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[ 1982. Marseille-Luminy]
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[Universität Munster]

In this lecture, we consider the following :

1.i algebraically closed, p-adic field with residue field k .

n : X 2014&#x3E; S family of Mumford curves, i. e. a proper, flat, k-analytic oorphism
such that all fibres x := are Mumford curves with genus g(X ) .

s s

0. Général facts

0.1. The Euler-Poincaré characteristic 03C0 , s) = is locally constant

on S in the sence of Grothendieck topologies. If S is cnnnected, then 

is constant on S .

0.2. If g = X  2 , the relative-tricanonical linebundle is very anple
on all fibres. The direct image § :== 11* is a holomorphic vectorbundle on S

of rank 5g - 5 and gives an embedding nf the family

If g - 1 , one gets the same, if one takes 3D) instead , where
D ~ ~ is a diviser~ finite over S .

0.3. by the GAGA-theorem in the relative case one knows, that for all affinoid

subdomains U = SpA ~ S the restricted family n : X| i1 --&#x3E; U is an algebraic 

phism

I. Uniformization of families

All fibres X in the family have an uniformization. Now one wants to get a

(*) cerner LÜTKEBOHMERT, Mathematisches Institut der 62 Einsteinstrasse,
D~4400 fédérale).
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simultaneous u.niformization of the family locally on the base S. To explain
1 mean, I will repeat the définition nf Mumford curve : In our situation, we knov

r - y 81 9 . A. a k) free, discontinuous group,
s 1 g

s c pl the set of ordinary points.

Moreover one can assume that Ys is a geometric base, i. e. there are closed

balls Usi which pairwise disjoint such that Us} = for
J.. 

- 

~ - 1 -1

i = 1 ’ .. o ~ g o

"Simultaneous Uniformization" means that all 03B3si, as , r depend holomorphically
1 i 1

on SES.

THEOREM I. - Let S be a reduced affinoid space, Tf : X 2014&#x3E; S an analytic fami-

ly of Mumford curves of genus g (with g + 1  p = char k or 0 = char k ), then
the~e is a finite base extension S’ --&#x3E; S and a finite covering ... , S2l
of S’ by affinoids S! , such that X! := X  S Sl have simultaneous uniformiza-

tions" i. e. :

-morphism,

holoroorphic,

such that

_ I"’ :== (Y") act holomorphically, discontinuously on 03A9’i by thé canonical action
pi

=- X! isomorphic over 

*

03B3i(s) iS a géométrie base for ]T’ (s) .

To prove this theorem one makes thé steps :

I.1. There is a finite base extension S’ S a finite covering {S’1 , ... , S’r l

of S’ by affinoids S’i , and a finite vnn S’i with
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where m ~ 1 are natural members. and a’:k’ e(S!) with
~ ~ " ik 1

.

For thé components U 
v 

of X., n X. , one has :

where

.;t

Sketch of proof : After finite base extension S 2014&#x3E; S one finds a section cr ta

TT := TT x S S . Then by the theorem of Riemann-Roch, one finds a finite morphism

with deg cp ~ g -- 1  P .

Now after finite base extension S + 2014&#x3E; S-.~ the ramification set x * s+

"esaentially" splits into divisors of degree 1 . 50 there are holomorphic sections

’T. : S~ 2014&#x3E; f’ such that
~ "S"’

- ..L....L...L.

Then one constructs the coverings (S!) of S’and of X’i by using thèse

sections (r ) and by making a further finite base extension S’ S . Thé main
P

tool here is the method of constructing a stable reduction of an algebraic curve 

which admits a morphism 03C8 : M JP with by the ramification points

of ~ .

1.2. 8y thé covering one constru.cts a k-analytic 2014&#x3E; X!

such that Q’ (s) is the uni versai covering of for a1l s e one

proves an embedding theorem
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By this embedding the group can be regarded as a subgroup of
1 1

Q (S’i)) . From this, one easily gets the theorem.
1

Let (13 be the space of geometric bases for Mumford curves, Z the
_...,. g -- "-J~ l l g .~_..

space o f Mumford curve a and g  2 .

For every family X --&#x3E; S of Mumford curves of genus g  2 , the canonical map

S -&#x3E; 7: 
g 

admits locally a holormorphic lifting after finite base extension

II. Rigidity of al "’~ebraic familles

An algebraic family of Mumford curves n : X --&#x3E; S is a proper, flat, algebraic

mrphism where S is a connected scheme of finite type over k, such that all

fibres X s are Mumford curves. Let g be the genus of the fibres.

THEOREM II. - Every algebraic family of Mumford curves is constant, i. e. the map

s --&#x3E; [X ] , 1s constant ( if g + 1  p = char k or 0 = char k ).
g s 20142014201420142014201420142014 - -

Idea of the proof. - It is enough te consider affine, irreducible, algebraic curves

for S . Similar as in § I, one can show, that there is a finite extension S’ -&#x3E; S

by an algebraic curve such that X’ = X xs S’ has locally on S’ a simultaneous

uniformization. If Q’ t -o S’ is the universal covering, then the canonical map can

be lifted

New (B 
g 

is bounded in some sense, then Q’ 
1 ~ d3 

g 
has to be constant by the :

PROPOSITION. - Bounded holomrphic functions on the uni versai covering of an alge-
braic curve are constant.
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COROLLARY. - Analytic familles X --&#x3E; S over an connected, complete, algebraic
curve are constant (GAGA).

Remarks.

(1) All considérations are made only for g ~ 2 , because the case g = 0 is tri-

vial and, in the case g = 1 , one gets rigidity for analytic familles over connec-

ted, affine, algebraic curves by considering the j-invariants of the fibres as ho-

lomarphic function on the base. 

(2) The assumption concerning the genus « g + 1  char k " should not be necessary,
like a new research by the author has shown.

(3) Theorem II should be true for analytic families of Mumford curves over connec-

ted schemes of finite type over k as in the case g = 1 .

This lecture is a very short version of my paper "Ein glohaler Starrhoitssatz fur

Mumford Kurven" which will corne out in "Journal für reine und angewandte Mathematik"

in the next Ironths.


