GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

MARIE-CLAUDE SARMANT-DURIX

Propriétés algébriques des produits infinis

Groupe de travail d'analyse ultramétrique, tome 10, nº 1 (1982-1983), exp. nº 11, p. 1-14 http://www.numdam.org/item?id=GAU_1982-1983__10_1_A7_0

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1982-1983, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PROPRIÉTÉS ALGÉBRIQUES DES PRODUITS INFINIS par Marie-Claude SARMANT-DURIX (*)

Rappels et définitions.

Nous nous plaçons dans k, corps ultramétriquement valué, complet, algebriquement clos et maximalement complet [3]. La valeur absolue ultramétrique sur k sera notée |.|.

 $\begin{cases} \beta_j \rbrace_{j \in \mathbb{N}} & \text{étant une suite de } C(0 \text{ , } 1^{\overline{}}) = \{x \in k \text{ ; } |x| < 1\} \text{ telle que } C(0 \text{ , } 1^{\overline{}}) \setminus \bigcup_{i \in \mathbb{N}} \{\beta_j\} \text{ soit quasi connexe, on pose : }$

$$\Delta_{0} = k \setminus \bigcup_{i \in \mathbb{N}} \{\beta_{j}\}$$

et, pour tout $\rho \in \mathbb{R}^+$,

$$\Delta_{\rho} = \{ \mathbf{x} \in \mathbf{k} ; |\mathbf{x} - \beta_{\mathbf{j}}| \geq \rho, \forall \mathbf{j} \in \mathbf{N} \}$$
.

On dira, par extension, que la suite $\{\beta_j\}_{j\in\mathbb{N}}$ est une T-suite idempotente de $C(0\ ,\ 1^-)$, si, $\forall\ \rho \geq 0$, la suite $\{C(\beta_j\ ,\ \rho)^-;\ 1\}$ des trous $C(\beta_j\ ,\ \rho)$, affectés des coefficients 1, est une T-suite de $C(0\ ,\ 1^-)$ [2].

Soit f(x) une fonction analytique définie sur Δ_0 . On dira que f(x) est une fonction néromorphe dans Δ_0 , de pôles $\{\beta_j\}_{j\in\mathbb{N}}$, si $f\in H(\Delta_\rho)$, $\forall\ \rho>0$.

Remarquons que f(x) est le produit d'une infinité de fractions rationnelles de pôles $\{\beta_i\}$ par une série de Taylor convergente sur k [4].

Dans la suite, quand nous parlerons du domaine Δ_{ρ} associé à une fonction néromorphe, il sera toujours défini comme ci-dessus (nême si les pôles de f ne s'appellent plus β_{i} !).

Position du problème.

Nous cherchons à savoir si des fonctions néronorphes, f(x) et g(x) par exemple, peuvent être reliées par une relation algébrique "au bord", c'est-à-dire vérifient une condition du genre :

$$\lim_{|\mathbf{x}|\to 1} P[f(\mathbf{x}), g(\mathbf{x})] = 0$$

où P est un polynôme en f et g.

^(*) Mme Marie-Claude SARMANT-DURIX, 16 boulevard Jourdan, 75014 PARIS.

Si $\{\beta_i\}_{i\in\mathbb{N}}$ est la suite des pôles de g(x), et si $\{\omega(b_i)\}_{i\in\mathbb{N}}$ est la suite des coefficients constants [5] associée, cette relation sera vérifiée si les pôles de la fonction f ne se rapprochent pas des b_i , et si

$$\lim_{i\to +\infty} P[f(b_i), \omega(b_i)] = 0$$
.

Nous allons donc essayer de trouver une fonction méronorphe f , de pôles $\{\beta_j\}_{j\in\mathbb{N}}$ tels que $\inf_{i,j}|b_i-\beta_j|\neq 0$, et vérifiant $f(b_i)=u_i$, u_i vérifiant la relation :

$$\lim_{i\to+\infty} P[u_i, \omega(b_i)] = 0$$
.

Ceci sera fait sous certaines conditions par le lemme 3, les lemmes 1 et 2 étant préparatoires au lemme 3.

LEMME 1. - Soit $b \in C(0, 1^-)$, et soit $F(x) = \sum_{k=1}^{+\infty} \frac{\varepsilon_k}{(x-b)^k}$ une série de Laurent convergente pour tout $x \neq b$.

 $\frac{\text{Soit}}{\text{f}} \left\{\beta_{j}\right\}_{j \in \widetilde{\mathbb{N}}} \quad \underline{\text{une}} \quad \text{T-suite idenpotente de} \quad \text{C(O, 1-)} \quad \underline{\text{telle que}} \quad \left|\text{b}\right| < \left|\beta_{j}\right| \text{,}$

Il existe une fonction méromorphe $\overline{F}(x)$ qui adnet pour seuls pôles les β_j à l'ordre 1 et telle que

$$\begin{vmatrix}
1 & \mathbf{i} \\
\mathbf{x} & \mathbf{j} \\
1
\end{vmatrix} = \mathbf{F}(\mathbf{x}) + \mathbf{F}(\mathbf{x}) = 0$$

$$\mathbf{x} \in \dot{\Omega}_{\mathbf{p}}$$

Démonstration. - Soit § le T-filtre associé à la T-suite $\{\beta_j\}$ [1]. D'après [4], il existe un élément $\bar{\Psi}(\mathbf{x}) \in H(\Delta_{\rho})$ pour tout $\rho > 0$, et strictement annulé par §, qui a pour seuls pôles les β_j à l'ordre 1.

D'après la décomposition de Mittag-Löffler, on peut écrire

$$\Phi(x) = \sum_{j=1}^{+\infty} \frac{r_{i,j}}{x - \beta_{j}},$$

et on peut supposer $\sup_{j} |\eta_{j}| = 1$.

Nous allons démontrer que, $\forall k \in N^*$, il existe une fonction produit infini $\overline{F}_k(x)$ qui a pour seuls pôles les β_j à l'ordre 1, et telle que

$$\begin{vmatrix}
\mathbf{lim} \\
\mathbf{x} & \exists \mathbf{1} \\
\mathbf{x} \in \Delta_{0}(\beta \cup \{\beta_{i}\})
\end{vmatrix} \xrightarrow{1} \frac{1}{(\mathbf{x} - \mathbf{b})^{k}} + \overline{F_{k}}(\mathbf{x}) = 0, \quad \forall \quad \rho > 0,$$

puis nous sommerons les $\varepsilon_k/(x-b)^k$.

Pour cela, nous allons appliquer la décomposition de Mittag-Löffler à $\tilde{\psi}(x)/(x-b)^k$, d'abord pour k=1, puis pour k quelconque, ce qui va nous donner un système d'équations linéaires à coefficients constants en

$$1/(x - b)$$
, $1/(x - b)^2$, ..., $1/(x - b)^k$

Cas k = 1 :

 $\varphi_1(x) = \Phi(x)/(x-b)$ est encore une fonction croulante. D'après la décomposition de Mittag-Löffler,

$$\varphi_{1}(x) = \frac{\alpha_{1}^{1}}{x - b} + \sum_{j=1}^{+\infty} \frac{\lambda_{1}^{j}}{x - \beta_{j}}$$

avec

$$\alpha_1^1 = \bar{\mathfrak{Q}}(\mathfrak{b})$$

$$\lambda_1^{j} = \frac{1}{\beta_{j} - b} \left[(x - \beta_{j}) \Phi(x) \right]_{x = \beta_{j}} = \frac{\eta_{j}}{\beta_{j} - b},$$

d'où

$$\frac{\Phi(b)}{x-b} = \frac{\Phi(x)}{x-b} - \sum_{j=1}^{+\infty} \frac{\eta_j/(\beta_j-b)}{x-\beta_j}$$

Cas général : k quelconque :

 $\varphi_k(x) = \frac{\psi(x)}{(x-b)^k}$ est une fonction croulante.

D'après la décomposition de Mittag-Löffler,

$$\varphi_{k}(x) = \frac{\alpha_{k}^{1}}{(x-b)^{k}} + \dots + \frac{\alpha_{k}^{k-1}}{x-b} + \sum_{j=1}^{+\infty} \frac{\lambda_{k}^{j}}{x-\beta_{j}}$$

avec

$$\lambda_{k}^{j} = \frac{\eta_{j}}{(\beta_{j} - b)^{k}}$$

$$\frac{\alpha_{k}^{1}}{(x-b)^{k}} + \dots + \frac{\alpha_{k}^{k-1}}{x-b} = \frac{1}{(x-b)^{k}} \left[\tilde{\phi}(b) + (x-b) \, \tilde{\phi}'(b) + \dots + \frac{(x-b)^{k-1}}{(k-1)!} \, \tilde{\phi}(k-1) \right]$$

Nous pouvons en déduire le système de k équations à k inconnues

$$\frac{1}{x-b}$$
, ..., $\frac{1}{(x-b)^k}$:

$$\begin{cases} \frac{\xi(b)}{x-b} = \frac{\varphi(x)}{x-b} - \sum_{j=1}^{+\infty} \frac{\eta_{j}/(\beta_{j}-b)}{x-\beta_{j}} \\ \frac{\xi'(b)}{x-b} + \frac{\varphi(b)}{(x-b)^{2}} = \frac{\xi(x)}{(x-b)^{2}} - \sum_{j=1}^{+\infty} \frac{\eta_{j}/(\beta_{j}-b)^{2}}{x-\beta_{j}} \\ \vdots \\ \frac{\xi(k-1)}{(k-1)!(x-b)} + \dots + \frac{\varphi(b)}{(x-b)^{k}} = \frac{\varphi(x)}{(x-b)^{k}} - \sum_{j=1}^{+\infty} \frac{\eta_{j}/(\beta_{j}-b)^{k}}{x-\beta_{j}} \end{cases}$$

Appelons $\theta_1(x)$, $\theta_2(x)$, ..., $\theta_k(x)$ les deuxièmes membres de ces équations. Nous pouvons mettre le système sous forme matricielle :

$$\begin{pmatrix}
\frac{\varphi}{b} & 0 & 0 & 0 \\
\frac{\varphi}{b} & \varphi(b) & \varphi(b) & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\frac{1}{x-b} \\
\frac{1}{(x-b)^2}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\varphi}{b} & \varphi(b) & \varphi(b) \\
\vdots & \vdots & \vdots \\
\frac{\varphi}{b} & \varphi(b) & \varphi(b)
\end{pmatrix}
\begin{pmatrix}
\frac{1}{x-b} \\
\frac{1}{(x-b)^2}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\varphi}{b} & \varphi(x) \\
\vdots \\
\frac{\varphi}{b} & \varphi(b) \\
(k-1) & \varphi(b) \\
\end{pmatrix}
\begin{pmatrix}
\frac{1}{x-b} \\
\vdots \\
\frac{1}{(x-b)^k}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{x-b} \\
\frac{1}{(x-b)^k}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{1}{x-b} \\
\frac{1}{(x-b)^k}
\end{pmatrix}$$

Appelons A la matrice carrée. Nous nous intéressons à $1/(x-b)^k$: nous allons étudier les coefficients de la dernière ligne de A^{-1} . Posons:

$$\Lambda^{-1} = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ a_1 & \cdots & a_k \end{pmatrix}$$

et

$$a_{i} = \frac{\alpha_{i}}{\left[\tilde{\phi}(b)\right]^{k}}$$
 (car det $A = \left[\tilde{\phi}(b)\right]^{k}$

$$\alpha_{1} = (-1)^{k-1} \begin{vmatrix} \frac{\tilde{\varphi}^{1}(b)}{2} & \frac{\tilde{\varphi}^{1}(b)}{2} & \frac{\tilde{\varphi}^{1}(b)}{2} & \frac{\tilde{\varphi}^{1}(b)}{2} & \frac{\tilde{\varphi}^{1}(b)}{2} & \frac{\tilde{\varphi}^{1}(b)}{2} & \vdots \\ \vdots & & & & & & \\ \frac{\tilde{\varphi}(k-1)}{(k-1)!} & & & & & & \\ \frac{\tilde{\varphi}(k-1)}{(k-1)!} & & & & & & \\ \frac{\tilde{\varphi}^{1}(b)}{(k-1)!} & & & & & & \\ \vdots & & & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & & & \\ \frac{\tilde{\varphi}^{1}(b)}{(k-1)!} & & & & & \\ \vdots & & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & & & \\ \vdots & & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & & \\ \vdots & & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \vdots & & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!} & & \\ \frac{\tilde{\varphi}(b)}{(k-1)!}$$

$$1 \leq s \leq k \Longrightarrow \alpha_{s} = (-1)^{k-s} \begin{vmatrix} \tilde{\varphi}(b) & 0 & \dots & 0 \\ \vdots & & \vdots \\ \tilde{\varphi}(s) & \dots & \tilde{\varphi}'(b) & \tilde{\varphi}(b) & 0 \end{vmatrix} = (-1)^{k-s} \left[\hat{\varphi}(b) \right]^{s-1} \delta_{k-s}$$

où

$$\delta_{\mathbf{k}-\mathbf{s}} = \begin{bmatrix} \xi^{\dagger}(b) & \xi(b) & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ \xi^{\dagger}(\mathbf{k}-\mathbf{s}) & & & \xi(b) \\ \hline (k-\mathbf{s}) & \vdots & & & \xi(b) \\ \hline (k-\mathbf{s}) & \vdots & & & & \xi(b) \end{bmatrix}$$

Remarquons d'ailleurs que $\alpha_k = \left[\phi(b)\right]^{k-1}$.

Nous voulons borner les $~\delta_{\mathbf{k-s}}$, afin de savoir si

$$\sum_{k=0}^{\infty} \frac{\epsilon_k}{(x-b)^k} = \sum_{k=0}^{+\infty} \frac{1}{\left[\psi(b)\right]^k} \left[\alpha_1 \, \theta_1(x) + \dots + \alpha_k \, \theta_k(x)\right]$$

converge

$$| \tilde{\phi}(b) | = | \sum_{i=1}^{+\infty} \frac{\eta_{i}}{|b - \beta_{i}|} | \leq \frac{\sup |\eta_{i}|}{|b|} \leq \frac{1}{|b|}$$

$$\vdots$$

$$| \frac{\tilde{\phi}(b)}{|b|} | = | \sum_{i=1}^{+\infty} \frac{s : \eta_{i}}{|b - \beta_{i}|^{S+1}} | \leq \frac{1}{|b|^{S+1}}$$

$$|\delta_1| = 1$$

$$|\delta_2| = \left\| \frac{\hat{\varphi}^{\dagger}(b)}{\hat{\varphi}^{\dagger}(b)} - \hat{\varphi}^{\dagger}(b) \right\| = |\hat{\varphi}^{\dagger}(b)^2 - \frac{\hat{\varphi}(b)}{2!} - \frac{\hat{\varphi}^{\dagger}(b)}{2!}| \leq \frac{1}{|b|^4}$$

(Pour alléger les notations, nous écrirons maintenant Φ au lieu de $\Phi(b)$). Supposons que $\left|\delta_{\mathbf{i}}\right| \leq \frac{1}{\left|\mathbf{b}\right|^{2\mathbf{i}}}$ pour \mathbf{i} = 1 , 2 , ... , \mathbf{I} - 2 . Etudions $\delta_{\mathsf{T}-1}$.

$$\delta_{\mathbf{I}-1} = \begin{vmatrix} \dot{\psi}^{\dagger} & \ddot{\psi} & 0 & \dots & 0 \\ & \dot{\psi}^{\dagger} & \ddot{\psi} & 0 & \dots & 0 \\ & & & & & & & & \\ \frac{\ddot{\psi}^{\dagger}(\mathbf{I}-1)}{(\mathbf{I}-1)!!} & \dots & & & & & & \\ & & & & & & & & \\ \frac{\ddot{\psi}^{\dagger}}{6} & \dot{\psi} & 0 & \dots & 0 \\ & \vdots & & & & & & \\ \frac{\ddot{\psi}^{\dagger}}{(\mathbf{I}-1)!!} & \frac{\ddot{\psi}^{\dagger}(\mathbf{I}-3)}{(\mathbf{I}-3)!!} & \dots & & & \\ & \vdots & & & & & & \\ \frac{\ddot{\psi}^{\dagger}}{(\mathbf{I}-1)!!} & \frac{\ddot{\psi}^{\dagger}(\mathbf{I}-4)}{(\mathbf{I}-4)!!} & \dots & 0 \end{vmatrix}$$

$$= \tilde{\psi}^{1} \delta_{I-2} - \tilde{\psi} \frac{\tilde{\psi}^{11}}{2} \delta_{I-3} + \tilde{\psi}^{2} \frac{\psi^{11}}{3!} \delta_{I-4} + \cdots$$

$$+ (-1)^{i} \tilde{\psi}^{i} \frac{\tilde{\psi}^{(i+1)}}{(i+1)!} \hat{\delta}_{I-2-i} + \dots + (-1)^{I-2} \tilde{\psi}^{I-2} \frac{\tilde{\psi}^{(I-1)}}{(I-1)!}.$$

D'où

$$\left|\delta_{\mathbf{I}-1}\right| \leq \sup_{1 \leq \mathbf{i} \leq \mathbf{I}-2} \frac{1}{\left|\mathbf{b}\right|^{\mathbf{i}}} \frac{1}{\left|\mathbf{b}\right|^{\mathbf{i}+2}} \frac{1}{\left|\mathbf{b}\right|^{2(\mathbf{I}-2-\mathbf{i})}}$$

$$|\delta_{I-1}| \leqslant \frac{1}{|b|^{2(I-1)}}$$
.

D'où

$$|a_{s}| \leqslant \frac{|\tilde{\varrho}(b)|^{s-1}}{|\tilde{\varrho}(b)|^{k} |b|^{2(k-s)}}.$$

Rappelons que

$$\frac{1}{(x-b)^k} = a_1 \theta_1(x) + \dots + a_k \theta_k(x) .$$

Nous avons donc, en remplaçant les θ par leurs valeurs en x:

$$\frac{1}{(x-b)^{k}} = \left[\frac{a_{1}}{x-b} + \frac{a_{2}}{(x-b)^{2}} + \dots + \frac{a_{k}}{(x-b)^{k}}\right] \tilde{y}(x)$$

$$-\sum_{j=1}^{+\infty} \frac{\eta_{j}(\frac{a_{1}}{\beta_{j}-b}+\frac{a_{2}}{(\beta_{j}-b)^{2}}+\cdots+\frac{a_{k}}{(\beta_{j}-b)^{k}}}{x-\beta_{j}}.$$

D'où

$$\sum_{k=1}^{+\infty} \frac{\epsilon_k}{(x-b)^k} = \Phi(x) \sum_{k=1}^{+\infty} \epsilon_k (\frac{a_1}{x-b} + \dots + \frac{a_k}{(x-b)^k})$$

$$-\sum_{j=1}^{+\infty} \frac{\eta_{j}}{x-\beta_{j}} \sum_{k=1}^{+\infty} \varepsilon_{k} \left(\frac{a_{1}}{\beta_{j}-b} + \dots + \frac{a_{k}}{(\beta_{j}-b)^{k}}\right).$$

Pour que ces deux termes soient définis, il est suffisant que chacune des deux expressions :

$$\varepsilon_{k}\left(\frac{a_{1}}{x-b}+\ldots+\frac{a_{k}}{(x-b)^{k}}\right)=\varepsilon_{k}\sum_{h=1}^{k}\frac{a_{h}}{(x-b)^{h}}$$

(2)
$$\epsilon_{k} \left(\frac{a_{1}}{\beta_{j} - b} + \dots + \frac{a_{k}}{(\beta_{j} - b)^{k}} \right) = \epsilon_{k} \sum_{h=1}^{k} \frac{a_{h}}{(\beta_{j} - b)^{h}}$$

tende vers 0 (uniformément par rapport à x pour $|x-b| > \rho$ pour la première; uniformément par rapport aux β , pour la deuxième) lorsque k devient infini.

Comme (2) est la valeur de (1) pour $x = \beta_j$, il suffit de pouvoir borner (1) sur $\{x \in k ; |x-b| > \rho\}$ par une expression qui tend vers 0 lorsque k devient infini ; or,

$$\left|\frac{a_1}{(x-b)} + \dots + \frac{a_k}{(x-b)^k}\right| \leq \sup_{1 \leq s \leq k} \frac{|a_s|}{\rho^s} \quad \text{si} \quad x \in \Delta_{\rho}(b)$$

soit

$$\left|\sum_{h=1}^{k} \frac{a_{h}}{(x-b)^{h}}\right| \leq \sup_{1 \leq s \leq k} \frac{\left|\bar{\varphi}(b)\right|^{s-1}}{\left|\bar{\varphi}(b)\right|^{k} \left|b\right|^{2(k-s)} \rho^{s}},$$

et comme $|b|^2 > p$ et $|\tilde{y}(b)| \geqslant 1$:

$$|\sum_{h=1}^{k} \frac{a_{h}}{(x-b)^{h}}| \leq \frac{1}{|\frac{a}{2}(b)|^{k+1} |b|^{2k}} \sup_{1 \leq s \leq k} |\frac{a}{2}(b)|^{s} (\frac{|b|^{2}}{\rho})^{s}$$

$$\leq \frac{1}{|\frac{a}{2}(b)^{k+1} |b|^{2k}} |\frac{a}{2}(b)|^{k} (\frac{|b^{2}|}{\rho})^{k}$$

$$\leq \frac{1}{|\hat{\psi}(b)|} \frac{1}{\rho^k}$$
.

Donc

$$\left| \epsilon_{k} \left(\frac{a_{1}}{x-b} + \dots + \frac{a_{k}}{(x-b)^{k}} \right) \right| \leq \frac{1}{|\tilde{\psi}(b)|} \frac{\left| \epsilon_{k} \right|}{\rho^{k}}$$

tend vers 0 lorsque k devient infini, puisque la série de Laurent $\sum_{k} \frac{\varepsilon_{k}}{(x-b)^{k}}$ est convergente pour $x \neq b$, donc pour $|x-b| = \rho$.

$$\sum_{k=1}^{+\infty} \varepsilon_k \left(\frac{a_1}{x-b} + \dots + \frac{a_k}{(x-b)^k} \right)$$

est donc un élément analytique borné sur $\{x\in k \; ; \; |x-b|>\rho\}$, dont le produit par $\ddot{\psi}(x)$ tend vers 0 suivant le T-filtre F, $\forall \; \rho>0$.

On posera donc

$$\overline{F(x)} = \sum_{j=1}^{+\infty} \frac{\eta_{j}}{x - \beta_{j}} \sum_{k=1}^{+\infty} \epsilon_{k} \left(\frac{a_{1}}{\beta_{j} - b} + \dots + \frac{a_{k}}{(\beta_{j} - b)^{k}} \right)$$

qui est un élément analytique sur chaque $~\Delta_{~\rho}$, $~\forall~\rho>0$, et dont les seuls pôles sont les $~\beta_{~j}$ à l'ordre ~1

LEMME 2. - Soit (b_i)_{i∈N}* une famille de C(O , 1) telle que C(O,1) $\bigcup_{i\in N}$ * {b_i} soit quasi connexe.

 $\frac{\text{Soit } (\varepsilon_{k,i})_{i,k\in\mathbb{N}}}{\text{appartienne à } H(\Delta_{\rho}^{\circ})}, \forall \rho > 0.$

Alors, quelle que soit la T-suite idempotente $\{\beta_j\}_{j\in\mathbb{N}}$ de C(0,1), telle que $|b_j| \neq |\beta_j|$, V i \neq j, il existe une fonction $\overline{G}(x)$ méromorphe sur Δ_0 , de seuls pôles β_j à l'ordre 1, telle que

$$\lim_{\mathbf{x}\in\Delta_{\rho}(\left\{b_{\mathbf{i}}^{\left[\frac{1}{2}\right]}\right\}\cup\left\{\beta_{\mathbf{j}}^{\left[\frac{1}{2}\right]}\right\})}G(\mathbf{x})+\overline{G}(\mathbf{x})=0,\quad\forall\;\rho\geq0.$$

Démonstration. - Soit J(i) l'indice défini par

$$J(i) = \inf_{j \in \mathbb{N}^*} \{j ; |b_i| < |\beta_j| \}$$
.

On sait que la suite $\{\beta_j\}_{j\geqslant J(i)}$ est toujours une T-suite [2], il existe donc une fonction croulante $\hat{\Psi}_i(x)$ qui admet pour seuls pôles les β_j à l'ordre 1 pour $j\geqslant J(i)$:

$$\Psi_{\mathbf{i}}(\mathbf{x}) = \sum_{\mathbf{j} \geqslant J(\mathbf{i})} \frac{\eta_{\mathbf{j}}^{\mathbf{i}}}{\mathbf{x} - \beta_{\mathbf{j}}},$$

et telle que $|\Phi_{\mathbf{i}}(\mathbf{b}_{\mathbf{i}})| = 1$ et $|\Pi_{\mathbf{j}}^{\mathbf{i}}| \leq 1$, \forall i, j.

Posons alors

$$F_{\mathbf{i}}(\mathbf{x}) = \sum_{k=1}^{+\infty} \frac{\varepsilon_{k,\mathbf{i}}}{(\mathbf{x} - \mathbf{b}_{\mathbf{i}})^k}$$

 $\overline{F}_i(x)$ est défini par le lemme 1 à partir de la fonction $g_i(x)$. Nous voudrions, d'une part que la fonction $\overline{G}(x) = \sum_i \overline{F}_i(x)$ soit définie aussi, d'autre part que :

$$\lim_{\substack{1 \le 1 \\ x \in \Delta}} G(x) + \overline{G}(x) = 0.$$

Or, d'après ce qui précède,

$$\sum_{k=1}^{+\infty} \frac{\epsilon_{k,i}}{(x-b_{i})^{k}} = \epsilon_{i}(x) \sum_{k=1}^{+\infty} \epsilon_{k,i} (\frac{a_{1}^{i}}{x-b_{i}} + \dots + \frac{a_{k}^{i}}{(x-b_{i})^{k}})$$

$$- \sum_{j=J(i)}^{+\infty} (\frac{\eta_{j,i}}{x-\beta_{j}}) (\sum_{k=1}^{+\infty} \epsilon_{k,i} (\frac{a_{1}^{i}}{\beta_{j}-b_{i}} + \dots + \frac{a_{k}^{i}}{(\beta_{j}-b_{j})^{k}})).$$

Or, puisque $|\psi_{i}(b_{i})| = 1$, on a:

$$\begin{split} \lim_{\mathbf{i} \to +\infty} \sup_{\mathbf{k}} \left| \mathbf{e}_{\mathbf{k}, \mathbf{i}} \right| & \left| \frac{\mathbf{a}_{\mathbf{1}}^{\mathbf{i}}}{\mathbf{x} - \mathbf{b}_{\mathbf{i}}}, + \cdots + \frac{\mathbf{a}_{\mathbf{k}}^{\mathbf{i}}}{(\mathbf{x} - \mathbf{b}_{\mathbf{i}})^{\mathbf{k}}} \right| \\ & \leqslant \lim_{\mathbf{i} \to +\infty} \sup_{\mathbf{k}} \left| \mathbf{e}_{\mathbf{k}, \mathbf{i}} \right| & \frac{1}{\left| \tilde{\mathbf{p}}_{\mathbf{i}} \left(\mathbf{b}_{\mathbf{i}} \right) \right| \right| \rho^{\mathbf{k}}} = 0 \end{split} .$$

Donc la convergence:

$$\lim_{\mathbf{i} \to +\infty} \left| \sum_{k=1}^{+\infty} \epsilon_{k,\mathbf{i}} \left(\frac{a_{\mathbf{i}}^{\mathbf{i}}}{\beta_{\mathbf{j}} - b_{\mathbf{i}}} + \dots + \frac{a_{\mathbf{k}}^{\mathbf{i}}}{(\beta_{\mathbf{i}} - b_{\mathbf{i}})^{k}} \right) \right| = 0$$

est uniforme.

Considérons d'autre part :

$$|\mathbf{x}| \xrightarrow{\mathbf{i}}_{\mathbf{x} \in \Delta_{\rho}} |\mathbf{i} \stackrel{\varphi_{\mathbf{i}}}{=} (\mathbf{x}) \stackrel{\sum_{k=1}^{+\infty}}{=} \varepsilon_{k,\mathbf{i}} (\frac{\mathbf{a}_{\mathbf{1}}^{\mathbf{i}}}{\mathbf{x} - \mathbf{b}_{\mathbf{i}}} + \dots + \frac{\mathbf{a}_{\mathbf{k}}^{\mathbf{i}}}{(\mathbf{x} - \mathbf{b}_{\mathbf{i}})^{\mathbf{k}}}| .$$

Cette expression est inférieure à

$$\sup_{\mathbf{i}} |\dot{\mathbf{e}}_{\mathbf{i}}(\mathbf{x})| \sup_{\mathbf{k}} \frac{|\varepsilon_{\mathbf{k},\mathbf{i}}|}{|\dot{\mathbf{e}}_{\mathbf{i}}(\mathbf{b}_{\mathbf{i}})| \rho^{\mathbf{k}}}.$$

Pour un ρ donné, posons $\tau_{\mathbf{i}}(\rho) = \sup_{k} \frac{|\epsilon_{k,\mathbf{i}}|}{\rho^{k}}$:

$$\lim_{i\to +\infty} \tau_i(\rho) = 0$$
.

Donc

$$|\lim_{\substack{|x| \to 1 \\ x \in \Delta_{\rho}}} \sup_{i} |\hat{y}_{i}(x)| \tau_{i}(\rho) = 0.$$

 $(\operatorname{Car} | \Psi_{\mathbf{i}}(\mathbf{x}) | \leq \frac{1}{\rho}, \quad \forall \mathbf{x} \in \Delta_{\rho}).$

LEMME 3. - Soit $(b_i)_{i \in \mathbb{N}}$ une famille de C(0, 1] telle que $C(0, 1] \setminus \bigcup_{i \in \mathbb{N}} \{b_i\}$ soit quasi connexe.

Soit $(u_i)_{i \in \mathbb{N}^*}$ une famille de k, définie par

$$\mathbf{u}_{\mathbf{i}} = \sum_{\substack{j=1 \ j \neq \mathbf{i}}}^{+\infty} \sum_{k=1}^{+\infty} \frac{\mathbf{e}_{k,j}}{(\mathbf{b}_{\mathbf{i}} - \mathbf{b}_{\mathbf{j}})^k}$$

 $(\underline{\text{avec}} \quad \lim_{j \to +\infty} \sup_{k} \left| \frac{\epsilon_{k,j}}{(b_{i} - b_{j})^{k}} \right| = 0)$.

Alors, quelle que soit la T-suite idempotente $\{\beta_j\}$ de $C(0, 1^-)$ telle que $|b_j| \neq |\beta_j|$, $\forall i \neq j$, il existe une fonction méronorphe $\overline{G}(x)$ de seuls pôles β_j à l'ordre 1, telle que :

$$\lim_{i\to +\infty} u_i + \overline{G}(b_i) = 0.$$

Remarque. - Je ne suppose plus $\sum \sum_{k,j} (x - b_j)^k$ convergente sur Δ_0 .

<u>Démonstration</u>. - Nous ne pouvons plus définir $F_j(x) = \sum_{k=1}^{+\infty} \varepsilon_k, j/(x-b_j)^k$ comme au lemme 2, car rien ne prouve que $F_j(x)$ soit convergente pour $|x-b_j|$ assez petit. Par contre, $F_j(b_j)$ est bien défini. Nous pouvons donc essayer d'écrire :

$$\begin{split} \Sigma_{\mathbf{k}=1}^{+\infty} \; \frac{\varepsilon_{\mathbf{k},\mathbf{j}}}{\left(\mathbf{b_{i}} - \mathbf{b_{j}}\right)^{\mathbf{k}}} = \; \tilde{\mathbf{y}}_{\mathbf{j}}(\mathbf{b_{i}}) \; \Sigma_{\mathbf{k}=1}^{+\infty} \; \varepsilon_{\mathbf{k},\mathbf{j}}(\frac{\mathbf{a_{i}^{\mathbf{j}}}}{\mathbf{b_{i}} - \mathbf{b_{j}}} + \dots + \frac{\mathbf{a_{k}^{\mathbf{j}}}}{\left(\mathbf{b_{i}} - \mathbf{b_{j}}\right)^{\mathbf{k}}}) \\ - \; \Sigma_{\mathbf{h}=J(\mathbf{j})}^{+\infty} \; \frac{\eta_{\mathbf{h},\mathbf{j}}}{\mathbf{b_{i}} - \beta_{\mathbf{h}}} \; \Sigma_{\mathbf{k}=1}^{+\infty} \; \varepsilon_{\mathbf{k},\mathbf{j}}(\frac{\mathbf{a_{j}^{\mathbf{j}}}}{\beta_{\mathbf{h}} - \mathbf{b_{j}}} + \dots + \frac{\mathbf{a_{k}^{\mathbf{j}}}}{\left(\beta_{\mathbf{h}} - \mathbf{b_{j}}\right)^{\mathbf{k}}}) \; \bullet \end{split}$$

Comme il existe i tel que:

$$\left|\frac{a_{1}^{j}}{\beta_{h}-b_{j}}+\cdots+\frac{a_{k}^{j}}{(\beta_{j}-b_{j})^{k}}\right| \leq \left|\frac{a_{1}^{j}}{b_{1}-b_{j}}+\cdots+\frac{a_{k}^{j}}{(b_{1}-b_{j})^{k}}\right|,$$

ces deux sommes sont définies si

$$\lim_{k\to +\infty} \left| \epsilon_{k,j} \left(\frac{a_1^j}{b_i - b_j} + \dots + \frac{a_k^j}{(b_i - b_j)^k} \right) \right| = 0,$$

ce qui est le cas, puisque

$$\begin{aligned} |\epsilon_{\mathbf{k},\mathbf{j}}(\frac{\mathbf{a}_{1}^{\mathbf{j}}}{\mathbf{b}_{1}-\mathbf{b}_{\mathbf{j}}} + \dots + \frac{\mathbf{a}_{\mathbf{k}}^{\mathbf{j}}}{(\mathbf{b}_{1}-\mathbf{b}_{\mathbf{j}})^{\mathbf{k}}})| &\leq \frac{1}{|\mathbf{a}_{\mathbf{j}}(\mathbf{b}_{\mathbf{j}})|} \frac{|\epsilon_{\mathbf{k},\mathbf{j}}|}{|\mathbf{b}_{1}-\mathbf{b}_{\mathbf{j}}|^{\mathbf{k}}} \\ &\leq \frac{|\epsilon_{\mathbf{k},\mathbf{j}}|}{|\mathbf{b}_{1}-\mathbf{b}_{\mathbf{j}}|^{\mathbf{k}}} \end{aligned}$$

De plus,

$$\sum_{k=1}^{+\infty} \epsilon_{k,j} \left(\frac{a_1^j}{b_i - b_j} + \dots + \frac{a_k^j}{(b_i - b_j)^k} \right)$$

et

$$\sum_{k=1}^{+\infty} \epsilon_{k,j} \left(\frac{a_1^{j}}{b_h - b_j} + \dots + \frac{a_k^{j}}{(\beta_h - b_j)^k} \right)$$

tendent vers 0 lorsque j devient infini.

Donc $\overline{G}(x) = \sum_{j} \overline{F}_{j}(x)$ est bien défini, même si $F_{j}(x)$ ne l'est pas.

En outre, $\lim_{i\to +\infty} u_i + \overline{G}(b_i) = 0$, car

$$\left|\sum_{\mathbf{j}} \hat{\mathbf{b}}_{\mathbf{j}}(\mathbf{b}_{\mathbf{i}}) \sum_{k=1}^{+\infty} \boldsymbol{\varepsilon}_{k,\mathbf{j}} \left(\frac{\mathbf{a}_{\mathbf{i}}^{\mathbf{j}}}{\mathbf{b}_{\mathbf{i}} - \mathbf{b}_{\mathbf{j}}} + \dots + \frac{\mathbf{a}_{k}^{\mathbf{j}}}{(\mathbf{b}_{\mathbf{i}} - \mathbf{b}_{\mathbf{j}})^{k}}\right)\right|$$

$$\leq \sup_{j} (|\phi_{j}(b_{i})| \times \sup_{k} \frac{|\phi_{k,j}|}{|b_{i} - b_{j}|^{k}})$$
.

Application I Racine N-ième. - Soit g(x) une fonction méromorphe de pôles $\{b_i\}_{i\in \underline{\mathbb{N}}}$ telle que |g(x)|<1, $\forall\;x\in\Delta_{\rho_0}$ pour un ρ_0 donné.

Soit N un entier.

Nous cherchons une fonction f(x) telle que, si on appelle $\{\beta_i\}_{i\in \mathbb{N}}$ la famille de ses pôles,

$$\lim_{\begin{subarray}{l} |x| \to 1 \\ x \in C(0, 1) \end{subarray}} f^{N}(x) - (1 + g(x)) = 0 , \forall \rho > 0 .$$

$$|x - b_{1}| \ge 0$$

$$|x - \beta_{1}| \ge \rho$$

Pour cela, il est nécessaire et suffisant que :

$$\lim_{x \to +\infty} \omega_{b_i} \left[f^{N}(x) - (1 + g(x)) \right] = 0.$$

(Rappelons que ω_{b_i} est le coefficient constant du développement de $f^{N}(x)$ - (1+g(x)) autour de b_i .)

0r

$$\begin{split} \omega_{b_{\hat{1}}} \left[f^{\hat{N}}(x) - (1 + g(x)) \right] \\ &= f^{\hat{N}}(b_{\hat{1}}) - \omega_{b_{\hat{1}}} (1 + g(x)) \\ &= f^{\hat{N}}(b_{\hat{1}}) - [1 + \omega_{b_{\hat{1}}}(g(x))] \end{split}$$

si $\inf_{i,j} |b_i - \beta_j| \neq 0$.

Il faut donc que nous trouvions f tel que

$$f(b_i) = [1 + \omega_{b_i}(g(x))]^{\frac{1}{N}},$$

g peut être mise sous la forme :

$$g(x) = \sum_{j=1}^{+\infty} \sum_{k=1}^{k_j} \frac{\gamma_{j,k}}{(x - b_j)^k} + \psi(x),$$

où 🍴 (x) est une série de Taylor de rayon de convergence infini, et où

$$\sup_{j} |\gamma_{j,k}| < 1$$
 et $\sup_{x \in k} |\psi(x)| < 1$

puisque |g(x)| < 1, $\forall x \in \Delta_0$.

Nous voulons donc :

$$f(b_{i}) = [1 + \sum_{j=1, j \neq i}^{+\infty} \sum_{k=1}^{k_{j}} \frac{f_{j,k}}{(b_{i} - b_{i})^{k}} + \psi(b_{i})]^{1/N}.$$

On peut l'écrire :

$$f(b_{i}) = 1 + \sum_{j=1, j \neq i}^{+\infty} \sum_{k=1}^{+\infty} \frac{\varepsilon_{j,k}}{(b_{i} - b_{j})^{k}} + \varphi(b_{i})$$

où φ est une série de Taylor uniformément bornée par 1.

Quelle que soit la T-suite idempotente $\{\beta_j\}_{j\in\mathbb{N}}$ telle que $\inf_{i,j}|b_i-\beta_j|\neq 0$, il existe une fonction $\overline{C}_1(x)$ de pôles β_i telle que

$$\lim_{\mathbf{i} \to +\infty} \sum_{\mathbf{j} \neq \mathbf{i}} \sum_{\mathbf{k}} \frac{\epsilon_{\mathbf{j}, \mathbf{k}}}{(b_{\mathbf{i}} - b_{\mathbf{j}})^{\mathbf{k}}} + \overline{C_{\mathbf{1}}(b_{\mathbf{i}})} = 0.$$

Il existe aussi une fonction $\overline{C_2(x)}$ de pôles β_i telle que

$$\lim_{\mathbf{i} \to \mathbf{i}^{\infty}} \overline{C_2(\mathbf{b_i})} + \varphi(\mathbf{b_i}) = 0.$$

(Il suffit de multiplier $\phi(x)$ par une fonction de pôles β_i qui tende vers 1 lorsque |x| -> 1, pour $x \in \Delta_\rho$.)

Done

$$\lim_{\mathbf{i} \to +\infty} \overline{C_2(\overline{b_i})} + \overline{C_1(\overline{b_i})} + f(b_i) = 0$$

et $\overline{C_1(x)} + \overline{C_2(x)}$ est la fonction f demandée.

Application II. - Soit $P[X, Y] \in k[X, Y]$.

On cherche deux fonctions méromorphes f et g telles que

$$\lim_{\substack{|x|\to 1\\x\in\Delta_{\rho}}} P[g(x), f(x)] = 0.$$

Soient $c_0 \in k$, $R \in \mathbb{R}$ deux constantes telles que P[X, Y] = 0 ait une solution analytique Y = F(X) pour $|X - c_0| < R$.

Soit g(x) une fonction méromorphe sur C(0 , 1) telle que $|w_{\bf i}(g) - c_{\bf 0}| < R$ (où $w_{\bf i}(g)$ est le coefficient constant de g en un de ses pôles $b_{\bf i}$), \forall ${\bf i}$ \in \mathbb{N} .

Alors, en appliquant le lemme 3 comme précédemment, on voit qu'il existe une fonction méromorphe sur $C(0\ ,\ 1^-)$, f(x) , telle que

$$\lim_{i \to +\infty} f(b_i) - F(\omega_i(g)) = 0$$
,

et par conséquent, telle que

$$\begin{bmatrix} \lim_{x \to 1} & P[g(x), f(x)] = 0. \\ x \in \Delta & 0 \end{bmatrix}$$

BIBLIOGRAPHIE

- [1] ESCASSUT (Alain). T-filtres, ensembles analytiques et transformations de Fourier p-adiques, Ann. Inst. Fourier, Grenoble, t. 25, 1975, fasc. 2, p. 45-80.
- [2] ESCASSUT (Alain) et SARMANT (Marie-Claude). T-suites idenpotentes, Bull. Sc. math., 2e série, t. 106, 1982, p. 289-303.
- [3] KRASNER (Marc). Prolongement analytique uniforme et multiforme dans les corps valués complets, "Les tendances géométriques en algèbre et théorie des nombres" [1964. Clermont-Ferrand], p. 97-141. Paris, CNRS, 1966 (Colloques internationaux du CNRS, 143).
- [4] SARLANT-DURIX (Marie-Claude). Décomposition en produit de facteurs de fonctions méromorphes, C. R. Acad. Sc. Paris, t. 292, 1981, série 1, p. 127-130.
- [5] SARMANT-DURIX (Marie-Claude). Coefficient constant d'un produit croulant, Groupe d'étude d'Analyse ultramétrique, 9e année, 1981/82, n° 22, 8 p.