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A NON-ARCHIMEDEAN ANALOGUE OF THE DISCRETE SERIES

By Yasuo MORITA ()
[ Tohoku University]

The purposes of this papers is to define a non—-archimedean analogue of the discrete
series of SLz(B) . We will refer to what is conjectured, what can be proved, and
vhat are the difficulties in studying our representations. For proofs and details,
we quote MORITA-MURASE [5].

l. Classical case.

Let C and R Dbe the complex number field and the real number field, respective-
ly. For any field F , let Pl(F) = F u {»} ©be the one dimensional projective space
over F . Then P (S)_) - P]’(E) is the disjoint union of the upper half plane

={z€C; Im(z) >0} and the lower half plane H = {z < C; 1Im(z) <O} . For
eny integer s < - 2, put

.
V= {f: H -> G; snalytic, |f1§=JH |£(2)|? y5° ax dy < =} ,

wi(g) £(z) = (b2 + 0° £(EE5) (g= (2 D) € sL,@®) ,
vhere f e V; and z=x+ 1y (x, ye jl!) . Then V+S becomes a Hilbert space with
the norn | |,) and Tr+s(g) is a unitery operator on V; . Hence n'; defines a uni-
tary rcoprecentation of the locally compact group SLz(E) on V'; « We can also define
nil by modifying the norm suitably. Further, if we use H_  instead of H+ s then
we obtain another unitary representation Ty for any integer s <-1 . It is well

~

krown @

THEOREY; C. - E.}f. n; are irreducible representations of SLZ(E) , and no two of

taem for various s are equivalent.

2. Definition of T in p-adic cases.

llow we are going to construct p-adic enalogues of the n'j; . We replace R by a

{inite extension L of the p-adic number field Qp y and replace C by a non-

archimedean field (k, | |) containing L such that k is complete with respect
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to | | =and algebraically closed. Hence we consider continuous representations nf

G = SL2(LJ on linear topologiwval k-vector spaces.

Put D= P;(k) - Pl(lb . Since L is locally compact, Pl(L) is compact. Hence,
for any positive integer m, Pl(L) is covered by {z e P (k) 5 |zl > |p ™} end
a finite number of mutually disjoint open balls

(zeP(); |lz-al <[P} (ael, i=1, ., N.
Put

~I m .
Dy={ze P ; |zl o™, lz-al2[p" (G=1,..,M}.
Then {Dngz;l is an increasing sequence of subsets nf D and D= Um Dm « Let
O(Dm) be the space of k-valued functions on Dm nf the form

f(z) = Z:= c_ 2™+ Wy c(i)(z - ai)m

0O m i=1 Tm=-1 ’

where Chn and c;l) are elements of k , and we assume that this limit converges

(uniformly) on D - It is known that G(Dm) becomes a Banach space with the supre-
mum norm | f| = supy, | £(2)| .
"

We say that a k-valued function f on D is analytic if, and only if, the res-

triction of f to each D belongs to O(Dm) . (This is the definition of analytic
functions in the theory of rigid analytic speces (cf. MORITA [4]).) Let V be the
space nf all k-valued functions nn D . Hence V 1is the prnjective limit of the

@(Dng with respect tn the restriction map O(Dnul) — CKDHQ . Therefore V has a

natural Fréchet topnlngy. In particular, V is a complete linear topological space.

We cnnsider this arsoe V as the cnelogue of V§<D Vz for any s .

Let s be a negative integer. For any f €V, put

n(@) £(z) = (bz+ @° £(@EL) (g= (2 D <0 .

Then Ty defines a continuous representatinn of the locally compact grrup G on

the Fréchet space V . This is nur analogue nf the classical discrete series.

3. Conjecture.

Let U be the space of ratinnal functinns of 2z (with cnefficients in k ) which

have nn pnles in D . Then U is a dense subspace of V . Further the subspace U

of V is G-invariant beczuse (bz + d)° belongs to U for eny g € G »

Since k 1is algebreically closed, any element f of U
partial fractional series of the form

f(z) = Z;:

can be expressed as a

m (3) o .
o d z + 2?:1 Z;z_l d (z - bj) (a finite sum)

(dm ’ dﬁg) ek, n>1, bj € L) . We define a subspace U, of U by
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U, ={felU; dxg']):o for any j and m with 0> m> s} .

Then we can prove that US is a closed G-invariant subspsce of U . Let VS be

=

the clnsure in V of the subspace US . It is obvious that VS is a closed G

invariant subspace of V . Hence we nbtain representatinns of G on VS and V/Vs .

Now we have the following conjecture (cf. Thenrem C) :
CCNJECTURE V.

(i) vV, eand v/vS are (topologically) irreducible G-mndules.

(ii) No twn of them for varinus s are G-equivalent.

4, The resulENgnd remarks.

Though we can not prnve the cnnjecture now, we cen prove the corresponding asser-
tion for the dense subspace U of V.

Let g={Xe 1/22(L) ; tr(X) = 0} , and put

exp(X) = 2 %: for any X € g .

Then this series converges in MB(L) to an element of G if the eigenvalues
+ A of X satisfies |A] < Ipl/( ‘l)| It follows thet

(an ) (X) £(z) = 1imw% (m_ (exp(£X)) £(2) - £(2))

is well-defined for eny X € g and f €V, and dr is a representatinn of the

Lie algebra ¢ on the space V . It is obvinus thet any closed G-invariant sub-

space of U is g-invarient.

Let O ©be the integer ring nt L, and put K = SL2(O) . Then K is a maximal
compact subgroup of G . Since K is an open subgrmup of G, a closed K-invariant
subspace nf U is (g , K)-invariant.

Now our main result can be stated as :

THEOREM U.

(1) U, and U/US are slgebraically irreducible (g5 , K)-mndules (i. e. they
have no nontrivial (g , K)-invariant k-subspaces).

(ii) No two of them for various s are isomorphic as 4~-mndules.

Obviously this thenrem implies topolngical irreduciblities of Us and U/Us , and
the non~-equivalence of them.

Remark.

(1). The difficulties in pmving the conjecture lie in the fact that Shur's lemma
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does not hold in nur case. Fnr example, we czn prove that the only intertwining ope-

rators nf V are the scalar operators, though V has the closed G-invariant sub-

space VS . We prove nur thenrem by corstructing the tnta" space from any nor-zero
element (cf. MORITA-MURASE [5], 3-3).

(ii). It is remarksble that Us is infinite dimensionsl and irreducible as a K-

module though K is a compact group. This phenomenon causes a dirfficulty in defining
the admissible representations.
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