corollary 2 yield structure theorems for orthodox bands of left R-modules.

11. THEORE. 4. - The minimal group congruence on an orthodox band of left R-modules is R-stable.

<u>Proof.</u> - Let $\widetilde{\mathbf{x}}_{\lambda}$ be any element of G , the greatest group homomorphic image of orthodox band of left R-modules S . Let us take any two elements \mathbf{x}_{λ} and \mathbf{y}_{μ} in Γ^{-1} $\widetilde{\mathbf{x}}_{\lambda}$. There exists a $\varkappa \in \Upsilon$, $\varkappa \leqslant \lambda \wedge \mu$, such that $\mathbf{1}_{\varkappa} \mathbf{x}_{\lambda} = \mathbf{1}_{\varkappa} \mathbf{y}_{\varkappa}$. Let α be any element of R . From

$$(\alpha x_{\lambda})_{1_{\mathcal{H}}} = (\alpha x_{\lambda})(\alpha 1_{\mathcal{H}}) = \alpha(x_{\lambda} 1_{\mathcal{H}}) = \alpha(y_{LL} 1_{\mathcal{H}}) = (\alpha y_{LL})(\alpha y_{\mathcal{H}}) = (\alpha 1_{LL})_{1_{\mathcal{H}}},$$

and $\alpha x_{\lambda} \in G_{\lambda}$, $\alpha y_{\mu} \in G_{\mu}$, we conclude that $\alpha y_{\mu} \in \Gamma^{-1} \Gamma(\alpha x_{\lambda})$, and thus $\alpha x_{\lambda} = \alpha y_{\mu}$. This implies that the minimal group congruence $\Gamma^{-1} \Gamma$ on Q must be R-stable. Consequently, the minimal group congruence $(\Gamma \Delta)^{-1} \Gamma \Delta = \rho$ on S must be R-stable.

12 COROLLARY 4. - By mapping $R \times G \longrightarrow G$, $(\alpha, \widetilde{x}_{n}) \longrightarrow \alpha \widetilde{x}_{n} = \widetilde{\alpha x}_{n}$, G becomes a left R-module, and the mapping $\Gamma \Delta$ an R-linear mapping of S onto G.

13. Definitions.

An orthodox band of right R-modules S can be defined in an analogous way as an orthodox band of left R-modules. Condition (iii) of 1 must then be replaced by (iii)'. $(\alpha \circ \beta)x = \beta(\alpha x)$ for every α , $\beta \in R$ and every $x \in S$. It will be more convenient to denote mapping $R \times S \longrightarrow S$, $(\alpha, x) \longrightarrow x\alpha$. (iii)', then, becomes

(iii)' $x(\alpha \circ \beta) = (x\alpha)\beta$ for every α , $\beta \in \mathbb{R}$ and every $x \in \mathbb{S}$.

If S is at the same time orthodox band of left R-modules, and orthodox band of right R-modules, then we shall say that S is an orthodox band of R-bimodules.

Let $R^{\infty}=R\cup\{\infty\}$, and define addition in R^{∞} as follows. For any α , $\beta\in R$, we put $\alpha+\beta=\gamma$ in R^{∞} if, and only if, $\alpha+\beta=\gamma$ in R, and

$$\alpha + \infty = \infty + \alpha = \infty$$
.

 R^{∞} will be a group with "zero" ∞ . We next define mapping $R \times R^{\infty} \longrightarrow R^{\infty}$ by $(\alpha, \beta) \longrightarrow \alpha\beta = \gamma$ if, and only if, $\alpha \circ \beta = \gamma$ in R,

and

$$(\alpha, \infty) \longrightarrow \alpha^{\infty} = \infty$$
.

We also define mapping $R \times R^{\infty} \longrightarrow R^{\infty}$ by

 $(\alpha, \beta) \longrightarrow \beta \alpha = \gamma$ if, and only if, $\beta \circ \alpha = \gamma$ in R,

and

$$(\alpha, \infty) \longrightarrow \infty \alpha = \infty$$
.

By these two mappings R^{∞} becomes a semilattice of R-bimodules, the structure semilattice being the two element semilattice. We shall use R^{∞} later in this paper.

The next theorem generalizes a result of [9].

14. THEOREM 5. - Let S be an orthodox band of left R-modules, and T an orthodox band of right R-modules. Let $\mathcal{F}_{S,T}$ be the set of all partial mapping of S into T. Define a multiplication in $\mathcal{F}_{S,T}$ as follows: for every Φ , $\Psi \in \mathcal{F}_{S,T}$ dom $\Psi = \text{dom } \Phi \cap \text{dom } \Psi$, and for every $\mathbf{x} \in \text{dom } \Phi \Psi$ we put $\Psi \Psi(\mathbf{x}) = (\Psi \mathbf{x})(\Psi \mathbf{x})$. Define mapping $\mathbf{x} \times \mathcal{F}_{S,T} \longrightarrow \mathcal{F}_{S,T}$, $(\alpha, \Psi) \longrightarrow \Psi \alpha$ by $\text{dom}(\Phi \alpha) = \text{dom } \Phi$ and $(\Phi \alpha) = \text{dom } \Phi$ and $(\Phi \alpha) = \text{dom } \Phi$. So will then be an orthodox band of right R-modules if, and only if, T is a semilattice of right R-modules.

<u>Proof.</u> - For any Φ , $\Psi \in \mathfrak{F}_{S,T}$ and any $\alpha \in R$ we have

 $\operatorname{dom}(\Phi Y)\alpha = \operatorname{dom} \Phi Y = \operatorname{dom} \Phi \cap \operatorname{dom} Y = \operatorname{dom} \Phi \alpha \cap \operatorname{dom} Y\alpha = \operatorname{dom}(\Phi \alpha)(Y\Phi)$,

and for any $x \in dom(\Phi Y)\alpha$ we have

 $((\Phi\Psi)\alpha)x = ((\Phi\Psi)x)\alpha = ((\Phi\chi)(\Psi x))\alpha = ((\Phi\chi)\alpha)((\Psi x)\alpha) = ((\Phi\alpha)x)((\Psi\alpha)x) = ((\Phi\alpha)(\Psi\alpha)x)$

hence $(\Phi Y)\alpha = (\Phi \alpha)(Y\alpha)$. For any $\Phi \in \mathfrak{F}_{S,T}$ and any α , $\beta \in \mathbb{R}$ we have

 $\operatorname{dom} \ \Phi(\alpha + \beta) = \operatorname{dom} \ \Phi = \operatorname{dom} \ \Phi\alpha \cap \operatorname{dom} \ \Phi\beta = \operatorname{dom}(\Phi\alpha)(\Phi\beta) ,$

and, for any $x \in \text{dom } \Phi(\alpha + \beta)$ we have

 $(\Phi(\alpha + \beta))x = (Ex)(\alpha + \beta) = ((\Phi x)\alpha)((\Phi x)\beta) = ((\Phi \alpha)x)((\Phi \beta)x) = (\Phi \alpha)(\Phi \beta)x,$

hence $\Phi(\alpha + \beta) = (\Phi\alpha)(\Phi\beta)$. Furthermore,

dom $\Phi(\alpha \circ \beta) = \text{dom } \Phi = \text{dom } \Phi = \text{dom}(\Phi \alpha)\beta$,

and for any $x \text{ dom } \Phi(\alpha \circ \beta)$ we have

 $(\Phi(\alpha \circ \beta))x = (\Phi x)(\alpha \circ \beta) = ((\Phi x)\alpha)\beta = ((\Phi \alpha)x)\beta = ((\Phi \alpha)\beta)x$,

hence $\Phi(\alpha \circ \beta) = (\Phi\alpha)\beta$. Finally, dom $\Phi 1 = \text{dom } \Phi$, and for any $x \in \text{dom } \Phi 1$ we have

 $(\Phi 1)x = (\Phi x)1 = \Phi x ,$

hence $\Phi 1 = \Phi$. We conclude that $\mathfrak{F}_{S,T}$ is an orthodox band of right R-modules.

From the definition of the multiplication in ${}^{\mathfrak{F}}_{S,T}$ follows that ${}^{\mathfrak{F}}_{S,T}$ is commutative if, and only if, T is commutative. From this, follows the last part of the theorem.

15. THEOREM 6. - Let S be an orthodox band of left R-modules, S' the set of R-linear mappings of S into R, and S' the set of R-linear mapping of S into R°. Then S' is an R-stable subsemigroup of $\mathfrak{F}_{S,R}$ and S* is an R-stable subsemigroup of $\mathfrak{F}_{S,R}$.

<u>Proof.</u> - We show that S^* is an R-stable subsemigroup of $\mathfrak{F}_{S,R^\infty}$. The proof of the rest is quite the same. Let x^* and y^* be any elements of S^* . Since R^∞ is a semilattice of commutative groups, x^*y^* must be a homomorphism of S into R^∞ . For any $x \in S$ and any $x^* \in S^*$ we shall from now put $x^*(x) = \langle x , x^* \rangle$. For any $x \in S$, any $\alpha \in R$ and any x^* , $y^* \in S^*$ we then have

$$\langle \alpha \mathbf{x} , \mathbf{x}^* \mathbf{y}^* \rangle = \langle \alpha \mathbf{x} , \mathbf{x}^* \rangle + \langle \alpha \mathbf{x} , \mathbf{y}^* \rangle$$

$$= \alpha \langle \mathbf{x} , \mathbf{x}^* \rangle + \alpha \langle \mathbf{x} , \mathbf{y}^* \rangle$$

$$= \alpha (\langle \mathbf{x} , \mathbf{x}^* \rangle + \langle \mathbf{x} , \mathbf{y}^* \rangle)$$

$$= \alpha \langle \mathbf{x} , \mathbf{x}^* \mathbf{y}^* \rangle.$$

We conclude that for any x^* , $y^* \in S^*$, $x^* y^*$ must be an R-linear mapping of S into R^{∞} , hence $x^* y^* \in S^*$. S^* is a subsemigroup of $\mathfrak{F}_{S_*R^{\infty}}$.

For any x , y \in S , any x* \in S* and any $\alpha \in$ R we have

$$\langle xy , x^* \alpha \rangle = \langle xy , x^* \rangle \alpha$$

$$= (\langle x , x^* \rangle + \langle y , x^* \rangle) \alpha$$

$$= \langle x , x^* \rangle \alpha + \langle y , x^* \rangle \alpha$$

$$= \langle x , x^* \alpha \rangle + \langle y , x^* \alpha \rangle ,$$

hence $x^*\alpha$ must be a homomorphism of S into R . For any $x\in S$, any $x^*\in S^*$ and any α , $\beta\in R$ we have

$$\langle \beta x , x^* \alpha \rangle = \langle \beta x , x^* \rangle \alpha$$

$$= \beta \langle x , x^* \rangle \alpha$$

$$= \beta \langle x , x^* \alpha \rangle .$$

We conclude that for any $x^* \in S^*$ and any $\alpha \in R$, $x^* \alpha$ must be an R-linear mapping of S into R^{∞} . Consequently S^* must be an R-stable subsemigroup of ${}^{\mathfrak{T}}S, R^{\infty}$.

16. COROLLARY 5. - S* is a semilattice of right R-modules. The structure semilattice of S* is isomorphic with the semilattice of prime ideals of S. The mapping $1^*: S \to R^{\infty}$, $x \to 0$ is the identity of S* and the mapping $0^*: S \to R^{\infty}$, $x \to \infty$ is the zero of S*.

<u>Proof.</u> - R^{∞} is a semilattice of right R-modules, hence $\mathfrak{T}_{S,R^{\infty}}$ is a semilattice of right R-modules. Since S^{*} is R-stable in $\mathfrak{T}_{S,R^{\infty}}$, S^{*} must be a semilattice of right R-modules too.

Let e* be any idempotent of S*, then

$$V_{e^*} = \{x \quad S ; \langle x , e^* \rangle = \infty \}$$

is a prime ideal of S . For any $x \in S \setminus V_{e^*}$

$$\langle x, e^* \rangle \in R$$
 and $\langle x, e^* \rangle = \langle x, e^{*2} \rangle = \langle x, e^* \rangle + \langle x, e^* \rangle$,

hence $\langle x , e^* \rangle = 0$. Conversely, let P be any prime ideal of S, then we can define $e_P^* \in S^*$ by $\langle x , e_P^* \rangle = \infty$ for all $x \in P$, and $\langle x , e_P^* \rangle = 0$ for all $x \in S \backslash P$. Furthermore, if e^* and f^* are any two idempotents of S^* , we must have

 $V_{e^*f^*} = V_{e^*} \cup V_{f^*}$. Consequently, the semilattice E_{S^*} consisting of the idempotents of S^* is isomorphic with the U-semilattice of all prime ideals of S. Since E_{S^*} is isomorphic with the structure semilattice of S^* , the result stated in the corollary follows.

17. COROLLARY 6. - S' is a right R-module which is an R-stable subgroup of S*: is the maximal submodule of S* containing the identity 1* of S*.

<u>Proof.</u> - All elements of S' are R-linear mappings of S into R, hence, they can be considered as R-linear mappings of S into R, and consequently S' \subseteq S'. Since S' is R-stable in $\mathcal{F}_{S,R}$, and since clearly $\mathcal{F}_{S,R}$ is R-stable in $\mathcal{F}_{S,R}^{\infty}$, S' must be R-stable in $\mathcal{F}_{S,R}^{\infty}$; from this we imply that S' is R-stable in S'.

It must be evident that $1^*: S \longrightarrow R^{\infty}$, $x \longrightarrow 0$ is the identity of S'. Let x^* be any element of S', then $x^*(-1) \in S'$, and for any $x \in S$ we have

$$\langle x , x^*(x^*(-1)) \rangle = \langle x , x^* \rangle + \langle x , x^*(-1) \rangle = \langle x , x^* \rangle + \langle x , x^* \rangle (-1) = 0$$
 and analogously

$$(x, (x*(-1))x*) = 0,$$

hence $x^*(x^*(-1)) = (x^*(-1))x^* = 1^*$. This shows that x^* and $x^*(-1)$ are mutually inverse elements of commutative group H_{1*} , the maximal subgroup of S^* containing 1^* . For any element $y^* \in H_{1*}$, we must have $V_{y^*} = \square$, hence any element $y^* \in H_{1*}$ belongs to $S^!$. We can conclude that $H_{1*} = S^!$.

18. THEOREM 7. - Let S be an orthodox band of left R-modules and τ any R-stable congruence on S. The mapping $\Phi: (S/\tau)^* \to S^*$, $\overline{x}^* \to \Phi \overline{x}^*$ defined by $\langle x , \Phi \overline{x}^* \rangle = \langle \tau^{\varphi} | x , \overline{x}^* \rangle$ for every $x \in S$ is an R-isomorphism of $(S/\tau)^*$ into S^* . Whenever $\iota_S \subseteq \tau \subseteq \sigma$, σ being the minimal inverse semigroup congruence on S, this mapping Φ is a surjective R-isomorphism of $(S/\tau)^*$ onto S^* .

<u>Proof.</u> - Let us suppose that \bar{x}^* , \bar{y}^* are any elements of $(S/\tau)^*$, and x any element of S. We then have

$$\begin{array}{l} \langle x \ , \ \Phi(\overline{x}^{*}, \overline{y}^{*}) \rangle = \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{x}^{*}, \overline{y}^{*} \rangle \\ \\ = \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{x}^{*} \rangle + \langle \tau^{t_{i_{j}}} \ x \ , \ \overline{y}^{*} \rangle \\ \\ = \langle x \ , \ \Phi \overline{x}^{*} \rangle + \langle x \ , \ \Phi \overline{y}^{*} \rangle \\ \\ = \langle x \ , \ (\overline{\Phi} \overline{x}^{*})(\overline{\Phi} \overline{y}^{*}) \rangle \ , \end{array}$$

hence $\Phi(\bar{x}^*, \bar{y}^*) = (\bar{\psi}\bar{x}^*)(\bar{\psi}\bar{y}^*)$. Let us suppose that \bar{x}^* is any element of $(S/\tau)^*$, α any element of R and x any element of S, then

$$\langle x , \Phi(\overline{x}^* \alpha) \rangle = \langle T^* x , \overline{x}^* \alpha \rangle$$

$$= \langle T^* x , \overline{x}^* \rangle \alpha$$

$$= \langle x , \Phi \overline{x}^* \rangle \alpha$$

$$= \langle x , (\Phi \overline{x}^*) \alpha \rangle ,$$

hence $\Phi(\bar{x}^* \alpha) = (\Phi \bar{x}^*) \alpha$. Since τ^{4} is an R-linear mapping of S onto S/ τ ,

 $\bar{\Psi}\bar{x}^{;k}\in S^{;k}$ for any $\bar{x}^{;k}\in (S/\tau)^{;k}$. We conclude that $\bar{\Phi}$ is an R-linear mapping of $(S/\tau)^{;k}$ into $S^{;k}$. Let us now suppose that $\bar{x}^{;k}$, $\bar{y}^{;k}\in (S/\tau)^{;k}$, and $\bar{\Phi}\bar{x}^{;k}=\bar{\Phi}\bar{y}^{;k}$. If for some $\bar{x}\in S/\tau$ $\langle \bar{x}^{;k}\rangle\neq \langle \bar{x}^{;k}\rangle\neq \langle \bar{x}^{;k}\rangle$, then for any $\bar{x}\in (\tau^{ij})^{-1}$ \bar{x} we should have

 $\langle x , \overline{\Phi x} \rangle = \langle \tau^{b_1} x , \overline{x}^* \rangle = \langle \overline{x} , \overline{x}^* \rangle \neq \langle \overline{x} , \overline{y}^* \rangle = \langle \tau^{b_1} x , \overline{y}^* \rangle = \langle x , \overline{\Phi y}^* \rangle$

and this is impossible. We conclude that $\bar{\psi}\bar{x}^* = \bar{\psi}\bar{y}^*$ implies $\bar{x}^* = \bar{y}^*$, hence Φ is an isomorphism of $(S/\tau)^*$ into S^* .

$$\langle (1_{_{\mathcal{H}}}, g_{_{\mathcal{H}}}), x^* \rangle = \langle (1_{_{\mathcal{H}}}, h_{_{\mathcal{H}}}), x^* \rangle = 0$$
.

From this follows that

 $\langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{e}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle = \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{h}_{_{\mathcal{H}}})(\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})(\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{g}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle \\ = \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{h}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle + \langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle + \langle (\mathbf{1}_{_{\mathcal{H}}}\ ,\, \mathbf{g}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle = \langle (\mathbf{x}_{_{\mathcal{H}}}\ ,\, \mathbf{f}_{_{\mathcal{H}}})\ ,\, \mathbf{x}^{\sharp}\rangle\ .$ In any case $(\mathbf{x}^{\sharp})^{-1}\ \mathbf{x}^{\sharp} \supseteq \sigma$. Hence the mapping $\mathbf{x}^{\sharp} \in (\mathbf{S}/\sigma)^{\sharp}$ defined by $\langle \sigma^{\mathfrak{H}}\ \mathbf{x}\ ,\, \mathbf{x}^{\sharp}\rangle = \langle \mathbf{x}\ ,\, \mathbf{x}^{\sharp}\rangle$ for all $\mathbf{x} \in \mathbf{S}$ is well-defined, and we shall have $\mathbf{x}^{\sharp} = \mathbf{x}^{\sharp}$. Thus, in this case \mathbf{x} must be surjective.

- 19. COROLLARY 7. If S is an orthodox band of left R-modules, and Q the greatest inverse homomorphic image of S, then S* and Q* are R-isomorphic.
- 20. THEOREM 8. Let S be an orthodox bend of left R-modules and τ any R-stable congruence on S. The mapping $\Psi: (S/\tau)^! \longrightarrow S^!$, $\overline{x}^* \longrightarrow \Psi(\overline{x}^*)$ defined by $\langle x , \overline{y}\overline{x}^* \rangle = \langle \tau^! x , \overline{x}^* \rangle$ for any $x \in S$ is an R-isomorphism of $(S/\tau)^!$ into $S^!$. Whenever $\iota_S \subseteq \tau \subseteq \rho$, ρ being the minimal group congruence on S, this mapping Ψ is a surjective R-isomorphism of $(S/\tau)^!$ onto $S^!$.
- <u>Proof.</u> It is clear that mapping Ψ must be the restriction of mapping Φ (of theorem 7) to maximal submodule (S/τ) ' of $(S/\tau)^*$, hence Ψ is an R-isomorphism of (S/τ) ' into S. Since for every $x \in S$, and every $\overline{x}^* \in (S/\tau)$ ' we must have $\langle \tau \overset{h}{\nabla} x, \overline{x}^* \rangle \in R$. We conclude $f\overline{x}^* \in S$ ' for every $\overline{x}^* \in (S/\tau)$ ', thus, Ψ is an R-isomorphism of (S/τ) ' into S'.

It will be sufficient to show that the mapping Ψ : $(S/\rho)' \longrightarrow S'$, $\bar{x}^* \longrightarrow \Psi \bar{x}^*$

defined by $\langle x , \sqrt[4]{x} \rangle = \langle \rho^{\frac{1}{2}} x , \overline{x}^* \rangle$ for every $x \in S$ will be an R-isomorphism of $(S/\rho)^*$ onto S^* . Let x^* be any element of S^* . Since x^* must be a homomorphism of S into the additive group R, we have $(x^*)^{-1} x^* \supseteq \rho$. Hence the mapping $\overline{x}^* \in (S/\rho)^*$ defined by $\langle \rho^{\frac{1}{2}} x , \overline{x}^* \rangle = \langle x , x^* \rangle$ for every $x \in S$ is well-defined, and we shall have $\sqrt[4]{x}^* = x^*$. Thus, in this case $\sqrt[4]{x}$ must be subjective.

21. CORALLARY 8. - If S is an orthodox band of left R-modules, Q the greatest inverse homomorphic image of S, and G the greatest group homomorphic image of S, then S' and Q' are both R-isomorphic with right R-module G' which is the dual of left R-module G.

22. THEOREM 9. - Let S be an orthodox band of left R-modules, and $S = \bigcup_{\varkappa \in Y} - \bigcup_{\varkappa} S = \bigcup_{\varkappa \in Y} G_{\varkappa} \times E_{\varkappa} \quad \text{its semilattice decomposition. For any} \quad \lambda \in Y \text{ , map-ping } 1_{\lambda}^{*}: S \longrightarrow R^{\infty} \quad \text{defined by} \quad \langle x \text{ , } 1_{\lambda}^{*} \rangle = 0 \quad \text{if, and only if, } \quad x \in \bigcup_{\varkappa \geqslant \lambda} S_{\varkappa} \text{ , and} \quad \langle x \text{ , } 1_{\lambda}^{*} \rangle = \infty \quad \text{otherwise, is an idempotent of } S^{*} \text{ . The maximal submodule } H_{1_{\lambda}^{*}} \quad \text{of } S^{*} \text{ containing } 1_{\lambda}^{*} \quad \text{is } \text{ R-isomorphic with } (\bigcup_{\varkappa \geqslant \lambda} S_{\varkappa})^{\text{!}} \quad \text{and with right } \text{ R-module } G_{\lambda}^{\text{!}} \text{ , the dual of left } \text{ R-module } G_{\lambda}^{\text{!}} \text{ .}$

<u>Proof.</u> - For any $\lambda \in Y$, $\bigcup_{n \geqslant \lambda} S_n$ is an R-stable subsemigroup of S, and G_λ will be the greatest group homomorphic image of $\bigcup_{n \geqslant \lambda} S_n$. From corollary 8 follows that $(\bigcup_{n \geqslant \lambda} S_n)'$ and G_λ' are R-isomorphic right R-modules. It is easy to show that $S(\bigcup_{n \geqslant \lambda} S_n)$ is a prime ideal of S. From results in the proof of corollary 5 then follows that I_λ^* must be an idempotent of S^* . We remark that for any $x^* \in S^*$, $s^* \in I_{I_\lambda^*}$ if, and only if,

$$V_{x^*} = \{x \in S ; \langle x , x^* \rangle = \infty\} = S \setminus (U_{n \geqslant \lambda} S_{\Lambda}).$$

Hence the mapping $H_{1_{\lambda}^{*}} \longrightarrow (\bigcup_{n \geqslant \lambda} S_{n})^{!}$, $x^{**} \longrightarrow x^{**} \in \bigcup_{n \geqslant \lambda} S_{n}$ is an R-isomorphism of $H_{1_{\lambda}^{*}}$ onto $(\bigcup_{n \geqslant \lambda} S_{n})^{!}$.

23. COROLLARY 9. - We use the same notations as in 22. Let Q be the greatest inverse semigroup homomorphic image of S and Q = $\bigcup_{\kappa \in \Upsilon} G_{\kappa}$ its semilattice decomposition. For any λ , $\mu \in \Upsilon$, $\lambda \geqslant \mu$, let $\Phi_{\lambda,\mu}$ be the structure homomorphism of Q, and $\Phi_{\lambda,\mu}$ its transpose. Then $1^*_{\mu} \geqslant 1^*_{\lambda}$ in S^* . Let $\Phi_{\mu,\lambda}^*$: $H_{1^*_{\mu}} \longrightarrow H_{1^*_{\lambda}}$ be the structure homomorphism of S^* . For any $\lambda \in \Upsilon$ the mapping Ψ_{λ} : $H_{1^*_{\lambda}} \longrightarrow G_{\lambda}^!$, $X^* \longrightarrow \Psi_{\lambda} X^*$, defined by

$$\langle (x_{_{\mathcal{H}}} , e_{_{\mathcal{H}}}) , x^* \rangle = \langle \Phi_{_{\mathcal{H}}, \lambda} x_{_{\mathcal{H}}} , \Psi_{\lambda} x^* \rangle$$
 for all $(x_{_{\mathcal{H}}} , e_{_{\mathcal{H}}}) \in \cup_{_{\mathcal{H}} \geqslant \lambda} S_{_{\mathcal{H}}} ,$

is an R-isomorphism of $H_{1_{\lambda}^{*}}$ onto G_{λ}^{*} , and the following diagram is commutative.

$$\stackrel{\Phi^*}{\underset{\mu}{\longrightarrow}}_{\lambda} \rightarrow
\stackrel{\Pi_{1^*_{\mu}}}{\longrightarrow}
\stackrel{\Psi_{\mu}}{\longrightarrow}
\stackrel{G^{!}}{\underset{\lambda}{\longleftarrow}}
\stackrel{t}{\longleftarrow}_{\lambda,\mu}$$

<u>Proof.</u> - The mapping $\bigcup_{n \geq \lambda} S_n \longrightarrow G_\lambda$, $(x_n, e_n) \longrightarrow \Phi_{n,\lambda} x_n$ is an homomorphism of $\bigcup_{n\geqslant\lambda} S_n$ onto its greatest group homomorphic image G_λ . Ψ_λ must then be an R-isomorphism of $H_{1\frac{\varkappa}{\lambda}}$ onto G_{λ}^{1} by theorem 8.

Let x^* be any element of $H_{1^*_{1^*_{1^*_{1^*}}}}$, and x_λ any element of G_λ . We proceed to show that

$$\langle x_{\lambda}, {}^{t} \Phi_{\lambda, \mu} Y_{\lambda} x^{*} \rangle = \langle x_{\lambda}, Y_{\lambda} \Phi_{\mu, \lambda}^{*} x^{*} \rangle$$
.

The cut
$$\langle \mathbf{x}_{\lambda} , \mathbf{t}_{\Phi_{\lambda,\mu}} \, \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle = \langle \Phi_{\lambda,\mu} \, \mathbf{x}_{\lambda} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{y}_{\mu} \, \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle \\ = \langle \mathbf{x}_{\lambda} \, \mathbf{1}_{\mu} , \mathbf{x}^{*} \rangle$$

24. COROLLARY 10. - We use the same notations as in 22 and 23. Let the structure semilattice of S be a lattice. Consider $V = \bigcup_{\kappa \in Y} G_{\kappa}^{1}$, and define multiplication in V by the following. For any x^{1} , $y^{1} \in V$, $x^{1} \in G_{\lambda}^{1}$, $y^{1} \in G_{\mu}^{1}$, put

$$x'y' = (^{t}\Phi_{\lambda \vee \mu_{\bullet}\lambda} x')(^{t}\Phi_{\lambda \vee \mu_{\bullet}\mu} y')$$
.

Define mapping $R \times V \longrightarrow V$, $(\alpha, x') \longrightarrow x'\alpha$ in the usual way. Then V is a semilattice of right R-modules, and there exists an R-isomorphism of V into S*. If Y satisfies the minimal condition, V must be R-isomorphic with S^* .

25. Remarks.

Corollaries 9 and 10 show that S could well be named the dual of S . If Y is a lattice, the structure semilattice of V is the V-semilattice Y. Results of [6] make the connections between structure theorems for S and structure theorems for V more explicit.

Theorem 7 is quite analogous with a result in [5] (§ 5) about the character semigroup of a commutative semigroup, and theorem 9, corollary 9 and corollary 10 are in a certain way analogous with results of [7] and [8] (see also [2], chapter 5).

Next theorem generalizes the concept of the transpose of an R-linear mapping.

26. THEOREM 10. - Let S and T be orthodox bands of left R-modules, and $\Theta: S \longrightarrow T$ an R-linear mapping. The mapping $T \oplus : T^* \longrightarrow S^*$, $t^* \longrightarrow T \oplus t^*$, defined by $\langle x, T_{\Theta}t^* \rangle = \langle \mathbb{Q}x, t^* \rangle$ for all $x \in S$, must be an R-linear mapping of T^* into S^* , and $T_{\Theta}(T^*)$ is embeddable in $(S/\Theta^{-1} \Theta)^* \cong (\mathbb{Q}S)^*$.

<u>Proof.</u> - It must be clear that for any $t^* \in T^*$, we must have ${}^T\Theta t^* \in S^*$, since

 Θ is R-linear. It is not difficult either to show that $^{\mathrm{T}}\Theta$ is R-linear.

Let t^* and v^* be any elements of T^* , then $t^*|\mathfrak{S}$ and $v^*|\mathfrak{S}$ are both elements of $(\mathfrak{S})^*$, since \mathfrak{S} is an R-stable subsemigroup of T. From the definition of $T^*\mathfrak{S}$ we have that $T^*\mathfrak{S}$ of $T^*\mathfrak{S}$ if, and only if, $v^*|\mathfrak{S} = t^*|\mathfrak{S}$. This implies that the mapping $T^*\mathfrak{S}(T^*) \longrightarrow (\mathfrak{S})^*$, $T^*\mathfrak{S}$ is an R-isomorphism of $T^*\mathfrak{S}(T^*)$ into $(\mathfrak{S})^*$.

27. COROLLARY 11. - Let S, T and Θ be as in theorem 10. The mapping $t\Theta: T' \longrightarrow S'$, $t^* \longrightarrow t\Theta t^*$, defined by $\langle x, t\Theta t^* \rangle = \langle \Theta x, t^* \rangle$ for all $x \in S$, must be an R-linear mapping of T' into S', and $t\Theta(T')$ is embeddable in $(S/\Theta^{-1} \Theta)' \cong (\Theta S)'$.

28. COROLLARY 12. - We use the same notations as in 26 and 27. Let $\rho_{\rm S}$ and $\rho_{\rm T}$ be the minimal group congruences on S and T respectively. Let $\Psi_{\rm S}$: $({\rm S}/\rho_{\rm S})^{\dagger} \longrightarrow {\rm S}^{\dagger}$, $\overline{{\bf x}}^* \longrightarrow \Psi_{\rm S}$ $\overline{{\bf x}}^*$, be the R-isomorphism defined by $\langle {\bf x} \ , \ \Psi_{\rm S} \ \overline{{\bf x}}^{*} \rangle = \langle \rho_{\rm S}^{\dagger} \ {\bf x} \ , \ \overline{{\bf x}}^{*} \rangle$ for all ${\bf x} \in {\rm S}$, and $\Psi_{\rm T}$: $({\rm T}/\rho_{\rm T})^{\dagger} \longrightarrow {\rm T}^{\dagger}$, $\overline{{\bf t}}^* \longrightarrow \Psi_{\rm T} \ \overline{{\bf t}}^*$, defined by $\langle {\bf t} \ , \ \Psi_{\rm T} \ \overline{{\bf t}}^* \rangle = \langle \rho_{\rm T}^{\dagger} \ {\bf t} \ , \ \overline{{\bf t}}^* \rangle$ for all ${\bf t} \in {\rm S}$.

Then there exists an R-linear mapping $\Lambda:(S/\rho_S) \longrightarrow (T/\rho_T)$ such that the following diagrams are commutative:

<u>Proof.</u> – Since $\rho_T^{E_I}$ Θ is an R-linear mapping of S into left R-module T/ρ_T , $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)$ must be an R-stable group congruence on S, and, since ρ_S is the minimal group congruence on S, we must have $\rho_S \subseteq (\rho_T^{E_I}\Theta)^{-1}$ $(\rho_T^{E_I}\Theta)$. This implies that Λ is a well-defined R-linear mapping of S/ρ_S into T/ρ_T . Λ is then an R-linear mapping of $(T/\rho_T)^{I}$ into $(S/\rho_S)^{I}$ which is defined by

 $\langle \rho_S^{\xi_f} \; x \; , \; {}^t \Lambda \overline{t} {}^* \rangle \; = \; \langle \Lambda \rho_S^{\xi_f} \; x \; , \; \overline{t} {}^* \rangle \quad \text{for all} \quad x \in \mathbb{S} \; , \; \text{and all} \quad \overline{t} {}^* \in (\mathbb{T}/\rho_{\underline{T}})^{\; \text{!}} \; .$

But since $\Lambda \rho_{\rm S}^{4} = \rho_{\rm T}^{4} \Theta$, we then have

$$\begin{split} \langle \rho_{\mathrm{S}}^{\, \, \dagger} \, \, \mathbf{x} \, \, , \, \, \, ^{t} \Lambda \overline{\mathbf{t}}^{\, \ast} \rangle &= \, \langle \rho_{\mathrm{T}}^{\, \, \dagger} \, \, \Theta \mathbf{x} \, \, , \, \, \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \Theta \mathbf{x} \, \, , \, \, \Psi_{\mathrm{T}} \, \, \, \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \mathbf{x} \, \, , \, \, (^{t} \Theta \Psi_{\mathrm{T}}) \overline{\mathbf{t}}^{\, \ast} \rangle \\ &= \, \langle \rho_{\mathrm{S}}^{\, \, \dagger} \, \mathbf{x} \, \, , \, \, (\Psi_{\mathrm{S}}^{-1} \, \, ^{t} \Theta \Psi_{\mathrm{T}}) \overline{\mathbf{t}}^{\, \ast} \rangle \end{split}$$

for all $x \in S$ and all $\overline{t}^* \in (T/\rho_T)^*$, hence ${}^t\Lambda = \Psi_S^{-1} {}^t\Theta \Psi_T$.

REFERENCES

- [1] BOURBAKI (N.). Elements de mathematiques : Algèbre, chap. 2 : Algèbre lineaire Nouvelle édition. Paris, Hermann, 1967 (Act. scient. et ind., 1236; Bourbaki, 6).
- [2] CLIFFORD (A. H.) and PRESTON (G. B.). The algebraic theory of semigroups, Vol. 1. Providence, American mathematical Society, 1961 (Mathematical Surveys, 7).
- [3] CLIFFORD (A. H.). The structure of orthodox unions of groups, Semigroup Forum, t. 4, 1972, p. 283-337.
- [4] FIRSOV (J. M.). Everywhere defined semimodules [in Russian], "Summaries of talks of the All-Union algebraic symposium [1975. Gomel]", Vol. 2, p. 360-361. Gomel, 1975.
- [5] HEWITT (E.) and ZUCKERMAN (H. S.). Finite dimensional convolution algebras, Acta Math., Uppsala, t. 93, 1955, p. 67-119.
- [6] PASTIJN (F.) and REYNAERTS (H.). Semillatices of modules (to appear).
- [7] SCHWARZ (S). The theory of characters of finite commutative semigroups, [in Russian], Czech. math. J., t. 4, 1954, p. 219-247.
- [8] WARNE (R. J.) and WILLIAMS (L. K.). Characters on inverse semigroups, Czech. math. J., t. 11, 1961, p. 150-155.
- [9] WUYTACK (F.) and DEPUNT (J.). Operators over I-collections of modules, Bull. Soc. math. Belgique, t. 17, 1965, p. 37-54.
- [10] YAMADA (M.) and KIMURA (N.). Note on idempotent semigroups II, Proc. Japan Acad., t. 34, 1958, p. 110-112.
- [11] YAMADA (M.). Strictly inversive semigroups, Bull. Shimane Univ. (Natural Science), 1963, no 13, p. 128-138.

Francis PASTIJN Dienst Hogere Meetkunde Rijksuniversiteit Gent Krijgslaan 271, S. 9 B-9000 GENT (Belgique)