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FAMILIES OF MUMFORD CURVES

by Werner LUTKEBORMERT ()

[UniversitZt Minster]

In this lecture, we consider the following :
algebraically closed, p-adic field with residue field k .

mns: X -> 35 family of Mumford curves, i. e. a proper, flat, k—analytic morphism
such that all fibres xg = rr—l(s) are Mumford curves with genus g(XS) :

0. General facts

O.l. The Buler-Poincaré characteristic EP(0, m, s) = g(Xs) is locally constant
on S in the sence of Grothendieck topologies. If S is cnnnected, then g(XS)zg

is constant on S .

0.2. If g= g(X ) > 2, the relatlve—trlcanonlcal linebundle “’X/S is very ample
on all fibres. The direct image € := 1T, mx/,. is a holomorphic vectorbundle on S
of rank 5g - 5 and gives an embedding of the family

If g=1, one gets the same, if one takes O(~ 3D) instead of mi?s , where

D< X is a divisor, finite over S .

0.3. “ow by the GAGA~theorem in the relative case one knows, that for all affinoid
subdomains U = SpA < S8 the restricted family m : X|U =—> U is an algebraic mor-
phism.

I. Uniformization of families

All fibres Xs in the family have an uniformization. Now one wents to get a
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simultaneous uniformization of the family locally on the base S . Te explain what

I mean, I will repeat the definition of Mumford curve : In our situation, we know
Xs - QJFS ’
o= (Y? y eoe YZ) < PGL(2 , k) free, discontinuous group,

Q< _.El the set of ordinery points.

Moreover one can assume that ls is a geometric base, i. e. there are closed
balls UP which ars peirwise disjoint such that ~{§(P - Ui) = ﬁsi for
5 ~ -
i =1 9 eeo g °

‘ v {z € p!
1 —~

.o

S S
|2 - &Sl < Ic5])

'
1
»
" s 1 s s
. ‘ Ui-:{zef_’ 5 lz_ai‘<lri|}
"Similtaneous Uniformization™ means that all Y; R a: , r: depend holomorphically

on s €3 .

THEOREM I. - Let S be a reduced affinoid space, m : X —> S an analytic fami-
ly of Mumford curves of genus g (witk g+ 1 <p = char k or O = char k ), then
there is a finite base extension 8' ——> S and a finite covering {Sl s e S;j

of S' by affinoids S:!L , such that Xi = X xg Si have simultaneous uniformiza-
tions, i. e. :

Py, >l —> X] S!-morphism,
i
"yi : S} -—> (PGL(2 , k))& holomorphic,
such that

I‘j‘._ S (11> act holomorphically, discontinuously on Qi by the canonical action

Fs:
i

Q;/ri = X; isomorphic over 8!,

Yy (g) is a geometric base for TI'!(s) .

]
1

To prove this theorem, one makes the following steps :

1.1. There is a firite base extension S' -—=> S, a finite covering {S1 93 sec S;}
of S' %y affinoids S:!L s and a finite covering {’(;J}j von S:!L with
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1 0 b o) 0
Xik*{(s, z) e Sixf 3 |z - aik(s)l < |rik(s)} ,

|z - a\{k(s)! Vo< ]r\;k(s)l for 1 $v <y}

A% V) ] <
where m > 1 are natural members, and Bip s Ty € @(Si) with

Ia;k(s) - ag)k(s)lm0 < |r§)k(s)| for 1 £vgn

ik
v " ™ v
- 4
]aik(s) aik(s)| > |rik(s)| for 1sv#ugn,
m
< YN mO 0 I¥)
0 Irik(s)l < lrik(s)l for 1<vsn,,
For the components U\) of xik n Xig one has : _
1 - v +
Uva[(s, z)eS:!Lx_I: 5 ‘rv(s)lslz-av(s)l < | (9}

+ - ' : = * '
where r , r_, a € O(Si) satisfy O < !rv(s)l < |rv(s)| for all s e S} .

=t
Sketch of proof : After finite base extension S8 =--> S one finds a seetion o to
A

3%
TS T oxg S .« Then by the theorem of Riemann-Roch, one finds a finite morphism

with degop < g+ 1 <p.

Now after finite base extension st - S"k the ramification set of - x » st
"essentially" splits into divisors of degree 1 . So there are holomorphic sections
T: ¢ [N P1 such that
i ~g*

. + + +
ltamf(a xS_;L_ S ) = 'Tl S U ese U Tl‘ S .

Then one constructs the coverings {SJ!‘} of S' and {Xij} of X! by using these
sections {Tp} and by making a further finite base extension S' —> S* . The main

tool here is the method of constructing a stable reduction of an algebraic curve 1,
which admits a morphism ¢ : M ——> }jl with deg y < p, by the ramification points
of ¢ .

I.2. By the covering {X;j}j one constructs a k-analytic Si—morphism :'.:'l —-— Xj'_
such that nf'L(s) is the universal covering of Xi(s) for all s € Si . Next one

proves an embedding theorem
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0} S I,
/ l

\S |

i

By this embedding the group Deck(ﬁi/Xi) can be regarded as a subgroup of
PGL(2 , O(Si)) . From this, one easily gets the theorem.

COROLLARY. - Let G3g be the space of genmetric bases for Mumford curves, Jﬁ-g the

space of Mumford curves and gz 2 .

For every family X --> S of Mumford curves of genus g > 2 , the canonical map

ed

S ——> mg admits locally a holomorphic lifting after finite base extension

X S' D e > @B
L g
S S >

g

IT. Rigidity of algebraic families

An algebraic family of Mumford curves m : X -=> 3 is a proper, flat, algebraic
morphism where S is a connected scheme of finite type over k , such that all

fibres Xs are Mumford curves. Let g be the genus of the fibres.

THEOREM II. - Every algebraic family of Mumford curves is constant, i. e. the map

S-—>mg, s--—>[XS], is constant (if g+ 1 <p= char k or 0 = char k ).

Idea of the proof. - It is enough to consider affine, irreducible, algebraic curves

for S . Similar as in § I, one can show, that there is a finite extension S' —-> S
by an algebraic curve such that X' = X xg S' has locelly on S' a simltaneous
uniformization., If Q' —-> S' 1is the universal covering, then the canonical map can
be lifted

Q' >
B
v b
. —> T
g
8 fmmmmmmmmm> [X_]

Now (Bg is bounded in some sense, then ' —> <'Bg has to be constant by the :

PROPOSITION. - Bounded holomorphic functions on the universal covering of an alge-

braic curve are constant.
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COROLLARY. - Analytic families X —=> S over an connected, complete, algebraic

curve are constant (GAGA).

Remarkse.

(1) A1l considerations are made only for g > 2, because the case g= 0 is tri-
vial and, in the case g = 1, one gets rigidity for analytic families over connec-
ted, affine, algebraic curves by considering the j-invariants of the fibres as ho-—

lomorphic function on the base.

(2) The assumption concerning the genus ™g + 1 < char k " should not be necessary,

like a new research by the author has shown.

(3) Theorem II should be true for analytic families of Mumford curves over connec-

ted schemes of finite type over k as in the case g=1.

This lecture is a very short version of my paper "Ein glot-ler Starrheitssatz fir
Mumford Kurven" which will come out in “"Journal fiir reine und angewandte Mathematik"
in the next months.




