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RIGID ANALYTIC SPACES (*)
VAN DER PUT

Groupe d’étude d’Analyse ultramétrique
(Y. AMICE, P.. ROBBA)
3e année, 1975/76, 20 p~

Journées d’analyse ultramétrique
[1975. Marseille-Luminy]

1. Tate-algebras.

(1’.1) Notations. - k is a complète non-archimedean valued field. For a Banach-

algebra A over k (always commutative and with 1 ) and indeterminates

we define

Jt(r1/ ’ ... , 11 ) n = ii a03B1 1fl; au OE A. and lim a03B1 = Qi .

This is a new Banach-algebra over k with respect to (w. r. t.} the nonp

))1 aa ’!PU = max~ a J) . A free Tate-algebra is a ring of the type kT1 , ... , ’lin&#x3E; .’

(li*2) PROPOSITION (Weierstrass preparation ,y£ ,diy,ision) .. - Let f E k(1r11 t.... t T )
be non-zero. There exists an automorphism 03C3 of k(1r1.’ .... , T) (of the form

xi -+ Xi +. (ei  1 , i  n) ; X.n -+ such that CJ(f)(q t - 0 , Tn) has

order d .

Moreover k(1r1.’ 1 ... , 11 n&#x3E;/03C3(f) is a free finitely qenerated k(111 1 t ... ,T n-1&#x3E;-
module of rank d.,

Proof. - See [7j GRAUERT-REMMERT.

( 1 k ) Consequences.

( 1 . 3 . 11) Every k{I11 ’ - ,1!n&#x3E; iS, noetherean.

( 1 .3 . 2 ) ... , 1r) i s a unique factorisation domain..
. f n. ... " 

. 

- ’

Proof. - Induction on n and ( 1 . 2 ) .

(1 .4.) LEMMA. - Let 1vl be a Banach-module over A , ( 1.- e., A. Banach-algebra and
M is a complete normed A-module s, t*. lI. am~  U. ail V a E A , V fa E !vI ).

The following are equivalent

(a) hi is noetherean.

(b) Ever A-submodule of M is closed.

( * )/ Survey of the works done by J. TA TE, H. GRAUERT, R. REMMERT, L.. GERRITZEN,
R.. KIEHL, 1. GRUSON, i%1. RAYNAUD and al.
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Proof. - Cb) ::;&#x3E; Ca) : Let M1  ... be an infinité chain of submodules
of A . Then one can easily see that U. 1 M. is not closed Contradiction.

(a) (.b) : Let N be a maximal non closed submodule of M , Then N c N. has

no intermediate A-modules. Hence N/N ~ A/ for some maximal idéal m. Since m
is closej in A it follows that N is also closed. Contradiction.

t 1.5;) Every idéal l in ... ’]n) is closed according t 0 (.1.4) and (1.3.1.).
A. Tate-alqebra is an algebra of the type k(t1: t, ... ,Tn&#x3E;/l provided with the quo-
tient norme

Easy conséquences are s

(1.5.1) Any k-homomorphism of Tate-algebra is continuous.

(.1.5.2) Any finitely generated module over a Tate-algebra A. has a unique struc-

ture as Bandch-module. A linear map between those modules is automatically con-

tinuous.

(1.6) From.(1.2), it follows :
CI.

Eor every Tate-algebra A 9 there exists a map K(T11’’’.’ Td) ..... A with Q!

injective and finite. Moreover d = 

In particular, for every maximal idéal- ln of A" y we have [(A/ml.: k]  a) . On4

Afro t we put the unique valuation extending the valuation of k.

(1.7) Some notations.

X = Sp A = the set of maximal ideals of A ..

For x e X , we put k(x) = For f E A , we dénote by f(x) the image of

f into A/x. The spectral semi-norm ~f~sp is defined by ~f~sp
For A = " ... ,1!n&#x3E; one easily checks ~f~ sp 

= Il Il and the norm is mul ti-

plicative.

(1.8) Properties of thé spectral norm.

(1.8. t) If(x) 1  for ail x E X ~==&#x3E; lim. = 0 ,

(1.8.2) 

(1.8.3) Bf(x) 1::; 1 for ail x E X *=:&#x3E; n:~ QJ  C) ,

(J .8.4) f:. k-algebra homomorphism cp: AT1 , ... , Tn&#x3E; ~ B. ie uniquely deter-

mined by and cp(Ti) = fi E B (i = 1, , ... , n) . with prescribed
and f. (1i i  n). exists if, and only if, |fi(x)|  1 for ail x E SP(B)

and i = 1 , ... , n .

(1.8.5) If A. is reduced (i. e. has no nilpotents éléments) Il Usp is
équivalent with 11 11 .
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(1.8.6) There is Xo E X = Sp A with 1 f ( xo ) 1 = 

Proof.- (1.8.1.) s The idéal (1 - If) A.(I) in A.(T) must be improper because
of (1.6) and ~f(x)J1 for ail x ~ X . Hence (1, - Tf), has an inverse in 

That inverse must be fn f1 . 50. = 0 .

On the other hand, if = 0 , then |f(x)|  ~fn~1/n is  1, for ail

x and n » 0 .

(1.8.2) s is trivial.  then.we can arrange things
such that  11  lim But this contradicts (1.8.1).

( 1 . 8 .3 ) : The implication 1I~=n follows from. (1.8.2)~ The implication "====&#x3E;"

is more complicated :

Suppose that k{1r11 t ... ,. . is injective and finite. If we can show that

f E A is intégral over V (]"11 ’ ... ,1Id) ( V the valuation-ring of k ) , then

clearly O} is a bounded set. For show the intégral dependence of A ,
it suffices to consider the case where A has no zero-divisors.

Let L be the least normal field extension of K = ... " T.)) contai-

ning A , and let G = Then B = G] is- also intégral over
... and the mimimum polynomial of f over K divides

P = Tl (q = some power of the characteristic) .

Since normale P has coefficients in k(lr1 ’ ... , Td&#x3E; . Since
1 $ 11 for ail maximal idéal of B. t the coefficients of P have spectral

norms  1 . So P ~ V(T.... 
( 1 . 8 .4 ) 1 Easy conséquence of (1.8.3).

(1.8.5) : This is more complicated (proved by 1. GERRITZEN). We only sketch a
proof. As in (1 .8.3) , we may suppose that A has no zero-divisors. Let f e A,

have minimum polynomial X + a.. + ... + ad (= 0) over T.) ~
Then 

~p 
= The hard part is ta show with the 

" 

aid of this
formula that A is complète w. r. t. 1B Il Then it follows from the open map-

ping theorem that Il 1B sp and JJ )) are équivalent on A (See R. REMMERT [14.]).

(1..8~6) s By the formula of (1.8.5) one sees tha t , after replacing f by ~f
(e ~ 11, À. e k*) , we may work with 

sp 
= 11 .,.

If jf(x)( 1  1; for ail x e X then, from (1.8.~), it follows that  1

for n » 0 . So ~f~ sp  1.. This contradiction shows the existence of Xo ~ X
°

(1.9) Further structure theorems on Tate-alqebras.

( 1 . 9 . 1 .) (GERRITZEN) : If k is (quasi-)complete then any Tate-alqebra A!/k i s
japanese (i. e. intégral extensions of A in a finite field extension are finite

modules over A ).
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(1.9.2) (KIEHL-KUNZ-BERGER-NASTOLD ) : If k is (quasi-)complete then . A is

an excellent ring ( in the sensé of GROTHENDIECK). (See : KIEHL-KUNZ-BERGER- NAS-

2. Affine holomorphic s aces.

(2.1) Let A be a Tate-algebra, defined over a field k . Let X.= Sp(A.) denote

the collection of all maximal ideals of A . For every x e X ~ the residue field

k(x) = A/x is a finite extension of k and has therefore a unique valuation, al-

ways denoted by 1 1!9 extending the valuation of k . For x E X and f ~ A , we

dénote by f(x) the image of f in k(x) .

The topology on X is generated by the subsets (x E X,. j 1~~ with

f E A . A base for this topology is ,the set of the. so-called Weierstrass-domains

A more generaL class of open (and closed) subsets of X are the rationaL dédains

R = R(fO ’ .... , fn) = (x 1 ~ 1 

where we have supposed that .’.. , f n have no common zéro on X. With R,

we associate a Tate-algebra B , B. =- A(Y1 , 1 ... ,.. 11 n )/(.f1. 1 -1r1  ... ,. f nt -1[. n ~0~

(2.2.) PROPOSITION.

(2.2.11) me ma A ~ B induces a continuous map Tha

image is R and Sp(cp),.: Sp(B) ~ R is a homeomorphism.

(2.2.2) For every ( k-algebra homomorphism) 03C8 : A -&#x3E; C, of Tate-alqebras with

R there is a unique ~ : B. -~ G with xçp == ~ ~

Proof.

(2.2.1) : For any k-algebra homomorphism , , the induced map is conti-

nuous. For the given B t one easily vérifies that -&#x3E; R is a home-

morphism.

(2.2.2) : The map ~ : B ~ C is uniquely determinedby X. (1fi) (i = 11 , ... , n)
and X. (’!ri) = 03C8(fi)/03C8(f0) must ho ld. The existence of ~ follows from § 1 (1.8.4).

Namely, the éléments in C satisfy :

Hence, the set ... 03B11 , ... , 03B1n  0} is bounded and the map

given by
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is a k-algebra homomorphism. The kernel of ~ contains

and ~ induced the required ~ : 8.. ~ C .

(2.3) For every rational domain R = ... ~ f ~ 9 we define

According to (2.2.2), P(R) does not dépend on the choice .f (fa’’’.’ fJ and

moreover R. -~ P(R) is a pre-sheaf defined on the base (R; R rational} . Let us
dénote by the sheaf on. X (with the usual topology) associated with P .

(2.4) Results.

(2.4.1:) For x EX, the stalk H., .,x is a local analytic ring (i. eo. a finite

extension or a ring of convergent power séries over k ) .

(2.4.2) The natural map of the localisation of A at x: A. -~ inducea
A ~ A.~X

an isomorphism for the complétions of those local rings, A -r&#x3E; ~

(2.4.3) For a rational domain R with B =. P(R), , the map 03C6 : A ~ Ii) induces

an isomorphism of ringed HSp -) ~ (P. ~ 

Proof. - For X = Sp(k(T1’ , ... , Tn&#x3E;) = {(t1 , ... , t ) e al |ti|  11}
ail this is easily verified. Ail the opérations : complétions localisation, forming
of . H , commute with taking residues w.. r. t. an idéal l c: ... , T ) . Erom

this obeervation the général case follows.

(2~5), Definition. - An open subset Y c X = Sp A. is called affine if there exists

a Tate-algebra B and a morphism m s A. -~ B. which induces an isomorphism of

ringed Hsp B) ~ (y , 

(2.6) Remarks. - The ringed space (X , H,), is an example of what H.. CARTAN

and S. ABHYANKAR would call a k-analytic space. Since X is totally disconnected,

thé sheaf Hy is In HX) ~ A...
Note that A -~ is injective, since the map

is injective.

Tuo get something interesting, we have to consider on X a Grothendieck-topology
instead of the ordinary topology. For this purpose, we have introduced open affine

subsets of X. Our définition is (with a slight modification), the one of GERRIT-
ZEN-GRAUERT ([6J" p. 1162). Afterwards, we will show that Y determines the alge-
bra B (this is of course clear for rational domains Y ). It followa that Y is

an affine open subset in the sense of 1. TAIE ([t6], p. 270). (It is immédiate
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that an affine open subset in the sensé of J. TATE is aiso an affine open set in

the sensé of (2.5)).

In order to see what this Grothendieck. topology on X should be, we have to find

"gluing-properties" for the pre-sheaf P .

(2.7.) LEMMA.

(2.7/1.) If Y2 c x are rational domains, then so is Y1. n ~ . Moreover
n Y2) = ê~ P(Y2) .

(2~7.2) If Y1 c ’i2 c x. are open subsets such that Y2 is .rational in X. and

Y. is rational in then Y~ is rational in X .

Proof.

Moreover

is easily seen to be isomorphic with

define Y1 as a rational subset of Y2. Elements fa’ ... 9 f’n E P(Y2); such that

the Hfl - fill are very small define the same rational subset of Y2.’ So we may
suppose that ... ,. f are représente d by éléments in A.[S’1 ,... ,.. S ] of total

degree  N.. We may replace ... , fn by 90 fO ’ ... t g fn . Hence, we may

suppose that ... , fn E A- . For sui table constants ~ ~ - ~ À.m E k we have

on y 1 :

And thus Yi = ... , fm ’ ÀO go ’ - , Àm gm) is rational in X..

(2.8) THEOREM. - For any finite covering  = (Xi), of X. by rationa.L domains. thé
Cech-complex ...ae p(X..) ~Xj) ~ ... ia universally

acyclic (i. e is acyclic for every normed A-module M ).

Proof. - We follow J. TATE ([116],. p.. 2:7/2). First two spécial cases of coverings.

(,2.8.1) Let and put
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Then thé covering of X is u. a. (universall y acyclic).

(2.8.2) LEMMA. - Let. fa’ ... , fn e A satisfy maxi |fi(x) 1 = 1 for ail x e X.

Then the coverinq of 1 = 1i} (i=0 .... , n) isu. a.

Proof. - J. TATE C[16] lemma 8.3 and 8.4.) shows that both coverings have a conti-

nuous A-linear homotopy C, Cx . Ihis induces a homotopy  on A M.
Now we need some général hocus pocus to do the général case s

(2.8.3) LEMMA. - Let x and  be coverinqs of X (by fini tely many affine

open subsets). Suppose that 3g/Z is u. a. for every Z which is an intersection

of éléments in g .

is u. a. then 3i is u. a.

We consider the double complex C A eç--: ., It is given that~ -~ ~

1° C A p(z) , for Z an intersection of éléments is exact.

28 C1 A C , for i = - 1. , 0 , ... , r , is exact .
ôJ 

~1
So, ail rows and columns, except possibly C AC-1N = C , are exact. Hence 

is exact. Thé same reasoning holds for eae %. ’1 * 
’

(2.8.4) Continuation of the proof of (2.8). - First we observe s If X and 
are u. a., then so is n ~ = X Y ~ ~ . Indeed, by (2.8.3}

applied = ~ n § and ~’ = ~ this folLows.

Let us sturt with any finite covering X = (R(f6i) ,_. ,f(i)} by rational do-

mains Choose E &#x3E; 0 such that 1 &#x3E; E for all x E ... , f(i)n) .
Let (g.  - t 9 ) dénote the set (£3~).} , and let, for every subset a .f

(1. , s ... , S } t.

The is the intersection of s coverings of the type in

(2.8.1). Hence y is u. a. In order to show that ~ is u. a., it suffices to see

that iilZ is u. a. for any Z whioh is an intersection of elements of ~~; .~

This new cousit of Weierstrass-domains in Z, i. e. sets cf

the type x E Z; 1 ~ 1 for some 1-’si . Let ~h , ... 9 h~) dénote the

set of all functions occuring in those inequalities, and let. &#x3E;J’ = (,Y’ ) denote

the covering of Z given by

Again =’ is u. a. and in order to show is u. a., we have to show

~’/Z* , Z’ any intersection. of elements of is u. a. This last covering

however is of the type mentioned in (2.8.2) , and the proof is finished.

2, 9. THEOREM (GERRITZEN-GRAUERT (6J p, 178). - An open affine subset of Xl= 

is a finite union of rational domaine
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Proof. - The proof is quite long. The eesential part is a result on Runge embel-

dings (There seens to be a gap in the proof.).

(2.10) COROLLARY. - The open affine subset Y of X determines uniquely the mor-

phism. of for which ~ is an

isomorphism.

Proof. - Put Y = ~ni=1 X. where the X. are rational domains in X . Then the

X. are also rational in Y and (2.8) implies B = ~ P(Xi ~ Xj)) .

(2.111) COROLLARY. - Any finite coverinq of X bv affine open subsets is universal-

ly acyclic.

Proof. -Follows from (2.9) , (2.8) and (2.8.3).

(2.12) Remarks.- - A morphism Sp((p) s y = &#x26;p(B) -~ X = Sp(A) is called a Rune-

map when m s A -~ B has a dense image. The proof of (2.9) relies on the follo-

wing proposition s

Let u = &#x26;p((p) 3 Y = Sp(B-) -~X = Sp(A) be given, and let fo ,.... , fn ~ A be

given such that (,fo , ... , = A . Put

If u: Yi. ; ~ X1 i is Runge then for £ close ta 1 , u ~ Y -~ X E is also a

Runge-map.

(2.13) For our purpose, we define a Grothendieck-topology on a topological space

X as follows

1° A- family F of open subsets of X such that

2° For every a set of coverings by elts e. any

satisfies : all U. ~ F and 

Me remark that the object defined above is in fact a special case of a 

pology in the sense of Grothendieck. So we can use the whole machinery 
of sheaves

and cohomology for a Grothendieck-topology.

(2.14) An af f ine holomorphic space is the following :

1t) X = Sp A for some Tate-algebra A.
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2) g consists of all open affine subsets of X.

3); For all U ~ S , consists of all coverings of U by éléments in 3

which have a finite subcovering.

4) CL is the sheaf (for F) of rings defined the unique Ta te-

algebra B- f or which A -~ B with an immersion U = Sp Sp A. ~

~ is a sheaf according to (2.11).

(2.15) A holomorphic space (X , q~); is a topologicaL space X with a Grothen-

dieck-topology 3 and a shea£ of rings Q. such that 3 E Cov(X.) with

~U. ~ ~(~i) is an affine holomorphic space for all i.

U is called af f ine if (U , is an af f ine holomorphie-.

space. If U is af f ine and V then LL n V is an af f ine open subset of U ~

(2.16) S.ome properties of affine hoiomorphic spaces (see [10]).

(2.16~) ~A: 9 B} ’ Sp 

(2.16.2) Definition. - An OX-module M on X = S,p A. is called cohérent if

there exists a finitely generated A-module N such that the sheaf M is isomor-

phic with the sheaf U C U open 

~,2.~ 16.3 ~ Proposition. - An wmodule M is cohérent if there exists a

such that is cohérent for each i.

If M is cohérent, then

M) = N t and M is associated with the A-module N .

Proof. - The second part o£ the proposition follows directly from (2.1,1). The
first part is a property of "descent" for A -+ fi, =~ 0xÜli) t i. e. consider

À. - B Et (note B 6xJJ/u n Ui &#x3E; &#x3E; , then :

(i) A B-module M(f g) is isomorphic with some N 0A B if there exists a

B-moduie isomorphism

(ii) For fg A-modules N1 and the séquence

~A B) ~ {SA (B..@Â a),t~ Q9A (R ~ 
This "descent"-property is proved by R. 

3., GlobaL properties of holomorphic spaces.
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(3.1) (Quasi-)&#x26;tein spaces.

Definition. - A holomorphic space X is called a quasi-Stein space if

an affine covering with

2) 0x(X.i+1) - ha s dense image.

X. is called a Stein-space if a more restrictive property holds 1

with

(b) ... , f/a (for some a. e k ) are topological generators of 

(3.1.1.) THEOREM (R. KIEHL ~1i0])~ M is a cohérent ~-module (i. a. ~U

cohérent for every open affine U ~ X ) and X is quasi-Stein, then

1° M(X) ~ M(X.) bas dense image .

2° Hi(X , M) = 0 for i&#x3E;0 .

3° M 
x 

is generated over Q, ,x by M(X) .

Proof . - Ea sy conséquence of (2.16.3) + définition (3.1).

(3.1.2) THEOREM ( KIEHL [,1C] § LÜTKEBOHMERT [11]). - Let X be a of

dimension n ,which can ,local,ly be embedded in a N-dimensional space /k . Then X

h,as an embedding into k .

(3.1.3) Examples. - k~ and G = k ~ are Stein-spaces.

Thé structure of G can be given by s

An open subset U c G is called open affine is U is open affine in some X .
For an open affine it is clear what For G, 

consists of the coverings (U.) be open affine sets such that (U.)/U E 
1 i

for every open affine 

With (X) E one calculates :

0( G) = lim 0(X ) n == (I 
03B1~Zn 

a. 
Ci X11 ... x n convergent on all of G] .

More generally, any algebraic variety has a unique structure of holomorphic spa--

ce. lf the variety is affine then the holomorphic space is a Stein-space.
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(32) Proper mappings. - A morphism f s X2014&#x3E; Y of holomorphic spaces is called

proper if thé following holds .

(a) f is separated. i. e. 0394 : X ~ X. Xy X is a closed embedding.

(f) There is (Yi)i~I e with each Y. affine open, and for each i ~ I

there are two finite coverings (U~)~ , ~~’(~) by affine sets
such that U « V... (ail i , j ).

H.ère U « V for affine open sets U , V , means thé following ; there is an
~ , 0  e  1 $ and an embedding V c {(03BB1 ... 03BBn) e kn ; ail |03BBi|  1} such
that U ~ {(03BB1 ... 03BBn) e ail |03BBi|  ~} .

A. holomorphic space X is called compact (or complète) if "X ~ point" is proper.

(3.2.1) THEOREM (R. KIEHL [9]). - f : X ~ Y proper, M a cohérent OX-module
then ail R ~ are cohérent 

j~ ’

COROLLARY. - If X is compact and M is a cohérent OX-module, then

(3*3), Projective spaces$ - P-(k) is a compact holomorphic space. Thé well known
GAGA-propeaties hold :

1° 1.1. Correspondance between algebraic cohérent sheaves N and thé cohérent

OX-modules M . 

~ ~lg~ ’ ~- - M) .

3~ A.ny analytic subset of P~(.k) is algebraic.

(3.4) Thé sheaves 0 ~ JP , ?~ , Div.
(3.4.1) o is defined by U -&#x3E; (~(u) ( 

* 
== invertible éléments). This is a

sheaf since 0(U) ~~) o(U~) ~ ~ 0(H~ n LL.) is exact for every (Uj ~ 

(3.4.2) ?n = thé sheaf of meromorphic functions is defined by U ~ Qt(.Q.(UL))
for every affine open U (Qt = total quotient ring).

Proof. - Me hâve to verify that this is in fact 3L sheaf on every affine open

space (Ui) ~Cov(U) and let (ti/ni)i ~~Qt(OX(Ui)) satisfy
= tj/nj in n U.)) (ail i , j). Then we hâve to show thé e xis-

tence of t/n e image t./n. in every Qt(0(U.)) .
Que proceeds as follows : let

Then

- - ..

By (2~16.3), there is an ideal l C ev(~) with lU. = r(u.) for i. x
A. i J.
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contains a non-zero divisor, otherwise Iz = 0 for some z E z ,~ 0 . And

also I(U-. ) z = 0 9 V But each contains a non-zero divisor. Hence

z/Ui = 0 , V i andso z=0 . T.ake n E l t n ~ 0 , n a non-zero-divisor.

Then t./n. =- s . 1 /n , y i and the s. satisfy s./LL. n U. n U.. So the
glue to an élément t 

(3.4.3) is s defined by = 

)* 
= f or every open affine

As in (3.4.2) this is a sheaf.

(3.4.4) The sheaf of divisors Div is defined by an exact sequence

(3.4.5) As in thé classical case,

H’(X , O*) ~ invertible sheaves on isomorphism.

Proof. - Thé usual ona

(3.4.6) If X. = Sp A is affine, then there is a 1.1 correspondance between in-

vertible sheaves on X. and projective rank. 11 modules over A . Hence

H’(X , eX) = rank t projective A-modules / isomorphism [2.].

(3.4.7) Suppose X. = Sp A. , and A is regular, then l1l1’ (X ,. 0..) = Class groups
of A . In particular,

A is a unique factorisation domain ±+ H.’ (X , t) ) = 0 .

(3.4.8) PROPOSITION (Le GRUSON [8]). - Let X = Sp A , and let A be regular.

has unique factorisation then also A(T) and AT , T ) hâve unique fac-

torisation.

(3.4..9) CONSEQUENCE. - Let G = k then H’(G , 0~) = 0 .
Proof. - It suffices to consider

where 03C0 ~ k., 0  )n ) 1  11 . Me want to show that any invertible sheaf E cm X. 
n

is trivial Ci. e. ~ ~ ) ~ be the structure sheaf on
n

Then

because of (3.4.8) fi Hence by (2.16e3), f and L0 glue together to form an in-

vertible sheaf

But E’ is trivial by (3.4.8). Hence also E is trivial.
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4. Analytic tori and abelian varieties.

Thé results of this sections are mainly due to L. GERRITZEN ([2] , [4]).

(4.1) A subgroup r of G = is called discrète if

r n(x e~ i} isfinite for ail e~1 

G-&#x3E;R~ defined by

is a group homomorphism. It is easily seen that

r is discrete ==&#x3E; is discrete and ker finite .

We are interested in the case s r has maximal rank (= n) , and r has no

torsion elements. Hence 0393 ~ l(0393) and l(0393) is a lattice in Rn.

PROPOSITION. - The quotient G/r is called a holomorphic torus; G/r has a

unique structure of holomorphic space over k such that n i G -~ is a holo2014

morphic map. Moreover G/0393 is "compact".

Proof. - For convenience, we do only n = 1 ; n &#x3E; 11 can be done in the same

way. Then r = (q) t and we may suppose 0  Îq 1  Ihe topological space G/r
can be covered by the images X1 , X2 under Ti of

where q 1  |  |03C01Î  11 . 

’

Of course, ~ X.. is a homeomorphism. Further X1 n X2 is the dis-

joint union of the images (under 03C0) of

i""tJ N

So X1 and X2 are glued in a nice and becomes a holomorphic space.
One can make anothex covering of by Y 1 p Y2 such that Yi  X-.. Hence
G/r is compact.

(4.2) Let T =- G/r have dimension n . Then

H’(T , C) =C for any constant sheaf e.

Proof. - Again we consider only n = 1 . Then ,O*) is given by the

exact séquence
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because HI (Z , 0 ) = 0 for Z =:&#x3E;l1J ’ X2 or X1 n X2 . The same covering can be
used to calculate H’(T, C) .

(4.3) Our aim is to calculate the field of meromorphic functions on 

(4.3.1) PROPOSITION. - M(G) = the quotient field f

0(G) = (¿ _7n a a Z1 f ... z.... , nI s everywhere convergent} .n a

N

Proof. - ~’~(G~ - m(x.) with

,f.

Given a projective system (a ./b.) in lim we can make ideals
:L J..- ~

So we find a cohérent sheaf of ideals 3 c: o ~ Since G is a Stein-space, we

hâve S(G) ~ 0 . Take n a3(G) and n ~ 0 . Then t./n. = a./b. in Qt(o(X.))
for suitable ti e O(Xi) . Since t../U. == we find an élément t ~ 9(G) with

= t. , ? i . Hence t/n = "lim"(ai/bi) .

Using further can choose t and n such that

g c$ d. (,t ~ h ) = 1’ in CL. for every point x ~ G .
X X L~~ X

(4.3.2) PROPOSITION. - Thé group r acts on G and For this action. we
hâve = 

Proof. - More or less clear.

(4.3.3) DEFINITION. - An holomorphic function f : G -&#x3E;. k is called a theta-

function for (G , r) if for every y ~ r there exists a function x e o(G)
with

It follows easily that Z has no zero’s in G and hence x must be an ele-
y y

ment of the group

(4.3.4) PROPOSITION. - Any f can be written as f = where

6Gb ’Ú11 are theta-functions with the same "multiplicator" ZY .

Proof. - Write f with e. e 0(G) and e. relatively prime. Then

Since °0’ 91i are relatively prime, we find

O..(z) = Z y ( z ), à . 1 (y z )/ (i = 0,1.) for some Z 
y 
EO(G).
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(4.4) Construction of p-adic theta-functions. - In order to compute = thé

meromorphic functions on G/0393 , we hâve to construct thêta functions with a given

"multiplicator" y -~ Z ~

(4.4.1) LEMMA.

1° Ihe multiplicator y -&#x3E; Z is a 1-cocycle in H’(0393 , A) , i. e.

Z (z) = Z (03B3z) Z (z) (for ’v’ e r 3 z e G ) .
~~ ’Y" ~ 

2° Any 1-cocycle ’y ~ Z H’(0393 , A) ) has thé form. (d(03B3) e k )
~ Y 

~°~ 

~1 ~n n~
2 (~z) = d(~} o(B).(z) (~ ... z~ ; 

is a group homomorphism( Hi = ail analytic characters on G ).

Moreover d(Yy’). d(~). l! d(~~’). 2014~!! =o’(~~)(’y) ~
Define q s r x h~ by q(~ , h) = h(y) then or(~’)(Y) == q(’Y ~ o(~’)) and

F x r ~ h* given by (03B3 , 03B3’) ~ q(03B3 , a (y’)) is bilineair symmetric.

30 After oossibly c finite field extension of k there is a symmetric bilineair
2014201420142014t-2014201420142014t2014~2014-2014201420142014201420142014201420142014201420142014201420142014 

’ 

~ 
’ 

’

from. p s r x r -&#x3E;- k and a qroup homomorphism. c : r ~ k such that

Proof. - 1i° and 2.~ are clear if one uses A = k Hi .

3° Choose a base ’~.  ... , -y of r and éléments ’Y_) satisfying

=P(Bj ’ ~i) ~ t~(Bj)) ’ ’

Thé bilineair extension of p is symmetric and satisfies

Moreover X 
Y 
= c(y) p(y , y) a(y) for some function es r -~ k.

Substitution in guilds that c is a homomorphism.

(4.4.2) Definition. - Given a 1-cocycle Z t we want to détermine L(Z) = the

vectorspaoe of theta-functions with multiplicator Z , i. e. the holomorphic func-

tion on G satisfying

To simplify matters, we introduce M = all formel expressions 1 h~H ah h with

coefficients a h, E k. M is a vector space over k with some extra structure :

action of r : (I q(y , h) h

multipl. by elts in
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the elements of M satisfying f = Z fY

= the formaL o-functions with cocycle ..

(4.. 4.3) LEMMA.

1 0 if and only if there is h E H such tbat Z 
y 
= q~~ ~ h) f or all

y E ker 03C3 .

2°- If 0 , then (torsion éléments of H/o(r) )~

Equality holds if OE is injective.

3° L(Z) / O if and only if LO(Z) ~ 0 and , a(y) ) l,  11 as soon as

a (y) / 1, .

4° If L(Z) ~ 0 , then L(Z) = 

Proof. - We introduce the following notations : sub groups H ’ , H" of H. and

rt of r such that H’ @ H" = H ; H’ and is a finite group

with représentatives ... ,. w. $ 0393’ ~ ker 03C3 = r .

Any f E M has uniquely the form

. 

f = 03A3i=1,...,t,03BD~0393,h"~H" a.. 
’J w’. ]. lÀ" (a. B) E 1.*), .

. f(03B3z) = 03A3 ai,03BD,h" q(03B3 , wi h!’) Z wi h" 3 thé condition f E 

is equivalent with 

= l 
a. :1.., B) ,. h" q(y , w. 1. h!’) Z vy w,. J. h" ; the condition f E LO(Z)

is equivalent with

In another form. for some k , we have

From this 1îo follows immediately; 2°. also follows because

is contained in H’ , So there is at most one h" with. a. ,~ ~ 0 ~
Further explication : since q is non-degenerate, the group HO ha s

rank == n-rank(ker a) = 

Further since (’y*)) is synmetric one has a(r).) = 1 and

%3 o(r) ~ Hence H’ .

3° and 4~ s We have to estimate the absolute values of the coefficients of.

f e L~(Z) .
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Suppose a. h" /; 0 Convergence of the subsequencei,h

on all of G implies clearly v) 1  1 .

On the cther hand if ~p(.v 9 v) Î  11 for all v E r’ 9 ,,/:.-0 t then

is a positive def inite symmetric bilinear from on P x r’ . So (v , is an

inner product on r’ 0z ~ and

From this one easily sees that f e L(Z) .

(4 . 5 ) Alqebraicity of 

THEOREM. - Thé following conditions are equivalent

(1:) G/r is algebraic.

(2) G/0393 is projective algebraic,

(3) G/r is an abelian variety

(4) There is a group homomorphism 03C3 : r ~ H such that

(a) for all Y ,’y’ er

(b) y’) =. - o’(’y~) 1 is positive définîtes

Proof. - (3) ==&#x3E; (2) ==&#x3E; (1i) are obvious.

(1i) ===~ (4) the transcendence degree of over k is at least n . Take

algebraic independent elts f1.’"’’ fn ~ M(G/0393) and write them as

holomorphic functions.. Then Oo ? - ~ 0 are theta functions with

the same multiplicator Z .

The algebraic independence of f-i , ... , 
, 

imPlies that

are algebraically independent over k. Hence ( ) . On the other
hand, .

dim |lrtorsion where r = 

Hence = n , and we have proved (4).
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(2) =::&#x3E; (3). The multiplicator of pn : Gir x G/r ~ G/0393 is an analytic

map. By GAGA, it is also an algebraic map.

Thé hard part is to show (4) ==&#x3E; (2) :

(4.5.1) LEMMA. - Let Z be a cocycle with a positive definite 03C3 (as in (4,»).
Then

(1) For every z e G , there exists a o ~ withi 0 .

(2) Let °0’ ... , 0 t be a base of Suppose that z2 ~ G and

mod r . Then thé vectors (03B80(z1) , ... , 03B8L(z1) and (03B80(z2) , ... ,
in k are linearly independent over k. 

’

Proof.

(1.) For e e L(Z) and a , b e G the functions

belong to L(Z3) . Let 03B8 ~ 0 , then the zéro set X of 0 in G has codimen-

sion . One can find a ,b with a ,b’ ,. z X., Hence 00(2) ~ 0 .

(2) Suppose that the vectors (00(z1,).’."’ 8t(z1» and (03B80(z2) , ... , 

are linearly dépendent over k., For any F E L(z) one has for any z , b E G and
*

a fixed constant C E k :

F(z.1, z-1) b-1.) zb) = c z-1) b-1i) FC~ zb); .
Hence the meromorphic function (of z). (F(Z.11 zz-1))/(F(z2 zz-1» has no zero’s

and no poles. So

That means F(z03BD) = a(z) F(z) with v = z1 z" and a E A . The explicit for-

mula for the F~s in L(Z), given in (4.~4.3) implies B; 

(4.5.2) Let Z be a positive définit 1-cocycle and let 03B80 , ... , 03B8t
be abaseof The holomorphic map 03C6 : G/0393 ~ Pt(k) given by

has the propetties

1° X= im(cp) is an algebraic subspace of P.(k) of dimension n.

2° 03C6 : G/0393 ~ X is an isomorphism of holomorphic spaces.

Proof.

1° (p : G/r ~ !:t(k) is well defined and injective according to (4.5.t) part

(1.) and (2). Since G/r is "compact",.. the map (p is proper. By the proper map-

ping theorem, X. = im((p) is a closed analytic subset of !t(k) .
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By GAGA, X. = im(cp) is also an algebraically closed subset of !.t(.k) . Since
03C6 : G/r ~ X is bijective, we hâve

n =.dim G/r = dim X + dim(fibre) and dim(fibre) = 0 .

(2) A covering Y. J. (i = 0 ~ ~ ~ t). by affine open pièces is given by

Yi = E !:t(k); |ai| for ail jJ} ::&#x3E; {(1À1,t...tÀ.J E ail 1.).

Put Xi = Yi n x.. ; then (Xi) E Cov(X.) t and one can verify that

The map ~ X, i is bijective, and after a. calculation of derivati-

ves and finds, for every x EX,.. t
.1. ,

By methods of the type, explained in (2.10), it follows that 03C6-1i : X. ~ 03C6-1 ( X . )
is also holomorphic. Hence , : Q/r -&#x3E; X has an holomorphic inverse.

(4.6) Final remarks.- Now every abelian variety over Q 
p 

can be obtained as a

holomorphic torus ~/r * One can only parametrize those abelian varieties by a

G/r , which degenerate over the residue field F of Q .

In particular, only those elliptic curves over k can be parametrized which

split into projective lines over the residue field of k (Equivalently, the j-

invariant has absolute value &#x3E; 11 ). (See [15] ). In [12], D.. MUMFORD has shown

that also degenerating curves of genus g &#x3E; 11 , over a local field, have a nice

non-archimedean représentation.
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