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ORTHODOX BANDS OF MODULES

Francis PASTIJN

Groupe d’étude d’ALGÈBRE
(Marie-Paule MALLIAVIN)
1re année, 1975/76, n° 12, 13 p. 27 mai 1976

. - In this paper, we shall consider orthodox bands of commutative groups,
together with a ring of endomorphisms. We shall generalize the concept of a left mo-
dule by introducing orthodox bands of left modules ; 9 uo shall also deal with linear

mappings, the transpose of a linear mapping and with the dual of an orthodox band of
left modules .

We shall use the notations and terminilogy of [l](chap 2, § 1) and [~2~.

1. Definition.

Let (R, + , o) be a ring with zero élément 0 and identity 1 . Let S be a

semigroup and R x S 2014~ S , (a , x) - ~xx a mapping satisfying the following

conditions :

(i) a(xy) = for every a E R and every x , y ES, y

(ii) (a + 03B2)x = for every 03B1 , 03B2 E Rand every x 

(iii) (a 0 p)x = for every 03B1 , 03B2 e R and every x e S ,

(iv) 1 x = x for every 

The so-defined structure will be called an orthodox band of left R-modules. Next

theorem justifies our terminology.

2. 1. - Let R, y S and mapping R x S --7 S be as in 1. Then S is ah

orthodox band of commutative groups, and the maximal subgroups of S are left inva-

riant by the éléments of R .

Proof. - Let x be any élément of S, and a any element of R ; we then have

This implies that for any ex’ E R and any x E S , ox belongs to the maximal sub-

group of S with identity Ox , the inverse of 03B1x in this maximal subgroup must

be (- f:.;.ore spécifically lx = x belongs to the maximal subgroup of S with

identity Ox , and its inverse in this maximal subgroup must be (- l)x . We conclude
that S must be a completely regular semigroup and that all maximal subgroup of S

are left invariant by thé elements of R. ..

For every x , y E S we have
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Let e ~ f be any idempotents of S y then the foregoing implies that

must be a subsemigroup of S . . Let x and y belon; to a same maximal subgroup of

S , then the foregoing implies

hence S is a union of commutative croups. conclude that S is an orthodox union

of commutative groups [3~]’

Let e and f be any idempotent of S y and x E H ~ y E put (-1~x = Xl
and (- l)y = y’ , then

and analogous ly

Since et y x’ f and xf are éléments of rectangular group Def [3L the foregoing

implies that xf and x’ f are mutually inverse éléments of maximal subgroup 

Dually, ey and ey’ a.re mutually inverse éléments of maximal subgroup .

Since = xf and (xf)y = xy we have xy ~ xf , hence xy ~, ef . Analogously,

since x’ (xy) = ey and x(ey) = xy we have xy F ey , hence xy L ef et lie conclude

that xy ~ ef . Green’s relation /? must then be a congruence on S. Thus S is

an orthodox band of commutative groups [3]. ,

3 . 

Let S be an orthodox band of commutative groups. Then~ by Yamada’s theorem ([3’]
there exists a band E, y and a semilattice of commutative groups Q,

both having the same structure semilattice Y, y such that S is the spined product

of Q and E over Y : S = Q Y E . Let and then S

consists of ordered pairs (x , e ) a fi 6= Y, y x E G, e E EA ; q multiplication

is defined by

f e E . Thé identity élément of
G , will be denoted by 1 .
The following result will generalize a theorem of [4J about semilattices of left

modules. In patching up next theorem and theorem 1, 9 actually get a characteriza-

tion for orthodox bands of commutative groups.

4. THEOREM 2. - Let S be any orthodox band of commutative groups, and let Z be
the ring of integers. Let e be any idempotent of S, and x and x’ mutually

inverse éléments of maximal subgroup Define mapping  x S 2014~ S ,
(k , x) -# kx by
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Then S is an orthodox band of lef t ~-modules.

Proof. - Conditions (i), (ii), (iii) and (iv) of 1 are checked by some easy calcu-

lations.

5. Définitions and remarks.

Let S be an orthodox band of left R-modules, and T a congruence on semigroup
S . The natural homomorphism of 3 onto S, will be denoted by T will be

called R-stable if, and only if, 9 x T y implies T for every x , y y E S

and every cy e R . %le can define a mapping R x (S/T) 2014~ S/T , (a, x) 2014~ 

S/T will then be an orthodox band of ’left R-modules.

Let S and T be orthodox bands of left Mapping 4l : S --7- T will

be called R-linear if, and only if~ g

(i) (~x)(~y) for every x , y E S

(ii) 4l(Qx) = for every x E S and every Q e R .

will then be an orthodox band of left R-modules. ..

Subset A of S will be called R-stable if, and only if, ox E A for every

and every 03B1 ~ R . If 03A6 is an R-linear mapping of S into T , 

will be an R-stable subsemigroup of T , and the kernel of 03A6 will be an R-stable

subsemigroup of S . Any R-stable subsemigroup of an orthodox band of left R-modu-

les must of course be an orthodox band of left R-modules . If T i s an R-stable

congruence on S, the union of all T-classes containing an idempotent will be an

R-stable subsemigroup of S .

Mapping ~} : S 2014~ T will be R-linear if, and only if y ~-1 ~ is an R-stable

congruence on S. Equivalence relation T on S is an R-stable congruence if, and

only if y T~ is an R-linear mapping.

Mapping 03A6 : S ~ ES , y x ~ Ox is an R-linear mapping of S onto the band

consisting of all idempotents of S ; ~-1 ~ is then the R-stable congruence ? .

Let S be the spined product of semilattice of commutative groups Q and band

shall use the same notations as in 3. Q i8 the greatest inverse semigroup

homomorphic image of S , and the mapping A : S 2014~ Q, y (x~ , e ) - x is a

homomorphism of S onto Q . We shall put D-1 ~ - ~ , This congruence 0 is the

minimal inverse semigroup congruence on S, and we will show that Q is R-stable.

Let G be the greatest group homomorphic image of Q, and F : Q - G ,

x 2014~ bc a homomorphism of Q onto G ~ ~ F F being the minimal group

congruence on Q . If x 
À 

and y 
LL 

are any elements of Q , then x 
À 

1’-1 F y  iff
and only if, there exists a A  03BB ^  , such that x, 1 

K 
=y 

)JL 
1 
A 

. We shall
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p ut (f6)-1(f6) = p ; this congruence p is the minimal group congruence on S ,
and we show that p is R-stable.

6. 3. - The minimal inverse semigroup congruence on an orthodox band of
left R-modules is R-stable.

Proof. - Let x be any element of Q , and let us take any elements (x g e )
and (x , f ) Let 03B1 be an y element o f R . Since X is ml R-stable

congruence on S, a(x , , e ) belongs to the X-class G x e of S containing

(x , 9 e ) , 
x hl x x

0153(x , e ) = (y , e ) for some y E G .
n X H, n

Analogously,

f ) = ( z , f ) fr some Z E G .
x n x. x X)1.

Let (1 , g ) be f-related with (1 , e ) and A-related with ( 1 , fA) , and

let (1 , , h ) be R-related with ( 1 , e ) and L-related witn (1 , f ) .
Since, by the restriction of R x S ~ S to R x (G x g ) , 9 and R x (G x h )x n x x

respectively, G x x gA and x hx become left R-modules, we must have

Furthermore, 9 we have

hence z = y , and £(cy(x , e ) ) = 6(a(x , f »)..Î1 11(. ~t ~t rt ~t

7 . COROLLARY 1 . - By mapping R x Q - Q . , ( cz , x ) -7 C0152x = 6( x ) , Q

becomes a semilattice of left R-modules, and Ó an R-linear mapping of S onto Q.

8. COROLLARY 2. - Let Q be semilattice of left R-modules, and Y the struc-

ture semilattice of Q , let E be a band with the same structure semilattice Y ,
let ~A~Y GA and ~A~Y E be semilattice decompositions of Q and E respecti-
vely, let S be the spined product Q Y E °f Q and E over Y . BY mapping
R x S --a S , ( OE , (x , e ) ) ---7 (ooc ,e) for every cv E B. , and every n E Y ,ft K Vb ~t

X OE G e OE E , S become an orthod,ox band of left R-modules. Conversely anyrt ~t X. f1, ’

orthodox band oi left R-modules can be so constructed.

9. COROLLARY 3. - Let S be aii orthodox normal band oi le££_ 1?-nodules, and le£
S = ~A~Y SA be the seimilattice decomposition of S . For anY X , &#x3E; E Y , À % &#x3E; ,
the structure homomorphism 03C803BB,  is an R-linear mapping °f orthodox rectangular
band of left R-modules SA into orthodox rectangular band of left R-modules 5 .
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Proof. - In a semilattice of left R-modules the structure homomorphisms are

The theorem now follows from corollary 2 and from a result about normal

bands ~10~.

10. Remark.

Structure theorems for semilattices of left R-modules [6J1 together with corolla-

ry 2 yield structure theorems for orthodox bands of left R-modules.

11. 4. - The minimal group congruence on an orthodox band of left R-modules

is 

Proof. - Let îÀ be any element of G, the greatest group homomorphic image of

orthodox band of left R-modules 3. Let us take any two éléments and y 
)JL 

in

r x’ . There a x E Y, y )i ~ À /B .1 , such that 1 x = 1 y . Let a’ be

any élément of R . From

(ax,)l = 1 ) = 1 ) = (oy )(ay ) = 

and 03B1x03BB ~ G oy ~ G we conclude that oy e F and thus os: = oy .
This implies that the minimal group congruence r r on Q must be R-stable.

Consequently, the minimal group congruence p on S must be R-stable.

12. COROLLARY 4. - By mapping R x G ~ G, ( OE , x ) ~ 03B1xA = G becomes a

lef t R-module, and the mapping FA an R-linear mapping of S onto G .

13. Définitions.

An orthodox band of right R-modules S can be defined in an analogous way as an

orthodox band of left R-modules. Condition (iii) of 1 must then be replaced by

(iii)’. (a o = for every and every x e S . It will be more

convenient to denote mapping R x S 2014~ S, y (~ , x) 2014~- xa . (iii)’y then, becomes

(iii )’ o p) = for every 03B1 , S E R and every x ES.

If S is at the same time orthodox band of left R-modules, y and orthodox band of

right R-modules1 then we shall say that S is an orthodox band of R-bimodules.

Let R u (~) y and define addition in R as follows. For 

we put 03B1 + f3 = y in R 00 if, and if, 03B1 + p = y in R, and

R~ will be a group with We next define mapping R x ~ R~ by

(~ ~ ~) 2014~- aP= y if, and only if, in R9

and

00 CX)

We also de fine mapping R x R -j- R by



12-06

and

co

By these two mappings R becomes a semilattice of R-bimodules, the structure semi-

lattice being the two élément semilattice. shall use R later in this paper.

The next theorem generalizes a result of [9l.

14. THEOREM 5. - Let S be an orthodox band of left R-modules, y and T an orthodox

band of right R-modules. Let FS,T be the set of all partial mapping of S into

T . Define a multiplication in g rn as follows : i for every 03A6 , 03A8 ~ 
. 

dom 03A6 ~ dom 03A8 y and for every x e dom 03A603A8 we put 4lY(x) = (03A6x)(03A8x) . Define

mapping R x S -7 5S T ~ ( a ~ ~) 2014~- by dom( and

(03A603B1)x = (03A6x)03B1 , for every x E then be an orthodox band of right

R-modules if, and only if, T is a semilattice of right R-modules.

Proof. - For and have

dom 03A603A8 = dom 03A6 n dom 03A603B1 n dom dom( (03A803A6) ,

and for any x E we have

«(~~)0153)x = (~~)x)0153 = ((~x)(~x))~= «~x)Q)«~x)Q) = «~a)x)«~0153)x) = ((~)(~a))x , 9

hence  ’1&#x3E;OE = (03A603B1)(03C803B1) . For any 03A6 ~ LS,T and any 03B1 , y i3 OE R we have

+ p) = dom 03A6 = dom 03A603B1 n dom 

and, for any x E dom + [3) have

(~(a’+ {j))x = (~x)(~+ p) = ((~x)of)((~x)p) = ( ( 4lOE) X ) ( ( 4/ l’X ) " (~)($j3)x ,
hence + ~) _ ( ~a) ( ~~) . Furthermore,

, dom o ~) _ dom £ = dom dom( ~0153)S ,

and for any x we have

(~(a ~ = (~x)(a 0 p) = ((~x)a)~ = ( ( 4lOE) X ) o " ((~)p)x ,

hence o 13) = (03A603B1)03B2 . Finaly, dom $1 == and for any x~ dom 03A61 we have

(~l)x = ( 4lX) 1 = ~x , 
’

hence $1 == $ . We conclude that is an orthodox band of right R-modules.

From the définition of the multiplication in follows that is commuta-

tive if, and only if, y T is commutative. From this, follows the last part of the

theorem. .

15. THEOREM 6. - Let S be an orthodox band of left R-modules, S’ the set of

R-linear mappings of S into and S’ the set of R-linear mapping of S into

R . Then S’ ir3 an R-stable subsemigroup of S and S* is an R-stable sub-

semigroup of ~S 
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Proof. - We show that S" is an R-stable subsemigroup of FS,R~ . The proof of

the rest is quite the same. Let xe and y’‘ be any elements of 
, 

S* . Since R is
ex&#x3E;

a semilattice of commutative groups, must be a homomorphism of S into R .

For any x E S and any E we shall from now put x~(x) = (x , x~) . For any

x E S , any 03B1 E R and any x* , y* E S ‘‘ we then have

We conclude that for any x* , y* E S* , x* y* must be an R-linear mapping of S

into R , hence x* y* ~ S" . S is a subsemigroup of FS,R~ .
For any x, y E S 1 any and any 03B1 ~ R we have

hence c~ must be a homomorphism of S into R~ . For any x any x"" e S

andany 03B2 ~ R wehave

We conclude that any x* E and any a ER, x* et must be an R-linear 

ping of S into R . Consequently S* must be an R-stable subsemigroup of 58 Roo.9

16. COROLLARY 5. - S"¿C" is a semilattice of right R-modules. The structure semi-

lattice of S 
* 

is isomornhic With the semilattice of prime ideals of S . The map-.

ping 1* : S ~ R , 9 x ~ 0 is the identity of S" and the mapping

0’B: S -7 R , x ~ 00 i s the zero of S .

Proof. - R 00 ïs a semilattice of right R-modules, hence FS, Rp is a semilattice

of right R-modules. Since SiB" " is R-stable in F
S , Ra:&#x3E;, 

must be a semilattice
of right R-modules too.

Let be any idempotent of S*, then

is a prime idéal of S . For any x E 

(x , e’") é R and (x, ei~) = (x , e,;~2) = (x , eÉF) + (x , e~) ,

hence (x, = 0 . Conversely, let P be any prime idéal of S , then we can de-

fine S* by (x, ep= ce for ail x ~ P , and (x, e*P&#x3E; = 0 for all x ~ SBP.

Furthermore, if and are any two idempotents of we must hâve
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V 
e4~f* 

= V 
r; 

u V ~.. Consequently, the semilattice consisting of the idempotents

of S’~ is isomorphic with the u-semilattice of all prime ideals of S . Since Esy
is isomorphic with the structure semilattice of S’‘ , y the result stated in the corol-

lary follows.

17. COROLLARY 6. - S’ is a right R-module which i8 an R-stable subgroup of S~ :

S’ is the maximal submodule of S" containing the identity 1* of S"" .

Proof. - All éléments of S’ are R-linear mappings of S into R, hence, they

can be considered as R-linear mappings of S into R , y and consequently S’ ~ S*.

Since S’ is R-stable in ? and since clearly is R-stable in 5s 
S’ must be R-stable f rom this we imply that S t in S" .

It must be evident that 1* : S --# R , x ~ 0 is the identity of S’ . Let

x* be any element of S’ , , then x«~- 1) and for any x E S we have

(x , 9 x-(x-(- 1))) = (x , x* &#x3E; + (x , 1)) = (x , + (x , x{r) (- 1) = 0

and analogously

hence x*(x*(- 1) ) = (x*(- 1))x* = 1* . This shows that x* and x*(- 1) are mu-

tually inverse éléments of commutative group H1~" the maximal subgroup of S’F

containing 1~ . For any élément y~ ~ , we must have V ~ = 0 , hence any e le-
ment y* E H1* belongs to We can conclude that H1* = S’ .

18. THEOREM 7. - Let S be an orthodox band of left R-modules and T R-stable

congruence on S . The mapping $ : (S/ T)’’ 2014~ S.~, ~ 2014~ defined by
(x , 2X’’) = (T~ x., x’;’) for every x E S is an R-isomorphism of into S".

i’ihenever i G T ~ a being the minimal inverse semigroup congruence on S ,

this mapping jj is a surjective R-isomorphism of (s/ï)’ onto S*.

Proof. - Let us suppose that are any éléments of (S/T)* , and x any

élément of S . We then have

hence $(~’ y"’Ù+) = (~x~)(~y~) . Let us suppose that x~ is any élément of 

c~ any élément of it and x any élément of 3 y then

hence 2(;(* 0153) = Since is an R-linear mapping onto S/T ,
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E for any E (S/T)* . vIe conclude that 03A6 is an R-linear mapping of

(3/T)1(- into 5’b . Let us now suppose that x* , y* E (SjT)it- , and 03A6x* = Ély* . If

for some X E S/T (x , x’"1") # (x , *) , then for any x E ()-1 x we should have

( 
- 

-" )  x , - 
’.f 

) - 
- 

’,’ 

) 
1 

(- 
- 

’L )  x , 
-- 

B! ) ( -" )

and this i8 impossible. We conclude that 03A6x* = implies x* = y£i , hence 03A6 is

an isomorphism of ($/Tl’ÙF into S-}{-.

It will be sufficient to show that the mapping j?: -p S* , x* -p 03A6x*

defined by (x, 03A6x*&#x3E; = 03C3 x ? x*&#x3E; for every x ~ S , will be an R-isomorphism of

(S/03C3)* onto S* . Let x°b be any element of S* , and (x e ) and (x ,f)x x x x

any two 03C3-related elements of S . Since (x e ) and (x ,f) are D-related
° 

n x x x

in S , they generate a same principa.l ideal of S , and thus (xA , eA) , x*&#x3E; = ce

if and only if, «x, f ) , x’b) = ~ . Let us suppose that (x e ) and
’ M, x 

. 

ri X

(x f ) both belong to SNV J’ . Let ( 1 , g ) be L-related wi th (x , e )
x fi x, K K X ri

and R-related with (1 , f ) , and (1 , h ) R-related with (x , e ) and
x x. n X X x

L-related with (1 ,f); (1 , g ) and (1 , , h ) are both D-related with
x x x fi K ri

(x , e ) , and (x ,f) . Hence (1 , g ) , (1 , h ) E SBV ’t- , since these two
n n 11. X fi X. fi n X-’

elements are idempotents of s, and since x°’ 1;J an homomorphism of SBVx* into

R , we have

From this follows that

In any case (x~)"~ xlb 3 cr . Hence the mapping E (5/Jl’~ defined by

x , = (x , for ail x E S is well-defined, and shall have = 

Thus, in this case 4l must be surjective.

19. COROLLARY 7. - If S is an orthodox band of left R-modules, and Q the greatest

inverse homomorphic image of3 , then S* and Q* are R-isomorphic.

20. THEOREM 8. - Let S be an orthodox band of left R-modules and T any R-stable

congruence on S . The mapping Y : : 2014~ S’ , x’b 2014~ Y(°i°°7*) defined by

(x , M~) = (à x , for any x E S is an R-isomorphism of (S/T) into S’ .

Whenever S ~ T -l- p , p being the minimal group congruence on S , y this mapping

’Y is a surjective R-isomorphism of (S/&#x3E;il ’ onto S’ .

Proof. - It is clear that mapping f must be the restriction of mapping 03A6 (of

theorem 7) to maximal submodule (S/ï)’ of (S/)* , hence 03A8 is an R-isomorphism

of (S/1"1 ’ into 3~~ . Since for every x OE .3 , and every ~ e (S/ï)’ we must have

 x, x*&#x3E; ER. lofe conclude for every x* ~ (s/ï)’ , thus, 03A8 is an

R-isomorphism of ( S /T ) ’ into S ’ .

It will be sufficient to show that the mapping 03A8 : (S/03C1)
1 ~ S’ , x* ~
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defined by (x , ~x~’i ~ (} x , x~) for every x E S be an R-isomorphism of

onto S’ . Let x~ be any élément of 3’ . Since x~ must be a homomorphism
of S into the additive group R y we have x3~ =? p . Hence the mapping

E (S/p)’ 1 defined by 03C1 x 1 X1r) = (x , for every x E S ij well-defined, 9
and we shall have = x~ . in this case ~ must be subjective.

21. CORALLARY 8. - If S is an orthodox band of left R-modules, Q the greatest

inverse homomorphic image of S , and G the greatest group homomorphic imgage of S y
then S’and Q’ are both R-i somorphic with right R-module G’ which i s the

dual of 18ft R-module G G

22. THEOREM 9. - Let S be an orthodox band of left R-modules, and

its semilattice décomposition. For any À E Y y map-

ping 1*03BB : S ~ Roo defined by (x, 1*03BB&#x3E; = 0 if, 9 and only if, 9 xE U 
03BB S , and

(x y otherwise, is an idempotent of S* . The maximal submodule of S*
A

containing 1.~~ is R-isomorphic with ( U &#x3E;, S ?’ 1 and with right R-module GÀ’ , the1, - 201420142014’20142014201420142014 ~t~A. K 2014201420142014201420142014201420142014201420142014 ’ 2014 A. -

dual of left R-module G..
Proof. - For any À E Y y ~ S is an R-stable subsemigroup of S y and G.

’ 

~~A. ‘ Y 11 /B

will be the greatest group homomorphic image of U" S . From corollary 8 follows
that (U" S )’ and G’ are R-isomorphic right R-modules. It is easy to show

that SB(U" S ) is a prime idéal of S . From results in the proof of corollary 5

then follows that lt must be an idempotent of S* . We remark that for any x..:;(- E S*,
E if and only if

Hence the mapping H1~ 2014~ (UYf.~À. Sx.)’ , x’ ~ x.. E Sx. is an R-isomorphism

of H1{ onto (Ux.~À. Sx.)’ .
23. COROLLARY 9. - We use thé same notations as in 22. Let Q be thé greatest inver-
se semigroup homomorphic image of Sand - Q = U 

11E Y 
G 

Pt 
ils semilattice décomposition.

For any 03BB ,  ~ Y, À.   , let t iJ’À. be the structure homomorphism of Q, and
20142014201420142014 - A.~ -~20142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014 -

03A603BB,  its transpose. Then 1*   1*03BB in S . Let 03A6* ,03BB : H1*  ~ H1*03BB be thé struc-

ture homomorphism of S*. For any À. E Y thé mapping ,’! À.: Hl ~~ 2014~ ,

x~~ 2014~ ~ À. x.~ , defined by 
À.

 (x , e ) CI x’;~ &#x3E; =  ~ "B X ,’ "B x~) for ail ( x 0 e ) E U &#x3E;"B S ,x. x’ ~KyÂ ~ ~ K~Â K ~

is an R-isomorphism of onto G~ ~ and thé following diagram is commutative.
À A
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Proof. - The mapping U.&#x3E;1 S ~ G03BB , (x , e ) ~ 03A6A,03BB xA is an homorphism

of SK onto its greatest group homomorphic image GÀ. 03A803BB must then be an

R-isomorphism of H1* onto G" by theorem 8.
À

Let x.:~ be any élément of Hl1~’ and x. any élément of G~ . 1’Je proceed to show

that 
~

Indeed
y

We conclude that

24. COROLLARY 10. - Ne use the same notations as in 22 and 23. Let the structure se-

milattice of S be a lattice. Consider V , and define multiplication in

V by the following. For any Xl , 9 Xl E G’03BB , yI E G’  , put ,

Define mapping (a’ , in the usual Then V is a

semilattice of right R-modules, and there exists an R-isomorphism of V into 

If Y satisfies the minimal condition, V must be R-isomorphic with S* .

25. Remarks.

Corollaries 9 and 10 show that S could well be named the dual of S . If Y is

a lattice, the structure semilattice of V is the V-semilattice Y. Results of .

.[6J make the connections between structure theorems for S and structure theorems

for V more explicit.

Theorem 7 is quite analogous with a result in [ 51 (§5) about the character semi-

group of a commutative semigroup, and theorem 9, corollary 9 and corollary 10 are in

a certain way analogous with results of [7J and [8J (see also [2J, chapter 5).

Next theorem generalizes the concept of the transpose of an R-linear mapping.

26. THEOREM 10. - Let S and T be orthodox bands of left R-modules,and

ë) : S 2014~ T an R-linear mapping. The mapping @ : T 2014~ S , 2014~ @t~ ,

defined by (X--; Tt*&#x3E; = (ex , for all must be an R-linear mapping of

T~ into S* , and Te(T’~) is embeddable in (3/@-1 0)’~~ 
Proof. - It must be clear that for any E T* , we must have 01’~ e 5* , since
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e is R-linear. It is not difficult either to show that T @ is R-linear.

Let t~ and v~ be any éléments of T~ , then and are both ele-

ments of (éE)~’- , y since 06 is an R-stable subsemigroup of T . From the définition

of Te we have that T@t.~ = if, and only if, = This implies

that the mapping T@(T*) 2014~ T@t.~ 2014~ is an R-isomorphism of ~O(T~)
into (65)°F ..

27. COROLLARY 11. - Let S, T and 3 be as in theorem r0. Thé mapping

i T’ 2014~ S’ , , 2014~ by (x, t&#x26;t-;~&#x3E; = (ex ,t~~&#x3E; for all xe S ,
must be an R-linear mapping of TI into S’ , , and is embeddable in

(s/e-1 @)’ 1 =: (es) 1 . 
--

28. COROLLARY 12. - We use the same notations as in 26 and 27. Let p~ and prp be

the minimal group congruences on S and T respective ly. 2014~ S’ ,

-7 ’ÏS x* , be the R-isomorphism defined by (x , x*&#x3E; = 03C1S x , for all

x E 3 , t 2014~T’, ~ - Y~q 1.;’ , defined by

Then there exists an R-linear mapping A : (s/p ) ~ (T/03C1T) such that the follow-

ing diagrams are commutative :

Proof. - Since 03C1T e is an R-linear mapping of S into left R-module T/03C1T ,

(p/§ 8) -1 (pfl B8)) must be an R-stable group conguence on S , and, since Ps is

the minimal group congruence on S, we must have Ps ç ( p# B8))-1 ( pÎ B8)) . This implies
that ii is a well-defined R-linear mapping of 3/ Ps into T/03C1T . 1B is then an

R-linear mapping or (T/PT) , into which ij defined by

p~ x , tlB.l~~&#x3E; = lB.p~ x , t1~&#x3E; for t’~ E (T/PT)’ .
But Since 03C1S = PQ (8) , we then have

for ail x= S and ail ?~= (T/p )’ , hence A= ’~ 
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