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NÉRON MODELS FROM THE RIGID ANALYTIC VIEWPOINT

Siegfried BOSCH

Groupe d’Analyse ultrawétriquo
(Y. G. P. ROBBA)
12e année, 1984/8 5, n° 5, 10 p. 11 mars 1985

The theory of Neron models has proved as an inportant tool for the treatment of

abelian varieties over lumber fields or over fields with a discrete non-archimedean

valuation. For example, the uniformization of abelian varieties as suggested by

RAYNAUD, is based on the existence of Neron models. Recently, through Faltings’

proof of Hordell’s conjecture, these models have been brought to attention again.

Neron models were originally constructed by NÉRON [N] in 1963. It was then indicated

by RAYNAUD [R] in 1966 how to carry out the construction within the framework of
modern algebraic geonetry. Furtheraore, GROTHENDIECK [SGA 7] showed the existence

of Neron models with semi-abelian reduction.

In [BL 2], one finds an approach to the unifornization of abelian varieties in

torus of rigid analysis, avoiding the use of Neron Models. In fact, the existence of

Néron models with semi-abelian reduction in an easy consequence of the results in

[BL 2]. This will be explained in the present lecture ; for uore details (see [BL 3]).
The main idea behind the construction centers around the fact that a flat scheue

over a valuation ring is uniquely characterized by its generic fibre and by its for-

nal completion along the special fibre. Under certain finiteness conditions, the

latter can be viewed as a rigid analytic variety. It is for this reason that the

application of rigid analysis is possible.

1. Rigid analysis and formal algebrale geonetry.

Let k be a complete non-archimedean field with a discrete valuation and let K

be a dense subfield of k . The valuation ring of k is denoted by k° , and the

residue field by K ; similarly for K . We will consider schemes over ~~° and K ,

and their fornal completions (in terus of fornal schenes over k° ) or their analy-
tifications (in terws of rigid analytic varieties), respectively.

Let X be a formal scheme 1. t. f. t. (locally of topologically finite type) over
k° . One associates with X a formal analytic variety 1~], sect. 1),
and a (rigid) analytic variety X~ . Namely, if X is affine, say X = Specf R

with R t. f. t. (of topologically finite type) over k° , then R~ :== R is

a k-affinoid algebra, and

Both varieties are essentially the same ; their "points" consist of the maximal

( ) Siegfried IDSCH, Mathematisches Institut der Universität, 64 Roxeler Strasse,
D-4400 MUNSTER (Allemagne fédérale).
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ideals in E- . However, on the affinoid variety Sp B: ’ we consider the usual

Grothendieck topology, as characterized in ([BGR], 9*1*4/2)~ whereas on the formal
affinoid variety Spf IL we restrict ourselves to the topology generated by all

formal subdomaine ([BL 1J, sect. 1). Using coverings, the definitions of X and
X extend to the general case. Formal analytic varieties admit reductions, derived

from the canonical reductions of their fornal open affinoid parts. The reduction

related to the special fibre X of X by a finite surjective

map --&#x3E; X .If X = Specf R is as before, this nap corresponds to the ho-

momorphism

where

There is a converse procedure which associates a formal scheme (not ne-

cessarily) 1. t. f. t. over to each formal analytic variety Y. Namely, let

C be the sheaf of analytic functions on Y and denote by 0° the subsheaf of func-

tions of sup-norm 1 . Then is constructed by glueing the affine formal

schemes Specf ðÓ(U) where U varies over all formal open affinoid subvarieties

of Y.

LMHA 1.1. - The mappings X 2014&#x3E; and ’I j J 2014&#x3E; are functorial. They

set up an equivalence between

(a) all formal schemes X which are 1. jt. 1. ~. and flat over and have a

reduced special fibre X , and

(b) all distinguished formal analytic varieties Y. (A formal analytic variety
Y is called distinguished if, for each affinoid formal open subvariety U C Y ,

there exists a closed immersion U -2014&#x3E; Bn into some unit ball Bn such that each

f e 0(U) extends to a function g e O(Bn) with = Igl [BL 1J, sect.

1 and 6.4.3).

Furthernore, if X is of type (a) and Y = is its counterpart of type (b)
then the special fibre of X coincides canonically with the reduction of Y.

call a formal analytic variety Y smooth over kO if it is distinguished and

has geometrically regular reduction Y . Equivalently, instead of assuming Y to be

distinguished, we may require that the sup-norm of analytic functions on formal open

subvarieties of Y assumes values only in !k) ; this is clear by 6.4 .3/1 ) ,
since we are working over a complete field with a discrete valuation, which is

stable by ([BGR], 3.6.2/1). If Y is smooth over its associated analytic va-

riety is geometrically regular. Furtheruore, one can show that, under the equivalence

set up in Lemma 1.1, formal schemes, smooth over correspond bijectively to for-

mal analytic varieties, smooth over kO .
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Looking at the dense subfield K C k , let us consider a scheme X which is

1. f. t. (locally of finite type) over k° . Then we set

f := formal completion of 3l (a formal scheme 1. t. f. t. over kO ),

X := = formal analytic variety associated to t,

X~ ii generic fibre of X,

analytification of x, (a rigid analytic variety over k).

One knows that X gives rise to an admissible open subvariety of lil ann .
II

Example 1.2. - Le.t t be a uniformizing element in K° . Consider an algebra R

f. t . (of finite type) over fi1° , and set

Pi{ : = R 
A

R := t-adic completion of R ,
A

R := R ~I1° ~ ~ ~ 
Then, for X := Spec R , one has  = Specf R , v = Spf IT , and %,j = Spec RK .

Choo sing a closed immersion X c:...-.&#x3E; AnKo , one obtains closed immersions X~ Cl-&#x3E; ,
and ~an~ c..-.&#x3E; An . In this situation, the formal analytic variety X corresponds

ij ..
to the "unit ball" in ’1 17 1 i. e . , pointwise we have X = Xan~ n X Bn .
PROPOSITION 1 c3., - Let X, ’Y be schemes I, f, !. and flat over 1(0 and having

reduced special fibres X and ys . Let 03C6~ : y~ -&#x3E; %11 be a ’-m9.rPhis- between
the generic fibres. Then the following conditions are equivalents

(i) extends to a K°-morphism w : Y --&#x3E; X .

(ii &#x3E; CP’ll : ;:) 7 --&#x3E; ’*7 &#x3E; the analytific ation of 03C6~ ,

restricts to a morphism of formal analvtic varieties õ: 5 --,&#x3E; lt .

Furthermore, any extension cp of C(1) as in (i) is unique.

31e need an analogue of 1.3 which shows how to extend K-schemes to KO-scheI:J.es.

Let 
) 

be a scheme 1. f. t. over K, and denote its analvtification by X7 .
Furtherwore, let X be a distinguished formal analytic variety, together with an

open immersion J{ ---&#x3E; Xli of its analytification A into Xan~ . More precise-
ly, let us assume that, there is an open affine covering {u.}. I 

of L-t as well
’ 1. ieI I

as a formal open affinoid covering {Ui}i~I of i such that, for all i E I , we

have Ü. c and the image 0 f ,C) (U . ) is dense in (C) (IT.) . Then
1. J. 1. 1.

PROPOSITION 1.4. - extends uniquely (up to canonical isomorphism) to a scheme
X 1:.. r. !. and fiat over KO SUCh that X 

,ii 
= x,,i , SUCh that the special fi bre "s

of X is reduced, and such that 5f = X . Furthermore, X is smooth over KO if

and only if X, iS S.Ooth Over K and X iS smooth over k° .
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2. Uniformization of abelian varieties.

The construction of Néron models will be based on the results of [BL 2J. So let
us recall the necessary facts about the unifornization of abelian varieties, and let

us adapt then to the case of a not necessarily algebraically closed ground field k.

The field K C k is as in sect. 1. Let A bo an abelian variety over K , and, for

any extension L of K , write A- for L . Let A be the analytification’ .L a

of A. Then Aan is a rigid analytic group over k.

PROPOSITION 2.1. - There is a unique open analytic subgroup A of Aan which is

a (geometrically) connected formal analytic group satisfying the

following property.

There exists a finite separable extension ~ of k such that A :=== A ~ ~ is

smooth over ~ and has seui-abelian reduction.

The group A has the following universal napping property.

PROPOSITION 2.2. - Let X be a connected formal analytic variety~ smooth over kO.

If 03C6 : i is an analytic morphism such that then 

X2014&#x3E;A is a formal morphism.

For the discussion of Néron models the notion of étale points is basic. Let X be

an analytic variety over k . A closed point x ~ X is called étale if the field

k(x) is an unramified extension of k. Thereby we mean that k(x) is separable

over k , y that the extension of the valuation from k to k(x) has ramification

index 1, and that the residue extension of k(x)/k is separable. These conditions

are equivalent to the fact that the valuation ring of k(x) is étale over kO .

The set of étale points in X will be denoted by Xet . It is clear that morphisns
send étale points to étale points. Furthermore, for any unranified extension l of

k y one obtains a surjective map ~I" ~ -2014&#x3E; X .

LEMMA 2.3. - Let X be a formal analytic variety over k which is smooth over

Then xet is fomally dense in X.

Proof. - Due to 1.1, we can view X as a formal schene smooth over Since the

special fibre X 
s 
= X is smooth over k , the set of closed points y whose residue

field is separable over k , y is Zariski-dense in X . By the lifting property of

smoothness, such points lift to étale points over the complete field k ,

q. e. d.

If A is smooth over kO , we see by 2.3 that n A is formally dense in A .

We want to use the uniformozation of Aan in order to obtain a precise knowledge

about the position of all points in We need the following facts from [BL 2~.

2.4. - The group I contains a unique closed subgroup T such that T is a ma-

ximal affinoid torus in I (i. e. , after extending the ground field k suitably,
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T becomes isouorphic to a product of multiplicative groups G ). If X is smooth

over ko y the torus T is smooth over and the closed immersion

reduces to the closed immersion  Ã , where T is the maximal affine torus

in Ã.

2.5. - Assume that I is snooth over kO and that T splits over k . Then the

closed immersion  extends to an analytic homonorphism T --&#x3E; Aan , where
T is the affine torus over k containing T as subgroup of units, and the open

immersion A  Aan extends to a surjective covering nap p : Â --&#x3E; Aan , where

A := A x T/( diagonal) is the universal covering of A
. r

The kernel r:= ker p is a discrete subgroup of A.

We will characterize the situation in 2.5 by saying that the uniforcization of A

is defined over k . In this case we know (up to unramified extension of k ) that
Ã is locally a product of T and a locally closed subvariety of Ã; hence A is

locally a product of T and a locally closed subvariety of A . Since the étale

points of tori are easy to determine, we obtain the following information on the
etale points of A and A.

PROPOSITION 2.6. - Assume that the uniformization of A is defined over k. Denote

by T(k) the group of k-rational points in T . Then the lattice F consists of

k-rational points in A. The set of étale points in A satisfies

. Âet = T(k) . (In and == 

In particular and Aet is contained in a finite union of translates

of  by points in p(T(k)) .

THEOREM 2.7. - Let I be snooth over Then there exists a unique open analy-
tic subgroup A 2£ Aan, which is a quasi-conpact fomal analytic group smooth
over and which satisfies the following universal napping property.

For each formal analytic variety X snooth over and each analytic nap

(p: the image im 03C6 is contained in y and (p : is a

formal norphisn.
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Furthermore, Ã is the identity couponent of et , and A 
et 

is formally dense

in et . In particular, if the uniformisation of A is defined over k , each
’ 

2014et 
*"------------------201420142014~~~~2014 

-----I t
conponent of A contains a k-rational point, and the surjection A -&#x3E; 

where k is the algebraic closure of k, y gives rise to a bijection

"’-

where A is the image of the lattice r c: A .

Proof. - By means of Galois theory, the general case is reduced to the case where

the uniformization of A is defined over k . So let us assume that we are in the

situation of 2.5. Then, due to 2.6, the union of all translates of il by the k-

rational points of p(T(k)) yields a formal group et as required ; namely, the

napping property follows easily from 2. 2, since each component of a given X , which

is smooth over y contains an étale point by 2.3,

q. e. d.

3. reduction.

In this section we will use the results of sect. 1, in particular Propositions 1.3

and 1.4 in order to discuss Néron models of abelian varieties in terms of rigid ana-

lysis. The necessary facts about the analytic structure of abelian varieties have

been gathered in sect. 2. The fields K c: k are as in sect. 1.

Definition 3.1. - Let X be a scheme smooth over K . A scheme X over KO is

called a I.14ron model of X if the following conditions are satisfied

(i) 3~ = X
(ii) 3E is smooth over KO .

(iii) If  is a scheme, smooth over KO and ~ 2014-&#x3E; ~ is a 

then extends uniquely to a K°-morphism w : Y -»’l . 
-

It is clear that the Néron uodel is unique (up to canonical isomorphism) if it
exists. Furthermore, X is a group scheme if X is a group scheme. The uain result

we want to prove combines the existence of Néron models for abelian varieties [N],
[R] with Grothendieck’s semi-abelian reduction 7J.

demi-Abelian Reduction Theorem 3;2: ;:.. Let A be an abelian variety over K . Then

there exists a finite separable extension L of K such that the valuation extends

uniquely from L to K and such that

(a) A a L admits a Néron model OL f. t. over LO .

(b) QL has semi-abelian reduction, i. e. , y the identify component ? of the special

fibre GL of OL is an extension of an abelian variety by a torus.

It is shown in [N], that A has always a Néron model over however, this

model does not necessarily have so,-,I-abeli;n reduction. Considering the analytifica-
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tion we have seen in 2.1 that the open analytic subgroup I c 

after replacing k by a finite separable extension ~ y becomes smooth over ~o .

By Krasner’s Lemma (in the version of [ BGR], 3.4.2/3), l can be interpreted as
the completion of a finite separable extension L of K with a unique valuation

extending the valuation on K . Thus the assertion of 3.2 will be clear if we prove

THEOREM 3.3 . - Let A be an abelian variety over K , and consider the open ana-

lytic subgroup A of -k~ which has been defined in 2.1. Then the following are

equivalent

(a) Ã is smooth over kO .

(b) The Néron Lodel d of A exists, ig f. t. over and has semi-abelian

reduction.

Furthermore~ if (a) and (b) are satisfied~ the analytic subgroup G - asso-

ciated to the formal completion ~ of A coincides canonically with the group A
of 2.7, whose identity component is A .

We want to deduce the assertions of 3.3 from the results of sects. 1 and 2 be means

of the following lemma which involves the group A .

LEMMA 3.4. - Let A be as in 3.3, and assume that A is smooth over Then

there exists an affine open covering {U.}. 1 n 
of A as well as an affinoid

open covering [U.}. 1 ... , n 
of such that and p(u.) is

dense in for all i . 
]. :I. - ].-

First, let us indicate how 3.3 is derived fron 3.4. Assume that Ã is smooth over

Then we use the coverings of 3.4 and obtain by a scheme d f. t. over KO

which extends 11. The fornal analytic variety ’Q associated to Cf. coincides with

et ; hence d is smooth over Furthernore, the identity component 03B1os of the

special fibre 0~ of OL coincides with the reduction of A (cf. 2.l)y and we see
s

that 03B1os is seui-abelian. Thus, in order to show that 03B1 is the Néron model of A ,
it remains to verify the universal napping property (iii) of 3*1* However, the lat-

ter is a consequence of 1.3 and the universal napping property of mentioned in

2.7.

Conversely, assume that condition (b) of 3.4 is satisfied. Then ä. is an open ana-

lytic subgroup of which is smooth over kO as a formal analytic group. Since

the reduction of its identity component  coincides with 03B1os and hence is semi-

abelian, we see by 2.1 that A = õP . In particular, Ã is smooth over Thereby

we have reduced the proof of 3.3 to the proof of 3.4.

In order to prepare the proof of 3 .4, we need an auxiliary result.

LEMMA 3. 5. - In the situation of 3.4, consider a non-empty affine open subvriety.
U --: A and a connected component E of the group Then there exist a non-
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enpty affine open subvariety U ’ t C U and a non-empty affinoid formal open sub-

variety such that and such that O(U’) is dense in 

Proof of 3.5. - The variety Uan contains a non-empty affinoid formal open sub-

variety F of E . Fixing a closed immersion U c2014-&#x3E; ~ and looking at its analy-
tification , we write U° := Then Uo is affinoid, and we
may assume F -U~ . By a result of Gerrit zen and Grauert ([BGR], 7.3.5/3)~ F i s

a finite union of rational subdomains in UO , and we can use the following elemen-
tary fact

Let be an admissible open covering of an affinoid variety V . Then

there exists an index i E I such that V. contains a formal subdomain of V .

Thereby we may assume that F itself is a rational subdouain in U° or, equiva-
lently, a Weierstrass domain in a Laurent domain in U° . Since analytic functions
on U can be approximated by algebraic functions on U , we nay replace U by a

suitable affine open subvariety and thereby assuue that U := F is a Veierstrass

domain in U . Then 0 (U) is dense in as required,

q. e. d.

If there are enough K-rational points in A , the coverings of 3.4 can be cons-

tructed by translating the sets U’ t and U obtained in 3.5. However, in general

this procedure will not work unless the field K is extended. If K # k , y the fact

that the valuation does not necessarily extend uniquely from K to an algebraic

extension L makes it impossible to descend from L to K by means of Galois

theory. To fix these troubles, one uses ample divisors on Ue will establish 3.
4 by generalizing the assertion of 3.5.

3.6. - In the situation of 3.4, consider a connected component E of the

group A and a point x ~ E . Then there exists an affine open subvariety U C A

and an af finoid formal open subvariety Ü L E such that x E U C Uan and such that

(0(U) is dense in 

Proof of 3.6. - Choose an effective divisor D on A, which is ample. Then
v := A - supp D is affine open in A. Applying 3.5, we may assume there is an affi-
noid formal open subvariety V C E such that V c Van is dense in ~(~).
Next, let £ be a finite Galois extension of k such that x decor;poses into 1-

radic al points x1 , ... , xr over 2 . Then xi , 9 ... , E -== E ~ l . Further-

more,

is a formal open subvariety in 2 and contains a point z ; extending t if neces-

sary, may assume that z is l-radicial. Then

1
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and if G = denotes the Galois group of l over k , we have

By Galois descend, the variety on the right hand side is extension of an affinoid

formal open subvariety U C E containing x .

Similarly .

is extension of an affine open subvariety U’ ~. A,, ~ where U c: U’ . Using some

standard arguments on complete tensor products and the fact that is dense in

O(V) , one easily shows is dense in O (Ü) . This verifies the assertion of
3.6 already in the case where K = k is complete.

So far we have not really needed the ample divisor D, and we will use it now in

order to approximate U’ by a variety defined over K . Translating the divisor

by z and where z is as above, one obtains effective divisors

and D ~ (z" ) such that, by the theorem of the square, their sum is linearly

equivalent to Then

is extension of a divisor Dk on A. such that

and such that D’K is linearly equivalent to a multiple of Dk = D ~ k . Replacing
D by a multiple of itself, we may assume D~ linearly equivalent to Dk and D

very ample. be the bundle associated to D . Then

and we have

for the vector spaces of global sections. Interpreting L ~ k as the sheaf 

the constant function 1 gives rise to a global section of  ~ k which gene-

rates E 0 k over Uk and, in particular, over U . Approximating So by a sec-

tion So ~ E(A) y we consider the affine open subvariety U C A y where so gene-

rates E . Then Uan if the approximation is good enough. Furthermore,

is dense in 0(ll) , since there is an affinoid generating system of 0(u) in 

and hence, by approximation in 0(u) . This concludes the proof of 3.6.

It is now easy to construct the coverings needed in 3.4. Namely, for each x E A
one constructs varieties U and U as in 3.6. Then finitely many of the varieties

U must cover since this group is quasi-compact. Adding affine open subvarieties

A and empty varieties 9 ~ one can guarantee that the varieti es TJ cover A .

Thereby the assertions of 3.4 and thus also of 3.3 and 3.2 are clear,

q. e. d.
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Remark 3.7. - We have seen that the condtruction of the Neron model d of A

works well when the group A C A of 2.1 is smooth over k° . If this is not the

case, there is a maximal connected open subgroup A’ C A which is smooth over k° .

Then one can interpret the group Aet of 2.7 (which has been constructed only in
the case where A is smooth over k° ) as the group generated by A’ and all etale

points of A . Algebraizing et in literally the same way as exercised in this

section, one obtains the Neron model 03B1 of A over K° . Of course, 03B1 will not

have semi-abelian reduction since A’ , the identity component of its formal comple-

tion, does not have semi-abelian reduction.

Remark 3.8. - The construction of Neron models with semi-abelian reduction requires
in most cases an extension of the ground field K as stated in 3.2. However, there

is a valuable criterion, due to Raynaud, saying that such an extension is unnecessa-

ry if, for some n # 3 prime to the residue characteristic of K , the n-torsion

points of the abelian variety A are rational ([ SGA 7J, exposé IX, 4.7) . One can

prove a similar criterion for the group Aet and thereby deduce Raynaud’s criterion

from the results of this section.
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