
Groupe de travail
d’analyse ultramétrique

FRANCIS CLARKE
p-adic analysis and operations in K-theory
Groupe de travail d’analyse ultramétrique, tome 14 (1986-1987), exp. no 15, p. 1-12
<http://www.numdam.org/item?id=GAU_1986-1987__14__A7_0>

© Groupe de travail d’analyse ultramétrique
(Secrétariat mathématique, Paris), 1986-1987, tous droits réservés.

L’accès aux archives de la collection « Groupe de travail d’analyse ultramétrique » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=GAU_1986-1987__14__A7_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


1

Groupe d’Etude d’Analyse
Ulramétrique. (1986/87) 9 mars 1987
n° 15, 12 pages

Expose n° 15

p-adic analysis and operations in K-theery

FRANCIS CLARKE

University College Swansea

April 1987

I want to explain how certain ideas from p-adic analysis can be useful
to topologists. The results which I will talk about could be formulated
(and some have been) without using the language of p-adic analysis, but
I claim that they are clearer when viewed this way and one is led directly
to explicit formulas.
The seminar will fall into three parts. In the first I will describe some

algebraic results and problems. In the second I will say briefly why
this algebra is of interest to topologists, and in the third I will show
that some elementary p-adic analysis can help us to understand what is
going on here.
Few of the results presented here are new; I have merely tried to

, 
thread together a number of known results. The identification of the
ring of p-adic K-theory operations which appears at the end of this
paper has not, to my knowledge, been stated in quite this form before,
but Ravenel [11], especially theorem 7.6, and Bousfield [3] section 5
have very closely related statements. I would like to thank Andy Baker
for a number of useful conversations around these ideas over several .

years.

N UMERICAL AND STABLY NUMERICAL POLYNOMIALS

Let A denote {~(~) E Q[w] : h(Z) C: Z}, which we refer to as the
ring of numerical polynomials.

There are some very celebrated elements in A, in particular:

and, if p is prime,

, (Fermat).
p 

_

I would like to thank Lionel Schwarts for arranging say very pleasant visit to 
and the British Council and the C. N. R. S. for their financial support.
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In fact 1, 03C9, (;), (03C9 3),... form a basis for A (as abelian group). This
~

goes back to Newton. To express, for example, 20142014201420142014 E A in terms
of the basis we form the difference table:

which we call the ring of stably numerical polynomials. Notice that

{u;"~ ( . ) : m, ~ &#x3E; ’0} spans but does not form a basis.

Continuing our list of elements, we have in 

, k , (Euler)

and hence 
’

m ’
where m(n) is twice the least common multiple of those k such that ;(k)
divides n. There is an extra 2 because of the structure of the 2-adic units.

In fact .
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Since men) is the denominator of 2014~, where Bn is the Bernoulli
2n

number, (Von Staudt) equivalently we have

Another way to generate these elements is via the following result.

THEOREM 1. There is a linear homomorphism .

A --. 

such that = (-1)nBn n(wn-1), n &#x3E; 1.

The classical Kummer congruences all derive from this map.
One may prove this theorem as follows. We show that ~c = p o ~,

and this is just a matter of calculation, where /3 : A ~ A sends to

(-1)k ((03C9 k+1) - (03C9 k)), an sends w to the ex-
pression ( )... w-1 ( . )). " Here JV~ is the Newton poly-
nomial which expresses the power sums in terms of the elementary sym-
metric functions. The roots of this proof lie in topology [4].
There is also a p-local version:

THEOREM 2. There is a linear homomorphism

Kp : n Q[w] --+ n Q[w],

such that (-1)"(1- 1), n ~ 1.

This follows from the existence of Mazur’s Bernoulli measures, see

page 200 of [8] where the result is stated almost in this form. How-

ever one may prove it along the lines of the previous theorem and then
Mazur’s measures are an immediate consequence.

THEOREM 3, [2]. is a free abelian group.

PROOF: Let F(n, m) denote the subgroup of rationally gener-
ated by w", w"+~, ..., Since F(0, 0) is a copy of Z, generated
by 1, it is sufficient to show that each extension F(n, m) c F(n, m + 1)
and F(n, m) C F(n - 1, m) is split. For then we can go up the chain

F(-l,l) c F(-1, 2) c F(-2, 2) C ...
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building a basis.
There are automorphisms of given by w"h(w) and

which show that we need only consider the extension
F(l, m) c F(0, m).
Now F(0, m) == {J~(t~) E QM : E m ~.

Define 03C0: F(0,m) ~ Q, by 03C0 : h(03C9) ~ h(0), then m) = keri. We
need to show that C ~Z for some natural number N.

For each prime p choose distinct integers ko, ..., km, all of which
are non-zero modulo p, so that if E we have h(k~~ E Z(p) .
for each j = 0, 1, ..., m. Thus, writing E m),

If p &#x3E; m + 2, we can set kj = j + 1 then + 1)*) is not divisible
by p (Vandermonde) so that 1rh E Z(p). This completes the proof.
COROLLARY 4. is uncountable.

It is this group in which I am interested, for reasons which I will now
explain.

WHY IS THIS ALGEBRA OF INTEREST TO TOPOLOGISTS?

Consider the contravariant functor K : Top -+ Ab defined as the
Grothendieck group of the serni-group of complex vector bundles on a
space. The natural transformations ~(~) ~ K(X) of this functor
(necessarily additive since we are thinking of the functor as taking values
in the category of abelian groups) are determined by a universal example
X = CP°°, infinite dimensional complex projective space : =

Z[[t]], where 1 + t = [Hopf bundle] and 03C6 is uniquely determined by
(1 + t) E Z[[~]j This is essentially Atiyah’s splitting principle.

For example the Adams operation ~ correspond to the series (l+t)~,
k E Z.
But notice that composition of operations does not correspond to

multiplication in the ring Z[[t]], for example = not 
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However from the point of view of stable homotopy theory we need
more.

The theorem of Bott periodicity says that there is a split short exact
sequence

This enables us to construct the functors K’ ~ ~ for all i E Z, with
Ks+~, which fit together to form a generalised cohomology theory.

We need to know about the natural transformations of this theory. This
means considering those natural transformations ~p of K such that there
exists with the diagram

commuting.
Suppose that 03C6CP~ (1 + t) = f (t) E Z[[t]], 03C8CP~ (1 + t) = g(t), then,

as we shall see in a moment, f (t) = ( 1 + t) g’ (t). This extends y~ to K" 1
and 

For example if cp is the Adams operation we need ( 1 + =

(1 + t)g’(t) so ~(~) == ~(1 + + constant, + unless

k = :i:1.
’ More generally, writing Tg(t) = (1+t)g~(t) we need g"(t) for all n &#x3E;_ 0

such that J(t) = 
Now there is a dual homology theory K; ( ), and it turns out, see [5]

or [12], that = A, the ring of numerical polynomials, with
the duality = Z) working as follows: the

series corresponds to the homomorphism (03C9 i) ~ a;.
If we want to know how an operation corresponding to f (t) E Z[[t]]

acts on the answer is that it is multiplication by the result of
evaluating the corresponding homomorphism on wn E A. In terms of
the coefficients of the series J(t) this gives formulas involving Stirling
numbers of the second kind, see ~~) .
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Moreover if 03C6 : A ~ Z, (03C9 i) ~ a; is the restriction w-1 A ~ Z,

b;, the formula

shows that I(t) = ( 1 + t) g’(t) = Tg(t), where I(t) = E aits, and = 

-

E 
This shows that if B = the group Im C Z[[t]]

corresponds to Hom(B, Z) C Hom(A, Z).
Note that B / A is a torsion group (In fact for all h(w) E B

there exists d E Z such that dh(w) E Z[w] C A.) so that we have a

monomorphism ’Hom(B, M) --~ Hom(A, M) for any torsion-free M.
To be more precise we need to introduce another theory k* ( ), known

as connective K-theory, and, in summary, we can identify:

Hom(A, Z) with the natural transformations of K( ), .

Hom(B, Z) with the natural transformations of k* ( ),
with the natural transformations of K*( ),

where in the last two cases we are considering only natural transforma-
tions of degree zero.
At the moment we understand only the first of these three groups.
The point about introducing the new theory k* ( ) is that in the above

sketch we have considered only extending a natural transformation of
K° ( ) to fort &#x3E; 0. For k* ( ) this is sufficient, but for K* ( )
we need to go the other way too. It will turn out that over the p-adic
integers the distinction disappears.
The natural map Z) --~ Hom(B, Z) is a monomorphism.

We can see this as follows. Suppose that ~p : --~ Z restricts to
zero on B, and thus on all non-negative powers of w, then since

-

for all !~ &#x3E; 0, we see that is infinitely divisible by p, and
hence must be zero. This argument may now be repeated to show that

= 0, and inductively we see that ~p = 0.
We remarked earlier that the group Z) is uncountable,

since ~ is free on countably many generators. However the only
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explicit examples we know are those of the form + 

ah(1) + bh(-1), where a, b E Z.
’ 

As always in topology we are prepared to introduce coefficients.
Preferably our coefficients should lie in a ring R so that the multiplica-
tive structure is preserved. If we study K-theory with coefficients in R
the abelian group A is replaced by the R-module R ~ A, and Hom(A, Z)
by A, R) which is isomorphic to Hom(A, R). Similarly we
need to consider and Hom(B, R).

In zp» we have h(03C9) ~ h(k) for any k ~ Z (p). This is

the Adams operation it acts on by multiplication by
~ ~~ Z..

There is a theorem of Madsen, Snaith and Tornehave [10] which may
help us identify Hom(B,Z(p)) ~ Im Too, where now T : Z(~l ((t~~ 2014~

Z(p) ( (t~j. Their theorem tells us that p : K( ; Z~p~ ~ -+ ,If ( ; Zlrl )
extends to a natural transformation of k* ( ; Z(p) ) if and only if cp com-
mutes with transfer.

Let me explain what this means. There are spaces Xr, constructed
in the following way. The space CP~ is defined as where
S°° is the unit sphere in C°°. Let Cpr denote the cyclic subgroup
{? E !/(!) : xpr = 1}, then Xr = so that there is a fibering 

-

CP°° and a p-fold covering This covering defines a
map

tr : K(Xr) --~ K(Xr+1)
which may be defined by sending the class (E~, where E is a vector
bundle over Xr, to the class represented by the bundle over which

. has as its fibre over x the direct sum of the fibres of E over the p points
of Xr which cover x.
Madsen, Snaith and Tornehave’s theorem says that ~p extends to a

stable operation if and only if 03C6Xr and 1 commute with tr for
all r &#x3E; 0.

It is standard topology that

K(Kr) ~ ( ( l )
and an easy calculation that commutes with transfer if and only if p
does not divide k, see (~~, page 180. The various proofs of the theorem

- of Madsen, Snaith and Tornehave then depend on trying to consider the
closure of these Adams operations in some sense.
Now a simple calculation shows that
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where s =1 + t, which suggests strongly that we should introduce p-adic
coefficients.

’ 

p-ADIC MEASURE THEORY

Consider the space C’(Zp, Zp) of continuous functions from the ring of
p-adic integers to itself.

THEOREM 6 (MAHLER).

C(Zp, Zp) = { ~ ~ ~ c, (~) : -. 0 } S co(Zp). 
..

"&#x3E;0 3 
~ pl

Note that the coefficients Cj may be obtained by Newton interpolation
in the same way as we expand elements of A in terms of the binomial
coefficient basis.

Let

= Zp), Zp~,
= j~ ~Zu~ ~‘ 

denote the space of Zp-valued measures on Zp and if  E M(Zp, Zp)
with h E C(Zp, Zp) write

p(h) = /’ h(w) 
If f(t) = 03A3i&#x3E;0aiti ~ Zp[[t]], write E M(Zp, Zp) for the correspond-
ing measure, which is determined by

~)~)=...
’ 

LEMMA 7.

(1+x)03C9 d f(w) = if p divides x.

The proof is nearly formal, see [9] page 98.
We can see now that Hom(A, Zp) = M(Zp, Zp), with the same iden-

- tification with Zp[[t]].
What does correspond to under this identification? The series is

(1 + ~ so that , (:) = e). or . h(w) = h(k).
that is point measure at k ~ Zp.
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It is clear now that the closure we want, the closure of { ~ Z~ },
. meaning the smallest closed Zp-submodule containing this set, is the

submodule C M(Zp, Zp) of measures whose support lies

in Z p.
In fact, of course, M(Zp,Zp) = M(pZp,Zp), since Zp

is the disjoint union of Z) and pZp; and we can be precise about this
splitting. A measure is restricted to a subset X by multiplying by ~~,
the characteristic function of X.
So if /(t) = ~E Zp[[t]] and is the corresponding measure

let us compute /- h(w) (I will assume from now on that p is

an odd prime. The formulas are almost the same if p = 2.)

By Newton interpolation the coeflicient in is

h(rp).=0 " ~ ’ = ~=0 (-l)i+r :p h(rp).
Therefore

y h(03C9) d f(03C9) = E (-1)j+r ( .)
and will be zero (so that /() corresponds to a measure whose

support is in if and only if iz. (7) = 0 for all i &#x3E; 0, that

IS 

£ E (-1)j+r()()aj = 0,
j&#x3E;t .rp,

for all i &#x3E; 0.

Now if = Tg(t) = (1 + t)g’(t) it is easy to verify that

’ 

In fact we have already made the relevant calculation in formula (5).
So, in general,
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Thus if f E Im T" it follows that is divisible by p" for

all This shows that if f E we have = 0

for all h(w) and is supported in Z;.
To prove the converse, and illuminate the situation, note that

f + = f(t) E 
. 

.

This is almost formal and is an extension of lemma 7, using the (p, t)-adic
topology on Zp[[t]].
Now r(l + = w ( 1 + so that if has its support in Z; we

may define 

and f(t) = 
Notice that having identified M(Z;, Zp) with Hom(B, Zp) there is no

difficulty in extending any homomorphism B --~ Zp to A[t~"~] D B. We

simply evaluate 

However this does not work with Z(p)-coefficients. In fact we have
the following commutative diagram, in which the arrows are all proper
inclusions,

Hom(B, Zp) ~-.-- Zp)

T T
-----~ 

. This phenomenon is also discussed in [6].
S ince we are assuming p is an odd prime, Cp-i X ( 1 + pZp).

The first, cyclic factor gives us idempotent operations which split p-
adic K-theory into (p - 1) summands, one of which gives a new pair of
multiplicative theories, G-theory and g-theory. In fact the splitting is
rationally defined so that p-local K-theory is also split.
The ring of operations of p-adic G-theory, or g-theory, is then isomor-

’ 

phic to M(1 + pZp, Zp), the space of measures on 1 + pZp, which is itself
isomorphic to Hom(Bo, Zp), where Bo = B n 

I emphasise again that the operations form a ring, under composi-
tion, because we are now in a position to understand the multiplicative
structure.
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The Adams operations, which correspond to point measures, compose
. as (This is because acts on line bundles as Z f2014~ 

It is clear then that the product we want is the convolution product
of measures with respect to multiplication on Zp. In terms of power
series this becomes very complicated. Essentially we need formulas for

expanding ) , as a linear combination of terms of the form w f .
If, however, we restrict to 1 + pZp we may use the isomorphism (of

topological groups) . 

-

Zp 2014~ 1 + pZp
(1 + 

.

to see that

M(1 + pZp, Zp) ~ Zp) ~ 
The change of variable here is an attempt to avoid confusion.
Now convolution in M(Zp, Zp) with respect to addition is easy. The

appropriate formula is

and we see that M(1 + pZp, Zp) ~ Zp[[s]] as rings.
It was shown in [7] that this ring of operations is a local ring.
How does the operation corresponding to act on the

group We simply need to evaluate

divisible by p.
Thus lemma 7 shows that /~/ acts by multiplication by /((l + p) " - 1),
which will always be a convergent series.
Now /((1 + p)" - 1) = /(0) mod p, so we see that an operation is

invertible if and only if it is invertible on any even-dimensional sphere.
This is a strengthened form of a theorem of Keith Johnson [7]. By

- 

remarking that the ring of operations in p-adic K’-theory is isomorphic
to one may easily obtain the corresponding result for
p-adic K-theory in its non-split form. Since a p-local operation which is
invertible as a p-adic operation must actually have a p-local inverse the
statements hold also for the p-local theories.
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Let me finish by referring briefly to the p-local case. It is not true that
Hom(Bo, Hom(Bo, Zp) = is the subring ~f ~s~~, though

. it does look like this additively because there is another homeomorphism
+ pZp, w t2014~ 1 + pw which sends Z(p) to 1 + pZ(p).

It would be nice to have a description’ of Hom(Bo, Z~p~ ~ as a subring
of Z~((s~~, other than the rather abstract one that f((1 + p)" - 1) is
rational for all n &#x3E; 0. Ultimately it would be nice to know something
about Hom(B, Z).

There are certainly some interesting elements in Hom(B, Z(p»). Con- . 
’

sider the measure constructed by following the map B -~ B of
theorem 1 with We get a measure whose moments are

f tu~ d~(~) = (-1)~1 - n-1 Bn ~,~ _ I 1),N~f ~ ( l ~ p n (

for n &#x3E; 0. This is Mazur’s Bernoulli measure. I don’t know whether
the moments are rational for n  0, which would show that we had an
element of Z(p»).
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