Groupe de travail D'analyse Ultramétrique

Marius Van der Put

Rigid analytic spaces

Groupe de travail d'analyse ultramétrique, tome 3, no 2 (1975-1976), exp. no J7, p. J1-J20 http://www.numdam.org/item?id=GAU_1975-1976_3_2_A6_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

3e année, 1975/76, no J7, 20 p.
Journées d'analyse ultramétrique
[1,975. Marseille-Luminy]

RIGID ANALYTIC SPACES (*)
by Marius VAN DER PUT

1. Tate-algebras.

(1.1.) Notations. - k is a complete non-archimedean valued field. For a Banachalgebra A over k (always commutative and with 1) and indeterminates

$$
T_{1}, \ldots, T_{n},
$$

we define

$$
A,\left\langle\mathbb{T}_{1}, \ldots, \mathbb{I}_{n}\right\rangle=\left\{\sum a_{\alpha} \mathbb{T}^{\alpha} ; a_{\alpha} \in A \text { and } \lim a_{\alpha}=0\right\}
$$

This is a new Banach-algebraover k with respect to (w. r_{0} t. , the norm $\left\|\Sigma a_{\alpha} T^{\alpha}\right\|=\max \left\|a_{\alpha}\right\| \cdot A$ free Tate-algebra is a ring of the type $k\left\langle T_{1}, \ldots, T_{n}\right\rangle$. (1.2) PROPOSITION (Weierstrass preparation and division). - Let $f \in k\left\langle\mathbb{T}_{1}, \ldots, \mathbb{T}_{n}\right\rangle$ be non-zero There exists an automorphism σ of $k\left\langle T_{1}, \ldots, T_{n}\right\rangle$ (of the form. $\left.X_{i} \rightarrow X_{i}+X_{n}\left(e_{i} \geqslant 1, i<n\right) ; X_{n} \rightarrow X_{n}\right)$ ouch that $\sigma(f)\left(0,-0, T_{n}\right)$ has order d.

Moreover $k\left\langle T_{1}, \ldots, T_{n}\right\rangle / \sigma(f)$ is a free finitely generated $k\left\langle T_{1}, \ldots, T_{n-1}\right\rangle$ module of rank d.

Proof. - See [7] GRAUERT-REMMERT
(1.3) Consequences.
(1.3.1) Every $k\left\langle T_{1}, \ldots, T_{n}\right\rangle$ is noetherean.
(1.3.2) $\mathrm{k}\left\langle\mathrm{T}_{1}, \ldots, \mathbb{I}_{\mathrm{n}}\right\rangle$ is a unique factorisation domain.

Proof. - Induction on n and (1.2).
(1.4) IEMAA. - Let M be a Banach-module over A, (i. e. A Banach-algebra and M is a complete normed A-module $\left.s_{0} t_{*}\|a m\| \leqslant\|a\|\|m\|, \forall a \in A, \quad \forall \in \in M\right)$. The following are equivalent
(a) M is noetherean.
(b) Every A-submodule of M is closed.
(*), Survey of the works done by J. TATE, H. GRAUERT, R. REMNERT, L. GERRITZEN, R. KIEHL, L. GRUSON, Me RAYNAUD and al.

Proof. - (b) \Rightarrow (a): Let $M_{1} \subsetneq M_{2} \varsubsetneqq M_{3} \subsetneq \ldots$... be an infinite chain of submodules of A. Then one can easily see that $U_{i \geqslant 1} M_{i}$ is not closed. Contradiction.
(a) \Rightarrow (b) : Let N be a maximal non closed submodule of M. Then $N \subset \bar{N}$ has no tntermediate A-modules. Hence $\bar{N} / N \simeq A /$ for some maximal ideal m. Since m is closed in A it follows that N is also closed. Contradiction.
(1.5) Every ideal I in $k\left\langle T_{1}, \ldots, \mathbb{T}_{n}\right\rangle$ is closed according to (1.4) and (1.3.1. . A. Tate-algebra is an algebra of the type $k\left\langle T_{1}, \ldots, T_{n}\right\rangle / I$ provided with the quotient norm.

Easy oonsequences gre :
(1.5.1) Any k-homomorphism of Tate-algebra is continuous.
(1.5.2) Any finitely generated module over a Tate-algebra A. has a unique structure as Bandch-module. A linear map between those modules is automatically continuous.
(1.6) From (1.2), it follows :

For every Tate-algebra A, there exists a map $K\left\langle T_{1}, \ldots, T_{d}\right\rangle \xrightarrow{\alpha} A$ with α injective and finite. Moreover $d=K r u l l-d i m A$.

In particular, for every maximal ideal m of A, we have $[(A / m): k]<\infty$. On A / \mathfrak{m}, we put the unique valuation extending the valuation of k.
(1.7) Some notations.
$X=S p A=$ the set of maximal ideals of A.
For $x \in X$, we put $k(x)=A / x$. For $f \in A$, we denote by $f(x)$ the image of f into A / X. The spectral semi-norm $\|f\|_{s p}$ is defined by $\|f\|_{s p}=\sup _{x \in X}|f(x)|$. For $A=k\left\langle\mathbb{T}_{1}, \ldots, \mathbb{I}_{n}\right\rangle$ one easily checks $\|f\|_{s p}=\| \|$ and the norm is multiplicative.
(1.8) Properties of the spectral norm.
(1.8.1.) $|f(x)|<$ for all $x \in X \Leftrightarrow \lim \left\|f^{n}\right\|=0$,
(1.8.2) $\|f\|_{s p}=\lim \left\|f^{n_{n}}\right\|^{1 / n}$ 。
(1.8.3) $|f(x)| \leqslant 1$ for all $x \in X \Longleftrightarrow \sup \left\{\left\|f^{n}\right\| ; n \geqslant 0\right\}<\infty$,
(1.8.4) A k-algebra homomorphism $\varphi: A\left\langle T_{1}, \ldots, T_{n}\right\rangle \rightarrow B$ ie uniquely determined by $\varphi / / \mathrm{A}$ and $\varphi\left(T_{i}\right)=f_{i} \in B \quad(i=1, \ldots, n)$. A φ with prescribed φ / A and $f_{i}(1 \leqslant i \leqslant n)$ exists if, and only if, $\left|f_{i}(x)\right| \leqslant 1$ for all $x \in S p(B)$ and $i=1, \ldots, n$.
(1.8.5) If A is reduced (i. e. has no nilpotents elements) then $\left\|\|_{\text {sp }}\right.$ is equivalent with || || .
(1.8 8.6) There is $x_{0} \in X=S p A$ with $\left|f\left(x_{0}\right)\right|=\max _{x \in X}|f(x)|$.

Proof.- (1.8.1.) : The ideal ($1-\mathrm{Tf}$) $A\langle T\rangle$ in $A,\langle T\rangle$ must be improper because of (1.6) and $|f(x)|<1$ for all $x \in X$. Hence ($1-T f$), has an inverse in $A\langle\mathbb{T}\rangle$. That inverse must be $\sum_{n \geq 0} f^{n} T^{n}$. So lim $\left\|f^{n}\right\|=0$.

On the other hand, if $\lim \left\|f^{n}\right\|=0$, then $|f(x)| \leqslant\left\|f^{n}\right\|^{1 / 1 / n}$ is <1 for all x and $n \gg 0$.
(1.8.2): "s" is trivial. If $\|f\|_{\text {sp }}<\lim \left\|f^{n_{4}}\right\|^{1 / n}$, then we can arrange things such that $\|f\|_{s p}<1 \leqslant \lim \left\|f^{n}\right\|^{1 / n}$. But this contradicts (1.8.1).
(1.8.3) : The implication " $\Leftarrow=="$ follows from (1.8.2). The implication $" \Rightarrow$ " is more complicated :

Suppose that $k\left\langle\mathbb{I}_{1}, \ldots, \mathbb{T}_{d}\right\rangle \hookrightarrow A$ is injective and finite. If we can show that $f \in A$ is integral over $V\left\langle\mathbb{T}_{1}, \ldots, \mathbb{I}_{d}\right\rangle \quad(V$ the valuation-ring of $k)$, then clearly $\left\{\left\|f^{n}\right\| / n \geqslant 0\right\}$ is a bounded set. For show the integral dependence of A, it suffices to consider the case where A has no zero-divisors.

Let L be the least narmal field extension of $K=Q E\left(k\left\langle T_{1}, \ldots, I_{d}\right\rangle\right)$ containing A, and let $G=A u f(L / K)$. Then $B=Z\left[A^{\sigma} ; \sigma \in G\right]$ is also integral over $k\left\langle T_{1}, \ldots, T_{d}\right\rangle$ and the mimimum polynomial of f over K divides

$$
P=\Pi_{\sigma \in G}\left(X-f^{\sigma}\right)^{q} \quad(q=\text { some power of the characteristic })
$$

Since $k\left\langle T_{1}, \ldots, T_{d}\right\rangle$ is normal, P has coefficients in $k\left\langle T_{1}, \ldots, T_{d}\right\rangle$. Since $\left|f^{\sigma}(x)\right| \leqslant 1$ for all maximal ideal of B, the coefficients of P have spectral norms $\leqslant 1$. So $P \in V\left\langle T_{1} \ldots T_{d}\right\rangle[X]$.
(1.8.4) : Easy consequence of (1.8.3).
(1.8.5) : This is more complicated (proved by L. GERRITZEN). We only sketch a proof. As in (1.8.3), we may suppose that A has no zero-divisors. Let $f \in A$. have minimum polynomial $x^{d}+a_{1} x^{d-1}+\ldots+a_{d}(=0)$ over $k\left\langle T_{1}, \ldots, \mathbb{I}_{d}\right\rangle$. Then $\|f\|_{s p}=\max _{1 \leqslant i \leqslant s}\left\|a_{i}\right\|^{1 / i}$. The hard part is to show with the aid of this formula that A is complete w. r. t. $\left\|\|_{s p}\right.$. Then it follows from the open mapping theorem that $\left\|\|_{s p}\right.$ and $\| \|$ are equivalent on A (See R. RENMERT [14]):-
(1.8.6) : By the formula of (1.8.5) one sees that, after replacing f by λf^{e} $\left(e \geqslant 1, \lambda \in k^{*}\right)$, we may work with $\|f\|_{s p}=1$.

If $|f(x)|<1_{i}$ for all $x \in X$ then, from (1.8.1), it follows that $\left\|f^{n}\right\|<1$. for $n \gg 0$. So $\|f\|_{s p}<1$. This contradiction shows the existence of $x_{0} \in X$ with $\left|f\left(x_{0}\right)\right|=\|f\|_{s p}$.
(1.9) Further structure theorems on Tate-algebras.
(1.9.1) (GERRITZEN) : If k is (quasi-)complete then any Tate-algebra A / k is japanese (i. e. integral extensions of A in a finite field extension are finite modules over A).
(1.9.2) (KIEHL-KUNZ-BERGER-NASTOLD) : If k is (quasi-)complete then A is an excellent ring (in the sense of GROTHENDIECN). (See : KIEHL-KUNZ-BERGER- NASTOLD [1])

2. Affine holomorphic spaces.

(2.1) Let A be a Tate-algebra, defined over a field k. Let $X=\operatorname{Sp}(A)$ denote the collection of all maximal ideals of A. For every $x \in X$, the residue field $k(x)=A / x$ is a finite extension of k and has therefore a unique valuation, always denoted by 1,1 , extending the valuation of k. For $x \in X$ and $f \in \mathbb{A}$, we denote by $f(x)$ the image of f in $k(x)$.

The topology on X is generated by the subsets $\{x \in X ;|f(x)| \leqslant 1\}$ with $f \in A$. A base for this topology is, the set of the so-called Weierstrass-domains

$$
W\left(f_{1}, \ldots, f_{n}\right)=\left\{x \in X ;\left|f_{i}(x)\right| \leqslant 1 \text { for all } i\right\} \text {. }
$$

A more general class of open (and closed) subsets of X are the rational demains

$$
R=R\left(f_{0}, \ldots, f_{n}\right)=\left\{x \in X ;\left|f_{i}(x)\right| \leqslant\left|f_{0}(x)\right| \text { for all } i\right\} \text {, }
$$

where we have supposed that f_{0}, \ldots, f_{n} have no common zero on X. With R, we associate a Tate-algebra $B, B=A_{1}\left\langle T_{1}, \ldots, \mathbb{T}_{n}\right\rangle /\left(f_{1}-T_{1} f_{0}, \ldots, f_{n_{1}}-\mathbb{T}_{n} f_{0}\right)$. (2.2) PROPOSITION.
(2.2.1) The map $A \xrightarrow{\varphi} B$ induces a continuous map $\operatorname{Sp}(\varphi): \operatorname{Sp}(B) \rightarrow \operatorname{Sp}(A)$. The image is R and $S p(\varphi): S p(B) \rightarrow R$ is a homeomorphism-
(2.2.2) For every (k-algebra homomorphism) $\psi: A \rightarrow C$ of Tate-algebras with $\operatorname{Sp}(\psi),(\operatorname{Sp}(C)) \leq R$ there is a unique $X: B \rightarrow C$ with $X \varphi=\psi \cdot$

Proof.

(2.2.1) : For any k-algebra homomorphism φ, the induced map $\operatorname{Sp}(\varphi)$ is continuous. For the given B, oneeasily verifies that $\operatorname{Sp}(\varphi): \operatorname{Sp}(B) \rightarrow R$ is a homemorphism.
(2.2.2) : The map $x: B: \rightarrow C$ is uniquely determined by $x\left(T_{i}\right)(i=1, \ldots, n)$ and $x\left(T_{i}\right)=\psi\left(f_{i}\right) / \psi\left(f_{0}\right)$ must hold. The existence of x follows from $\S 1(1.8 .4)$. Namely, the elements $g_{i}=\psi\left(f_{i}\right) / \psi\left(f_{Q}\right)$ in C satisfy:

$$
\left|g_{i}(x)\right| \leqslant 1 \text { for all } x \in \operatorname{Sp}(C)
$$

Hence, the set $\left\{\left\|g_{1}^{\alpha_{1}} \cdots g_{n}\right\| ; \alpha_{1_{1}}, \ldots, \alpha_{n} \geqslant 0\right\}$ is bounded and the map $\tilde{x}: A\left\langle T_{1}, \ldots, T_{n}\right\rangle \rightarrow C$.
given by

$$
\sum a_{\alpha} T_{1}^{\alpha_{1}} \cdots T_{n}^{\alpha_{n}} \rightarrow \sum \varphi\left(a_{\alpha}\right) g_{1_{1}}^{\alpha_{1}} \cdots g_{n}^{\alpha_{n}},\left(\text { with } a_{\alpha} \in \text { A., } \lim a_{\alpha}=0\right)
$$

is a k-algebra homomorphism. The kernel of x contains

$$
\left(f_{1}-I_{1} f_{0}, \ldots, f_{n}-I_{n} f_{0}\right)
$$

and \tilde{x} induced the required $x: B \rightarrow C$.
(2.3) For every rational domain $R=R\left(f_{O}, \ldots, f_{n}\right)$, we define

$$
P(R)=A\left\langle T_{1}, \ldots, T_{n}\right\rangle /\left(f_{i}-T_{i} f_{0}\right)_{i=1}^{n}
$$

According to (2.2.2), $P(R)$ does not depend on the choice of $\left\{f_{0}, \ldots, f_{n}\right\}$ and moreover $R \rightarrow P(R)$ is a pre-sheaf defined on the base $\{R ; R$ rational $\}$. Let us denote by H_{X} the sheaf on: X (with the usual topology) associated with P. (2.4) Results.
(2.4.1.) For $x \in X$, the stalk $H_{X, x}$ is a local analytic ring (i. e. a finite extension or a ring of convergent power series over k).
(2.4.2) The natural map of the localisation of A at $x_{x}: A_{x} \overrightarrow{A_{X}} H_{X, x}$, induces an isomorphism for the completions of those local rings, $\hat{A}_{x} \xrightarrow{x} \hat{H}_{X, x}$.
(2.4.3) For a rational domain R with $B=P(R)$, the map $\varphi: A \rightarrow B$ induces an isomorphism of ringed spaces (Sp B, $H_{S p B}$) $\xrightarrow{\sim}\left(R, H_{X} / R\right)$.

Proof. - For $X=\operatorname{Sp}\left(k\left\langle T_{1}, \ldots, T_{n}\right\rangle\right)=\left\{\left(t_{1}, \ldots, t_{n}\right) \in k^{n}\right.$, all $\left.\left|t_{i}\right| \leqslant 1\right\}$ all this is easily verified. All the operations : completion, localisation, forming of H, commute with taking residues w. r. t. an ideal $I \subset k\left\langle T_{1}, \ldots, T_{n}\right\rangle$. Erom this obeervation the general case follows.
(2.5), Definition. - An open subset $Y \subset X=S p A$ is called affine if there exists a Tate-algebra B and a morphism $\varphi: A_{1} \rightarrow B$ which induces an isomorphism of ringed spaces $\left(S p, B, H_{S p B}\right) \xrightarrow{\sim}\left(Y, H_{X / Y}\right)$.
(2.6) Remarks. - The ringed space (X, H_{X}) is an example of what H. CARTAN and S. ABHYANKAR would call a k-analytic space. Since X is totally disconnected, the sheaf H_{X} is very big. In particular, $\Gamma\left(X, H_{X}\right) \neq A$.

Note that $A \rightarrow \Gamma\left(X, H_{X}\right)$ is injective, since the map

$$
A \rightarrow \Gamma\left(X, H_{X}\right) \rightarrow \Pi_{x \in X} H_{X, x} \rightarrow \Pi_{x \in X} \hat{H}_{X, x} \xrightarrow{\sim} \Pi_{x \in X} \hat{A}_{x}
$$

is injective.
Tio get something interesting, we have to consider on X a Grothendieck-topology instead of the ordinary topology. For this purpose, we have introduced open affine subsets of X. Our definition is (with a slight modification), the one of GERRIT-ZEN-GRAUERT ([6], p. 162). Afterwards, we will show that Y determines the algebra B (this is of course clear for rational domains Y). It follows that Y is an affine open subset in the sense of J. TATE ([16], p. 270). (It is immediate
that an affine open subset in the sense of J. TATE is also an affine open set in the sense of (2.5)).

In order to see what this Grothendieck topology on X should be, we have to find "gluing-properties" for the pre-sheaf P.
(2.7.) LEMinA.
(2.7.1.) If $Y_{1}, Y_{2} \subset X$ are rational domains, then so is $Y_{1} \cap Y_{2}$. Moreover $P\left(Y_{1} \cap Y_{2}\right)=P\left(Y_{1}\right) \hat{\otimes}_{A} P\left(Y_{2}\right)$.
(2.7.2) If $Y_{1} \subset Y_{2} \subset X$ are open subsets such that Y_{2} is rational in X and Y_{1} is rational in Y_{2}, then Y_{1} is rational in X.

Proof.

(2.7.1.) : Let $Y_{11}=R\left(f_{0}, \ldots, f_{n}\right)$ and $Y_{2}=R\left(g_{0}, \ldots, g_{m}\right)$ then

$$
Y_{1} \cap Y_{2}=R\left(f_{0} g_{0}, f_{1} g_{1}, \ldots, f_{1} g_{m}, \ldots, f_{n} g_{1}, \ldots, f_{n} g_{m}\right)
$$

Moreover

$$
P\left(Y_{1} \cap Y_{2}\right)=A\left\langle T_{i j} ; \quad 1_{i} \leqslant i, j \leqslant n, m\right\rangle /\left(f_{i} g_{j}-T_{i j} f_{Q} g_{0}\right)
$$

is easily seen to be isomorphic with

$$
A\left\langle T_{i}\right\rangle /\left(f_{i}-T_{i} f_{0}\right) \hat{\otimes} A\left\langle S_{j}\right\rangle /\left(g_{j}-S_{j} g_{0}\right) \cong \frac{A\left\langle T_{1}, \ldots, T_{n}, S_{1}, \ldots, S_{m}\right\rangle}{\left(f_{i}-T_{i} f_{0}, g_{j}-S_{j} g_{0}\right)_{i_{i}}}
$$

(2.7.2) : Let $Y_{2}=R\left(g_{O}, \ldots, g_{m}\right)$ and let

$$
f_{0}, \ldots, f_{n} \in A\left\langle S_{1}, \ldots, S_{m}\right\rangle /\left(g_{j}-S_{j}, g_{0}\right)
$$

define Y_{1} as a rational subset of Y_{2}. Elements $f_{0}^{\prime}, \ldots, f_{n}^{\prime} \in P\left(Y_{2}\right)$ such that the $\left\|f_{i}^{\prime}-f_{i}\right\|$ are very small define the same rational subset of Y_{2}. So we may suppose that f_{0}, \ldots, f_{n} are represente d by elements in $A\left[S_{1}, \ldots, S_{m}\right]$ of total degree $\leqslant N$. We may replace f_{0}, \ldots, f_{n} by $g_{0}^{N} f_{0}, \ldots, g_{0}^{N} f_{n}$. Hence, we may suppose that $f_{0}, \ldots, f_{n} \in A$. For suitable constants $\lambda_{0}, \ldots, \lambda_{m} \in k^{*}$ we have on Y_{1} :

$$
\left|f_{0}(x)\right| \geqslant\left|\lambda_{i} g_{i}(x)\right| \text { for all } i \text { and } x \in Y_{1}
$$

And thus $Y_{1}=Y_{2} \cap R\left(f_{O}, \ldots, f_{m}, \lambda_{O} g_{0}, \ldots, \lambda_{m} g_{m}\right)$ is rational in X.
(2.8) THEOREM. - For any finite covering $x=\left(X_{i}\right)$ of X by rational domains, the Cech-complex $C_{Y}: 0 \rightarrow P(x) \rightarrow \bigoplus P\left(X_{i}\right) \rightarrow \bigoplus P\left(X_{i} \cap X_{j}\right) \rightarrow \ldots$ is universally acyclic (i. e. $\mathcal{C}_{x}{\underset{A}{A}}^{M}$ is acyclic for every normed A-module M).

Proof. - We follow J. TATE ([16], p. 272). First two special cases of coverings. (2.8.1) LEMMA. - Let $f \in A$ and put

$$
X_{1}=\{x \in X ; \quad|f(x)| \leqslant 1\} \text { and } X_{2}=\{x \in X ; \quad|f(x)| \geqslant \pi\}
$$

Then the covering $\left\{X_{1}, x_{2}\right\}$ of X is $u_{\text {. }}$ a. (universally acyclid.
(2.8.2) LEMAA. -Let $f_{0}, \ldots, f_{n} \in A$ satisfy $\max _{i}\left|f_{i}(x)\right|=1$ for all $x \in X$. Then the covering of x by $X_{i}=\left\{x \in X ;\left|f_{i}(x)\right|=1\right\} \quad(i=0, \ldots, n)$ is $u_{0} a_{0}$

Proof. - J. TATE ([16] lemma 8.3 and 8.4) shows that both coverings have a continuous A-linear homotopy $\mathcal{C}_{X} \xrightarrow{\partial} C_{X}$. This induces a homotopy $\partial \hat{\theta}_{\mathrm{M}}$ on $C_{X X A}{\underset{X}{A}}^{M}$. Now we need some general hocus pocus to do the general case :
(2.8.3) LEMiA. - Let \tilde{z} and 5 be coverings of X (by finitely many affine open subsets). Suppose that \hat{z} / Z is $u_{\text {. }}$ a. for every Z which is an intersection of elements in $ฑ$ -

If \mathscr{y} is u. a. then X is u. a.
We consider the double complex $C_{\hat{Z}}, \hat{\otimes}_{A} C_{Y_{j}}$. It is given that
$10 \mathcal{C}_{X} \hat{\otimes}_{\mathrm{A}} \mathrm{P}(\mathrm{Z})$, for Z an intersection of elements in \mathscr{S}_{y}, is exact,
2• $e_{\hat{Z}}^{i} \hat{\otimes}_{A} C_{5_{2}}$, for $i=-1,0, \ldots, r$, is exact.
So, all rows and columns, except possibly $\mathcal{C}_{\mathscr{Y}} \mathcal{S}_{A} \mathcal{e}_{\mathscr{Y}}^{-1}=\mathcal{C}_{\mathscr{Y}}$, are exact. Hence \mathcal{C}_{X} is exact. The same reasoning holds for $\mathrm{C}_{\mathscr{Z}} \mathcal{X}_{\mathrm{A}} \mathrm{M}$.
(2.8.4) Continuation of the proof of (2.8). - First we observe : If \because and \mathcal{Y} are u. a., then so is $\mathbb{Z} \cap \mathscr{S}=\{X \cap \mathbb{X} ; X \in Z, Y \in \mathscr{S}\}$. Indeed, by (2.8.3)

Let us start with any finite covering $\tilde{z}=\left\{R\left(f_{0}^{(i)}, \ldots, f_{n}^{(i)}\right\}\right.$ by rational do-
 Let $\left\{g_{1}, \ldots, g_{s}\right\}$ denote the set $\left\{f_{j}^{(i)}\right\}$, and let, for every subset σ of $\{1, \ldots, s\}$,

$$
Y_{\sigma}=\left\{x \in X ; \quad\left|g_{i}(x)\right| \leqslant \varepsilon \text { for } i \in \sigma \text { and }\left|g_{i}(x)\right| \geqslant \varepsilon \text { for } i \notin \sigma\right\} \text { • }
$$

The covering $\tilde{c}_{6}=\left\{X_{\sigma}\right\}_{\text {all }} \sigma$ is the intersection of s coverings of the type in (2.8.1). Hence is u_{0}. In order to show that \tilde{y} is u_{0} a., it suffices to see that $\mathscr{\cong} / \mathrm{Z}$ is u_{0} a. for any Z which is an intersection of elements of 9

This new covering $\tilde{\sim}^{1}=\tilde{z} / Z$ consist of Weierstrass-domains in Z, i. e. sets cf the type $\left\{x \in Z ;\left|f_{i}(x)\right| \leqslant 1\right.$ for some $\left.i \cdot s\right\}$. Let $\left\{h_{1}, \ldots, h_{t}\right\}$ denote the set of all functions occuring in those inequalities, and let $s_{0}^{\prime}=\left(Y_{\sigma}^{\prime}\right)$ denote the covering of Z given by

$$
Y_{\sigma}^{\prime}=\left\{x \in \mathbb{Z} ; \quad\left|h_{i}(x)\right| \leqslant 1 \text { for } i \in \sigma \text { and }\left|h_{i}(x)\right| \geqslant 1 \text { for } i \notin \sigma\right\}
$$

Again \tilde{e}^{\prime} is u_{0} a. and in order to show that \tilde{x}^{\prime} is u_{0} a., we have to show $X^{\prime} / Z^{\prime}, Z^{\prime}$ any intersection of elements of $s^{\prime \prime}$, is u. a. This last covering however is of the type mentioned in (2.8.2), and the proof is finished.
(2.9) THEOREM (GERRITZEN-GRAUERT [6] p. 178). - An open affine subset of $X=\operatorname{Sp}(A)$ is a finite union of rational domains.

Proof. - The proof is quite long. The eesential part is a result on Runge embeldings (There seers to be a gap in the proof.).
(2.10) COROLLARY. - The open affine subset Y of X determines uniquely the morphism. of Tate-al gebrals $A \xrightarrow{\varphi} B$ for which $\left(S p B, H_{S p B}\right) \rightarrow\left(Y_{i}, H_{X} / Y\right)$ is an isomorphism.

Proof. - Put $Y=U_{i=1}^{n} X_{i}$ where the X_{i} are rational domains in X. Then the X_{i} are also rational in Y and (2.8) implies $B=\operatorname{ker}\left(\oplus P\left(X_{i}\right) \rightarrow P\left(X_{i} \cap X_{j}\right)\right)$.
(2.111) COROLLARY. - Any finite covering of X by affine open subsets is universally acyclic.

Proof. - Follows from (2.9), (2.8) and (2.8.3).
(2.12) Remarks. - A morphism $\operatorname{Sp}(\varphi): Y=\operatorname{Sp}(B) \rightarrow X=\operatorname{Sp}(A)$ is called a Rungemap when $\varphi: A \rightarrow B$ has a dense image. The proof of (2.9) relies on the following proposition :

Let $u=\operatorname{Sp}(\varphi) ; Y=\operatorname{Sp}(B) \rightarrow X=\operatorname{Sp}\left(A_{i}\right)$ be given, and let $f_{O}, \ldots, f_{n} \in A$ be given such that $\left(f_{0}, \ldots, f_{n}\right) A=A$. Put

$$
X_{\varepsilon}=\left\{x \in X ; \quad\left|f_{i}(x)\right| \leqslant \varepsilon\left|f_{0}(x)\right| \text { for all } x\right\} \text { and } Y_{\varepsilon}=u^{-1}\left(X_{\varepsilon}\right)
$$

If $u: Y_{1} \rightarrow X_{1}$ is Runge then for ε close to $1, u: Y_{\varepsilon} \rightarrow X_{\varepsilon}$ is also a Runge-map.
(2.13) For our purpose, we define a Grothendieck-topology on a topological space X as follows
11° A family \mathcal{F} of open subsets of X such that

$$
\Phi ; X \in \mathscr{F} ; U_{1} V \in \mathscr{F} \Rightarrow U \cap V \in \mathscr{F}
$$

20 For every $U \in \mathscr{F}$ a set $\operatorname{Cov}(U)$ of coverings by elts in \mathscr{F}, i. e. any

$$
u=\left(U_{i}\right) \in \operatorname{Cov}(U)
$$

satisfies : all $U_{i} \in \mathscr{F}$ and $U U_{i}=U$ •
$3^{\circ}\{U \rightarrow U\} \in \operatorname{Cov}(U)$ for all $U \in \mathscr{F}$.
4- $u \in \operatorname{Cov}(U)$ and $V \subseteq U, V \in \mathcal{F}$ then $W / V \in \operatorname{Cov}(V)$.
$5^{\circ} \quad u_{i} \in \operatorname{Cov}\left(U_{i}\right)$ and $\left(U_{i}\right) \in \operatorname{Cov}(U)$ then $U u_{i} \in \operatorname{Cov}(U$.$) .$
We remark that the object defined above is in fact a special case of a pre-topology in the sense of Grothendieck. So we can use the whole machinery of sheaves and cohomology for a Grothendieck-topology•
(2.14) An affine holomorphic space ($X, \mathscr{F}, \theta_{X}$) is the following :

1) $X=S p A$ for some Tate-algobra A.
2) \mathcal{J} consists of all open affine subsets of X.
3); For all $U \in \mathscr{F}, \operatorname{Cov}(U)$ consists of all coverings of U by elements in \mathscr{F} which have a finite subcovering.
3) ϑ_{X} is the sheaf (for \mathcal{F}). of rings defined by $Q_{X}(U)=$ the unique Tatealgebra B for which $A \rightarrow B$ with an immersion $U=S p B \longrightarrow S p A$.
θ_{X} is a sheaf according to (2.11).
(2.15) A holomorphic space $\left(X, \mathscr{F}_{2} \mathcal{O}_{X}\right)$ is a topological space X with a Grothen-dieck-topology \mathcal{F} and a sheaf of rings θ_{X} such that $B\left(U_{i}\right) \in \operatorname{Cov}(X)$ with $\left(U_{i}, \mathscr{J} / u_{i}, \theta_{X} / U_{i}\right)$ is an affine holomorphic space for all i.
[Note. - $U \in \mathscr{F}$ is called affine if ($U, \mathscr{F} / U, Q_{X} / U$) is an affine holomorphic space. If U is affine and $V \in \mathscr{F}$ then $U \cap V$ is an affine open subset of $U *$] (2.16) S.me properties of affine holomorphic spaces (see [10]).
(2.1.6.1) $\operatorname{Hom}_{k-a l g}(A, B) \xrightarrow{\sim} \operatorname{Hom}(\operatorname{Sp~B}, \operatorname{Sp} A)$.
(2.16.2) Definition - An O_{X}-module M on $X=S p A$ is called coherent if there exists a finitely generated A-module N such that the sheaf M is isomorphic with the sheaf $U \rightarrow \theta_{X}(U) \theta_{A} N$ (U open affine ΣX).
(2.16.3) Proposition. - An O_{X}-module M is coherent if there exists a

$$
\left(U_{i}\right) \in \operatorname{Cov}(X)
$$

such that M / U_{i} is coherent for each i.
If M is coherent, then

$$
\begin{gathered}
H^{i}(X, M)=0, i>0 \\
H^{O}(X, M)=N \text {, and } M \text { is associated with the A-module } N \text {. }
\end{gathered}
$$

Proof. - The seciond part of the proposition follows directly from (2.1,1). The first part is a property of "descent" for $A \rightarrow B=\theta \theta_{X}\left(U_{i}\right)$, i. e. consider $A_{1} \rightarrow B \Rightarrow B \hat{\otimes}_{A} B \quad\left(\right.$ note $\left.B \hat{\omega}_{A} B=t_{i, j}\right) \Theta_{X}\left(U_{i} \cap U_{j}\right)$), then:
(i) A. B-module $M(f g)$ is isomorphic with some $N \otimes_{A,} B$ if there exists a B. $\hat{\otimes}_{A i} B$-module isomorphism

$$
\begin{aligned}
& M \otimes_{B}\left(B \hat{\otimes}_{A} B\right) \xrightarrow{\sim} M \otimes_{B}\left(B \hat{\otimes}_{A} B\right) \\
& \text { es } N_{1} \text { and } N_{2} \text {, the sequence }
\end{aligned}
$$

 This "descent"-property is proved by R. KTENL.
(3.1) (Quasi-)Stein spaces.

Definition. - A holomorphic space X is called a quasi-Stein space if

$$
\equiv\left(X_{i}\right)_{i \in \mathbb{N}} \in \operatorname{Cov}(X)
$$

an affine covering with
11), $X_{i} \subset X_{i+1}$ for all i.
2) $\theta_{X}\left(X_{i+1}\right) \rightarrow \theta_{X}\left(X_{i}\right)$ has dense image.
X. is called a Stein-space if a more restrictive property holds :

$$
\exists f_{1}, \ldots, f_{r} \in \theta_{X}\left(X_{i+1_{i}}\right)
$$

with
(a) $X_{i}=\left\{x \in X_{i+1} ;\left|f_{j}(x)\right| \leqslant 1\right.$ for all $\left.j\right\}$ •
(b) $f_{1} / a, \ldots, f_{r} / a$ (for some $a \in k^{*}$) are topological generators of $Q_{X}\left(X_{i+1}\right)$ (3.1.1.) THEOREM (R. KIEHL [10]). - If M is a coherent O_{X}-module (i. e.e M/U coherent for every open affine $U \subset X$) and X is quasi-Stein, then
$110 \quad M(X) \rightarrow M\left(X_{i}\right)$ has dense image.
$2^{a} H^{i}(X, M)=0$ for $i>0$.
$3^{\circ} M_{x}$ is generated over $O_{X, x}$ by $M(X)$ •
Proof. - Easy consequence of (2.16.3) + definition (3.1).
(3.1.2) THEOREM (KIEHL [10]; LÜTKEBOHMERT [11]). - Let X be a Stein-space of dimension n , which can locally be embedded in a N-dimensional space $/ \mathrm{k}$. Then X has an embedding into $k^{\mathrm{N}+\mathrm{n}+1}$.
(3.1.3) Examples. - k^{n} and $G=k^{*} n$ are Stein-spaces.

The structure of G can be given by :

$$
G=U X_{m} ; X_{m}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in k^{*_{n}} ;|\pi|^{m} \leqslant\left|x_{i}\right| \leqslant|\pi|^{-m} \text { all } i\right\}
$$

(Here $\pi \in k^{*}$ and $0<\mid \pi i<1$).
An open subset $U \subset G$ is called open affine is U is open affine in some X_{n}.
For an open affine $U \subset G$, it is clear what $\operatorname{Cov}(U)$ is. For G, $\operatorname{Cov}(G)$ consists of the coverings $\left(U_{i}\right)$ be open affine sets such that $\left(U_{i}\right) / U \in \operatorname{Cov}(U)$ for every npen affine $U \subset G$.

With $\left(X_{n}\right) \in \operatorname{Cov}(G)$, one calculates :

$$
\theta(G)=\lim \theta\left(X_{n}\right)=\left\{\sum_{\alpha \in Z_{\sim}^{n}} a_{\alpha} x_{1_{1}}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \mid \text { convergent on all of } G\right\} \text {. }
$$

More generally, any algebraic variety has a unique structure of holomorphic space. If the variety is affine then the holomorphic space is a Stein-space.
(3.2) Proper mappings. - A morphism $f: X \rightarrow Y$ of holomorphic spaces is called proper if the following holds.
(a) f is separated, i. e. $\Delta: X \rightarrow X x_{Y} X$ is a closed embedding.
(f) There is $\left(Y_{i}\right)_{i \in I} \in \operatorname{Cov}(Y)$, with each Y_{i} affine open, and for each $i \in I$ there are two finite coverings $\left(U_{i j}\right)_{j=1}^{n i},\left(V_{i j}\right)_{j=1 i}^{n i}$ of $f^{-1}\left(X_{i}\right)$ by affine sets such that $U_{i j} \ll V_{i j}(a l l i, j)$.

Here $U \ll V$ for affine open sets U, V, means the following; there is an $\varepsilon, 0<\varepsilon<1$, and an embedding $V \subset\left\{\left(\lambda_{1} \ldots \lambda_{n}\right) \in k^{n} ;\right.$ all $\left.\left|\lambda_{i}\right| \leqslant 1\right\}$ sụch that $U \subseteq\left\{\left(\lambda_{1} \cdots \lambda_{n}\right) \in k^{n} ;\right.$ all $\left.\left|\lambda_{i}\right| \leqslant \varepsilon\right\}$.
A. holomorphic space X is called compact (or complete) if " $X \rightarrow$ point" is proper.
(3.2.1) THEOREM (R. KIEHL [9]). $-\mathrm{f}: X \rightarrow Y$ proper, M a coherent ${ }_{X}$-module then all $R^{i} f_{*} M$ are coherent ϑ_{Y}-modules.

COROLLARY. - If X is compact and M is a coherent ${ }^{X}$-module, then

$$
\operatorname{dim} H^{i}(X, M)<\infty \text { for all i. }
$$

(3.3) Projective spaces $-\underset{\sim}{P}(k)$ is a compact holomorphic space. The well known GAGA-properties hold :

110 1.1. Correspondance between algebraic coherent sheaves N and the coherent O_{X}-modules M .
$2 \circ H_{\text {alg }}^{i}(X, N)=H_{\text {anal }}^{i}(X, M)$.
3^{n} Any analytic subset of $\underset{\sim}{\mathrm{P}^{n}}(\mathrm{k})$ is algebraic.
(3.4) The sheaves $0^{*}, \pi, \pi^{*}$, Div.
(3.4.1) θ^{*} is defined by $U \rightarrow \rho_{X}(u)^{*} \quad\left(^{*}=\right.$ invertible elements). This is a sheaf since $O(U) \rightarrow \mathscr{O} O\left(U_{i}\right) \vec{\exists} \mathcal{O}\left(U_{i} \cap U_{j}\right)$ is exact for every $\left(U_{i}\right), \in \operatorname{Cov}(U)$ •
(3.4.2) $\pi=$ the sheaf of meromorphic functions is defined by $U \rightarrow Q t\left(Q_{X}(U)\right)$ for every affine open U ($Q t=$ total quetient ring).

Proof. - We have to verify that this is in fact a sheaf on every affine open space $U \leqslant X$. Let $\left(U_{i}\right) \in \operatorname{Cov}(U)$ and let $\left(t_{i} / n_{i}\right)_{i} \in \oplus Q t\left(Q_{X}\left(U_{i}\right)\right)$ satisfy $t_{i} / n_{i}=t_{j} / n_{j}$ in $\operatorname{Qt}\left(Q_{X}\left(U_{i} \cap U_{j}\right)\right)$ (all $\left.i, j\right)$. Then we have to show the existence of $t / n \in Q t\left(\theta_{X}(U)\right)$ with image t_{i} / n_{i} in every $Q t\left(\theta\left(U_{i}\right)\right)$.

One proceeds as follows : let

$$
I\left(U_{i}\right)=\left\{s \in O\left(U_{i}\right) ; s t_{i} \in n_{i} Q\left(U_{i}\right)\right\}
$$

Then

$$
I\left(U_{i}\right) \otimes \theta_{X}\left(U_{i} \cap U_{j}\right) \approx I\left(U_{j}\right) \otimes \theta_{X}\left(U_{i} \cap U_{j}\right)
$$

By (2.16.3), there is an ideal $I \subset \theta_{X}(U)$ with $I / U_{i}=I\left(U_{i}\right)$ for all i. I
contains a non-zero divisor, otherwise $I z=0$ for some $z \in \mathcal{O}_{X}(U), z \neq 0$. And also $I\left(U_{i}\right) z=0, \forall i$. But each $I\left(U_{i}\right)$ contains a non-zero divisor. Hence $z / U_{i}=0, \forall i$ and so $z=0$. Take $n \in I, n \neq 0$, n a non-zern-divisor. Then $t_{i} / n_{i}=s_{i} / n$, $\forall i$ and the s_{i} satisf $\mathcal{F}_{i} / U_{i} \cap U_{j}=s_{j} / U_{i} \cap U_{j}$. So the s_{i} glue to an element $t \in \theta_{X}(U)$.
(3.4.3) π^{*} is defined by $\pi^{*}(U)=Q t(O(U))^{*}=\pi(U)^{*}$ for every open affine $U \subset X$. As in (3.4.2) this is a sheaf.
(3.4.4) The sheaf of divisors Div is defined by an exact sequence

$$
0 \rightarrow 0^{*} \rightarrow \pi^{*} \rightarrow \text { Div } \rightarrow 0
$$

(3.4.5) As in the classical case,

$$
H^{\prime}\left(X, \theta^{*}\right) \cong \text { invertible sheaves on } X / \text { isomorphism. }
$$

Proof. - The usual one

$$
H^{\bullet}\left(X, \theta^{*}\right)=\lim _{\rightarrow u \in \operatorname{Cov}(x)} \tilde{H}^{\prime}\left(u, \theta^{*}\right)
$$

(3.4.6) If $X=S p A$ is affine, then there is a 1.1 correspondance between invertible sheaves on X. and projective rank. 1 modules over A. Hence
$H^{\prime}\left(X, \theta_{X}^{*}\right)=$ rank 1 i projective A-modules / isomorphism [2].
(3.4.7) Suppose $X=S p A$, and A is regular, then $H^{\prime}\left(X, O_{X}^{*}\right)=$ Class groups of A. In particular,

$$
\text { A is a unique factorisation domain } \Leftrightarrow H \cdot\left(X, \theta^{*}\right)=0 \text {. }
$$

(3.4.8) PROPOSITION (L. GRUSON [8]). - Let $X=S p A$, and let A be regular. If A has unique factorisation then also $A\langle T\rangle$ and $A .\left\langle T, T^{-1}\right\rangle$ have unique factorisation.
(3.4.9) CONSEQUENCE. - Let $G=k^{* n}$ then $H^{\prime}\left(G, \theta_{G}^{*}\right)=0$.

Proof. - It suffices to consider

$$
x_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in k^{n} ;|\pi| \leqslant\left|x_{i}\right| \leqslant|\pi|^{-1}\right. \text { for all i\}, }
$$

where $\pi \in k, 0<|\pi|<1$. We want to show that any invertible sheaf \mathcal{L} on X_{n} is trivial (i. e. $\approx \hat{X}_{\mathrm{X}}$). Let $\mathfrak{L}_{\mathrm{O}}$ be the structure sheaf on

$$
x_{n-1} \times\left\{x_{n} \in k ;\left|x_{n}\right| \leqslant|\pi|\right\}
$$

Then

$$
\left(\mathscr{E}_{0} / x_{n-1}\right) \times\left\{x_{n} \in k ; \quad\left|x_{n}\right|=|\pi|\right\} \cong\left(\mathscr{L} / x_{n-1}\right) \times\left\{x_{n} \in k ;\left|x_{n}\right|=|\pi|\right\}
$$

because of (3.4.8). Hence by (2.16.3), \mathcal{f} and $£_{0}$ glue together to form an invertible sheaf

$$
\mathfrak{L} \text { on } x_{n-1} \times\left\{x_{n} \in k ; \quad\left|x_{n}\right| \leqslant|\pi|^{-1}\right\}
$$

But \mathcal{L}^{\prime} is trivial by (3.4.8). Hence also \mathcal{L} is trivial.

4. Analytic tori and abelian varieties.

The results of this sections are mainly due to L. GERRITZEN ([2] , [4]).
(4.1) A subgroup Γ of $G=k^{*} n$ is called discrete if

$$
\Gamma \cap\left\{x \in G ; \varepsilon \leqslant\left|x_{i}\right| \leqslant \varepsilon^{-1 \mid}, \forall i\right\} \text { is finite for all } \varepsilon \leqslant 1 \text {. }
$$

The map $\&: G \rightarrow{\underset{\sim}{R}}^{\mathrm{n}}$ defined by

$$
\ell\left(x_{1}, \ldots, x_{n}\right)=\left(-\log \left|x_{1}\right|, \ldots,-\log \left|x_{n}\right|\right)
$$

is a group homomorphism. It is easily seen that

$$
\Gamma \text { is discrete } \Longleftrightarrow 2(\Gamma) \subset{\underset{\sim}{R}}^{n} \text { is discrete and } k e r ~ \ell / \Gamma=\text { finite. }
$$

We are interested in the case : Γ has maximal rank $(=n)$, and Γ has no torsion elements. Hence $\Gamma \simeq \ell(\Gamma)$, and $\ell(\Gamma)$ is a lattice in ${\underset{\sim}{R}}^{n}$.

PROPOSITION. - The quatient G / Γ is called a holomorphic torus ; G / Γ has a unique structure of holomorphic space over k such that $\pi: G \rightarrow G / \Gamma$ is a holomorphic map. Moreover G / Γ is "compact".

Proof. - For convenience, we do only $n=1 ; n>1$ can be done in the same way. Then $\Gamma=\langle q\rangle$, and we may suppose $0<|q|<1$. The topological space G / Γ can be covered by the images $X_{1 i}, X_{2}$ under π of

$$
\begin{aligned}
& x_{1}=\left\{x \in G ;|q| \leqslant|x| \leqslant\left|\pi_{1}\right|<1\right\} \\
& x_{2}=\left\{x \in G ;\left|\pi_{2}\right| \leqslant|x| \leqslant 1\right\}
\end{aligned}
$$

where $|q|<\left|\pi_{2}\right|<\left|\pi_{1}\right|<1$.
Of course, $\pi / X_{i}: X_{i} \rightarrow \widetilde{X}_{i}$ is a homeomorphism. Further $\widetilde{X}_{1} \cap \widetilde{X}_{2}$ is the disjoint union of the images (under π) of

$$
\{x \in k ;|x|=1 i\} \text { and }\left\{x \in k ; \quad\left|\pi_{2}\right| \leqslant|x| \leqslant\left|\pi_{1}\right|\right\}
$$

So $\tilde{X}_{1 i}$ and \tilde{X}_{2} are glued in a nice way, and G / Γ becomes a holomorphic space. One can make another covering of G / Γ by Y_{1}, Y_{2} such that $Y_{i} \ll X_{i}$. Hence G / Γ is compact.
(4.2) Let $T=G / \Gamma$ have dimension n. Then

$$
\begin{gathered}
H^{*}\left(\mathrm{G} / \Gamma, \theta^{*}\right)={\underset{\sim}{\underset{\sim}{2}}}_{\mathrm{n}} \\
H^{\prime}(T, C)=\mathrm{C} \underline{\text { for any constant sheaf }} C .
\end{gathered}
$$

Proof. - Again we consider only $n=1$. Then $H^{\prime}\left(G / \Gamma, \theta^{*}\right)$ is given by the exact sequence

$$
0 \rightarrow \theta^{*}(\mathrm{G} / \Gamma) \rightarrow \theta^{*}\left(\tilde{X}_{1}\right) \oplus \theta^{*}\left(\tilde{X}_{2}\right) \rightarrow \theta^{*}\left(\tilde{X}_{1} \cap \tilde{\mathrm{X}}_{2}\right) \rightarrow \mathrm{H}^{\prime}\left(\mathrm{G} / \Gamma,{ }^{*}\right) \rightarrow 0
$$

because $H^{\prime}\left(Z, 0^{*}\right)=0$ for $Z=\tilde{X}_{1}, \tilde{X}_{2}$ or $\tilde{X}_{1} \cap \tilde{X}_{2}$. The same covering can be used to calculate $H^{\prime}(T, C)$ e
(4.3) Our aim is to calculate the field of meromorphic functions on G / Γ, $m(G / \Gamma)$. (4.3.1) PROPOSITION. $-\operatorname{TH}(\mathrm{G})=$ the quotient field of

$$
\mathcal{O}(G)=\left\{\sum_{\alpha \in Z_{\sim}^{n}}{ }_{\sim}^{a}{ }_{\alpha}^{z_{1}} \ldots{\underset{n}{n i}}_{\alpha_{1}}^{\alpha_{n}} \text {, everywhere convergent }\right\}
$$

Proof. $\left.-\pi(G)=\lim \underset{L}{ } \ln _{i}\right)$ with

$$
x_{i}=\left\{\left(z_{1}, \ldots, \dot{z}_{n}\right) \in k^{n} ;|\pi|^{i} \leqslant\left|z_{j}\right| \leqslant|\pi|^{-i} \text { for all } j\right\}
$$

Given a projective system $\left(a_{i} / b_{i}\right)$ in $\lim \pi\left(X_{i}\right)$, we can make ideals

$$
I_{i}=\left\{t \in \theta\left(x_{i}\right) ; t\left(a_{i} / b_{i}\right) \in O\left(x_{i}\right)\right\} ; I_{i+1} \mid x_{i}=I_{i}
$$

So we find a coherent sheaf of ideals $J \subset \mathcal{O}$. Since G is a Stein-space, we have $\mathcal{J}(G) \neq 0$. Take $n \in \mathcal{J}(G)$ and $n \neq 0$. Then $t_{i} / n_{i}=a_{i} / b_{i}$ in $\operatorname{Qt}\left(O\left(X_{i}\right)\right)$) for suitable $t_{i} \in O\left(X_{i}\right)$. Since $t_{i+1} / U_{i}=t_{i}$, we find an element $t \in O(G)$ rith $t / U_{i}=t_{i}, \forall i$. Hence $t / n=\lim ^{\prime \prime}\left(a_{i} / b_{i}\right)$.

Using further $H^{1}\left(G, O^{*}\right)=0$, we can choose t and n such that g. c. d. $\left(t_{x}, h_{x}\right)=1$ in $\theta_{G, x}$ for every point $x \in G$.
(4.3.2) PROPOSITION. - The group Γ acts on G and $M(G)$. For this action, we have $\pi(G)^{\Gamma}=\pi(G / \Gamma)$.

Proof. - More or less clear.
(4.3.3) DEFINITION: - An holomorphic function $f: G \rightarrow k$ is called a thetafunction for (G, Γ) if for every $\gamma \in \Gamma$ there exists a function $\mathcal{Z}_{\gamma} \in O(G)$ with

$$
f(z)=Z_{\gamma}(z) f(\gamma z)
$$

It follows easily that \mathcal{Z}_{Y} has no zero's in G and hence Z_{Y} must be an element of the group

$$
A=\left\{\lambda z_{1 i}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}} ; \lambda \in k^{*} ; \alpha_{1}, \ldots, \alpha_{n} \in \underset{\sim}{Z}\right\}=\theta(G)^{*}
$$

(4.3.4) PROPOSITION. - Any $f \in \pi(G / \Gamma)$ can be written as $f=\theta_{1} / \theta_{0}$, where θ_{Q}, θ_{1} are theta-functions with the same "multiplicator" $\mathcal{Z}_{\gamma} *$
Proof. - Write $f=\theta_{1} / \theta_{0}$ with $\theta_{i} \in \theta(G)$ and θ_{i} relatively prime. Then

$$
f(y z)=\frac{\theta_{1}(y z)}{\theta_{0}(y z)}=f(z)
$$

Since θ_{0}, θ_{1} are relatively prime, we find

$$
\theta_{i}(z)=\mathcal{Z}_{\gamma}(z) \theta_{i}(\gamma z), \quad(i=0,1) \text { for some } \mathcal{Z}_{\gamma} \in O(G)
$$

(4.4) Construction of parodic theta-functions. - In order to compute $\pi(G / \Gamma)=$ the meromorphic functions on G / Γ, we have to construct theta functions with a given "multiplicator" $\gamma \rightarrow Z_{\gamma}$ •
(4.4.1) LELiA.

10 The multiplicator $\gamma \rightarrow Z_{Y}$ is a 1 -cocycle in $H^{\prime}(\Gamma, A)$, i, e_{0}

$$
Z_{\gamma^{\prime}}(z)=Z_{\gamma^{\prime}}\left(\gamma^{z}\right) Z_{\gamma}(z) \quad\left(\text { for all } \gamma, \gamma^{\prime} \in \Gamma ; z \in G\right)
$$

2° Any $1-$ cocycle $\gamma \rightarrow Z_{\gamma}$ (in w ir $^{(\Gamma, A))}$ has the form. $\left(d(\gamma), \in k^{*}\right)$

$$
\mathcal{Z}_{\gamma}(z)=d(\gamma) \sigma(\gamma)(z) \text { where } \sigma: \Gamma \rightarrow H=\left\{z_{1}^{\alpha} \ldots z_{n}^{\alpha} ; \alpha \in \underset{\sim}{\alpha_{n}}\right\}
$$

is a group homomorphism ($H=$ all analytic characters on G).
Moreover $d\left(\gamma \gamma^{\prime}\right), d(\gamma)^{-1} d\left(\gamma^{\prime}\right)^{-1}=\sigma\left(\gamma^{\prime}\right)(\gamma)$.
Define $q: \Gamma \times H \rightarrow h^{*}$ by $q(\gamma, h)=h(\gamma)$ then $\sigma\left(\gamma^{\prime}\right)(\gamma)=q\left(\gamma, \sigma\left(\gamma^{\prime}\right)\right)$ and $\Gamma \times \Gamma \rightarrow h^{*}$ given by $\left(\gamma, \gamma^{\boldsymbol{p}}\right) \rightarrow q\left(\gamma, \sigma\left(\gamma^{\vee}\right)\right)$ is bilinear symmetric.
3° After possibly $\frac{\text { finite field extension of }}{*} k \frac{\text { there is a symmetric bilinear }}{*}$ from $p: \Gamma \times \Gamma \rightarrow k^{*}$ and a group homomorphism $c: \Gamma \rightarrow k^{*}$ such that

$$
\begin{gathered}
z_{\gamma}=c(\gamma) p(\gamma, \gamma) \sigma(\gamma) \\
p\left(\gamma, \gamma^{s}\right)^{2}=q\left(\gamma, \sigma\left(\gamma^{\prime}\right)\right)
\end{gathered}
$$

Proof. - 11° and 2° are clear if one uses $A=k^{*} H_{1}$.
3° Choose a base $\gamma_{1}, \ldots, \gamma_{n}$ of Γ and elements $p\left(\gamma_{i}, \gamma_{j}\right)$ satisfying

$$
p\left(\gamma_{i}, \gamma_{j}\right)=p\left(\gamma_{j}, \gamma_{i}\right) \text { and } p\left(\gamma_{i}, \gamma_{j}\right)^{2}=q\left(\gamma_{i}, \sigma\left(\gamma_{j}\right)\right)
$$

The bilineair extension of p is symmetric and satisfies

$$
p\left(\gamma, \gamma^{i}\right)^{2}=q\left(\gamma, \sigma\left(\gamma^{\imath}\right)\right)
$$

Moreover $Z_{\gamma}=c(\gamma) p(\gamma, \gamma) \sigma(\gamma)$ for some function $c: \Gamma \rightarrow k^{*}$.
Substitution in 10° guilds that c is a homomorphism.
(4.4.2) Definition. - Given a 1 -cocycle Z, we want to determine $L(Z)=$ the vectorspace of theta-functions with multiplicator \mathcal{Z}, i. e. the holomorphic fundtron on G satisfying

$$
f(z)=\mathcal{Z}_{\gamma}(z) f(\gamma z) \quad(\gamma \in \Gamma, z \in G)
$$

To simplify matters, we introduce $M=$ all formal expressions $\sum_{h \in H} a_{h} h$ with coefficients $a_{h} \in k$. M is a vector space over k with some extra structure :

$$
\text { action of } \Gamma:\left(\sum a_{h} h\right)^{\gamma}:=\sum a_{h} q(\gamma, h) h
$$

multiple. by alts in

$$
H: h^{\prime}\left(\sum a_{h} h\right):=\sum a_{h} h^{\prime} h
$$

$I^{Q}(\mathcal{Z})=$ the elements of M satisfying $f=Z_{\gamma} f^{Y}$
$=$ the formal 0 -functions with cocycle
(4.4.3) LENRIA.
$10{ }^{10} L^{0}(Z) \neq 0$ if and only if there is $h \in H$ such that $Z_{Y}=q(\gamma, h)$ for all $\gamma \in \operatorname{ker} \sigma$.
20. If $L^{\mathrm{Q}}(\mathcal{Z}) \neq 0$, then $\operatorname{dim} \mathrm{L}^{\mathrm{O}}(\mathcal{Z}) \leqslant \#$ (torsion elements of $H / \sigma(\Gamma)$). Equality holds if σ is injective.
$3^{\circ} L(Z) \neq 0$ if and only if $L^{0}(Z) \neq 0$ and $|q(\gamma, \sigma(\gamma))|<1$ as soon as $\sigma(y) \neq 1$.
4° If $L(Z) \neq 0$, then $L(Z)=L^{0}(Z)$.
Proof. - We introduce the following notations : sub groups H ' , $\mathrm{H}^{\prime \prime}$ of H and Γ^{\prime} of Γ such that $H^{\prime} \oplus H^{\prime}=H ; \quad \sigma(\Gamma) \leqslant H^{\prime}$ and $H^{\prime} / \sigma(\Gamma)$ is a finite group with representatives $w_{1}, \ldots, w_{t} ; \Gamma^{*} \oplus \operatorname{ker} \sigma=\Gamma$.

Any $f \in M$ has uniquely the form

$$
f=\sum_{i=1, \ldots, t, \nu \in \Gamma^{\prime}, h^{\prime \prime} \in H H^{\prime \prime}} a_{i, v, h^{\prime \prime}} \mathcal{Z}_{\nu} w_{i} h^{\prime \prime} \quad\left(a_{i, \nu, h^{\prime \prime}} \in k^{*}\right) .
$$

Since $\left.Z_{\gamma}(z) f(\gamma z)=\sum_{a_{i, v,} h^{\prime \prime}} q_{(\gamma,}, w_{i} h^{\prime \prime}\right) Z_{V \gamma} w_{i} h^{\prime \prime}$; the condition $f \in L^{O}(Z)$ is equivalent with

$$
\left\{\begin{array}{c}
a_{i, \nu, h^{\prime \prime}} q\left(\gamma, w_{i} h^{\prime \prime}\right)=a_{i, v \gamma, h^{\prime \prime}} \text { for all } \gamma \in \Gamma^{\prime} \\
a_{i, v, h^{\prime \prime}} q\left(\gamma, w_{i} h^{\prime \prime}\right) Z_{\gamma}=a_{i, v, h^{\prime \prime}} \text { for all } \gamma \in \operatorname{ker} \sigma
\end{array}\right.
$$

In another form, for some $a_{i, h "} \in k$, we have

$$
\left\{\begin{array}{l}
a_{i, \gamma, h^{\prime \prime}}=q\left(\gamma, w_{i} h^{\prime \prime}\right) a_{i, h^{\prime \prime}} \\
a_{i, h^{\prime \prime}} \neq 0 \Leftrightarrow Z_{\gamma}=q\left(\gamma,\left(w_{i} h^{\prime \prime}\right)^{-1}\right) \text { for all } \gamma \in \operatorname{ker} \sigma
\end{array}\right.
$$

Erom this 1° follows immediately; 2° also follows because

$$
H_{O}=\{h \in H ; \quad q(\gamma, h)=1 \text { for all } \gamma \in \operatorname{ker} \sigma\}
$$

is contained in H^{\prime}. So there is at most one $h^{\prime \prime}$ with $a_{i, h^{\prime \prime}} \neq 0$.
Furthor explication: since q is non-degenerate, the group H_{0} has

$$
\text { rank }=n-\operatorname{rank}(\operatorname{ker} \sigma)=\operatorname{rank} \sigma(\Gamma)
$$

Further since $q\left(\gamma, \sigma\left(\gamma^{\prime}\right)\right)$ is syrmetric one has $q(\operatorname{ker} \sigma, \sigma(\Gamma))=\mathbb{1}$ and $H_{\mathrm{H}} \supseteq \sigma(\Gamma)$. Hence $\mathrm{H}_{\mathrm{O}} \subset \mathrm{H}^{\prime}$.
3° and 4^{n} : We have to estimate the absolute values of the coefficients of $f \in L^{O}(Z)$.

$$
a_{i, v, h^{\prime \prime}} \mathcal{Z}_{\nu} w_{i} h^{\prime \prime}=a_{i, h^{\prime \prime}} q\left(\nu, w_{i} h^{\prime \prime}\right) c(\nu) p(\nu, v) \sigma(\nu) w_{i} h^{\prime \prime}
$$

Suppose $a_{i, h^{\prime \prime}} \neq 0$ and $\nu \neq 0$. Convergence of the subsequence

$$
\sum_{n \geqslant 1} a_{i, h^{\prime \prime}} q\left(n_{\nu}, w_{i} h^{\prime \prime}\right) c\left(n_{\nu}\right), p\left(n_{\nu}, n_{\nu}\right) \sigma\left(n_{\nu}\right) w_{i} h^{\prime \prime} \quad(o f f)
$$

on all of G implies clearly $|p(\nu, \nu)|<1$.
On the cther hand if $|p(\nu, \nu)|<1$ for all $\nu \in \Gamma^{\prime}, \nu \neq 0$, then

$$
\left\langle\nu, \nu^{\prime}\right\rangle=-\log \mid q\left(\nu, \sigma\left(\nu^{\prime}\right) \mid\right.
$$

is a positive definite symmetric bilinear from on $\Gamma \times \Gamma^{\prime}$. So $\left\langle\nu, \nu^{\prime}\right\rangle$ is an inner product on $\Gamma^{\prime} \otimes_{Z} \underset{\sim}{\sim}$ and

$$
\langle\nu, \nu\rangle \geqslant c \sum \nu_{i}^{2}\left(\nu=\left(v_{i}-v_{n}\right) \text { and } c>0\right)
$$

From this one easily sees that $f \in \mathbb{L}(\mathcal{Z})$.
(4.5) Algebraicity of G / Γ.

THEOREM. - The following conditions are equivalent
(1i) G / Γ is algebraic.
(2) G / Γ is projective algebraic,
(3) G / Γ is an abelian variety,
(4) There is a group homomorphism $\sigma: \Gamma \rightarrow H$ such that
(a) $q\left(\gamma, \sigma\left(\gamma^{\prime}\right)\right)=q\left(\gamma^{\prime}, \sigma(\gamma)\right)$ for all $\gamma, \gamma^{\prime} \in \Gamma$
(b) $\left\langle\gamma, \gamma^{\prime}\right\rangle=-\log \mid q\left(\gamma, \sigma\left(\gamma^{\prime}\right) \mid\right.$ is positive definite.

Proof. - (3) $\Rightarrow(2) \Rightarrow$ (1i) are obvious.
$(1.) \Longrightarrow$ (4) the transcendence degree of $\pi(G / \Gamma)$ over k is at least n. Take algebraic independent elts $f_{1}, \ldots, f_{n} \in \mathcal{H}(G / \Gamma)$ and write them as

$$
f_{1}=\frac{\theta_{1}}{\theta_{0}}, \ldots, f_{n}=\frac{\theta_{n}}{\theta_{0}} \text { with "g. c. d. }\left(\theta_{0}, \ldots, \theta_{n}\right)=1, ",
$$

$\theta_{Q}, \ldots, \theta_{n}$ holomorphic functions. Then $\theta_{0}, \ldots, \theta_{n}$ are theta functions with the same multiplicator Z.

The algebraic independence of f_{1}, \ldots, f_{n} implies that

$$
\left\{0_{0}^{r_{0}} 0_{1 i}^{r_{1}} \cdots 0_{n}^{r_{n}} ; \sum r_{i}=\ell\right\}
$$

are algebraically independent over k. Hence $\operatorname{dim} \mathbb{H}\left(Z^{\ell}\right) \geqslant\binom{\ell+n}{n}$. On the other hand,

$$
\operatorname{dim} L\left(\mathcal{Z}^{\ell}\right)=|H / \sigma(\Gamma)|_{\text {torsion }}^{\ell^{r}} \text { where } r=\operatorname{rank} \sigma(\Gamma) .
$$

Hence rank $\sigma(\Gamma)=n$, and we have proved (4).
(2) \Rightarrow (3). The multiplicator of $G / \Gamma \subseteq{\underset{\sim}{\mid}}^{\mathrm{P}}: G / \Gamma \times G / \Gamma \rightarrow G / \Gamma$ is an analytic map. By GAGA, it is also an algebraic map.

The hard part is to show (4) \Rightarrow (2):
(4.5.1) LENNA. - Let Z be a cocycle with a positive definite σ (as in (4)). Then
(1) For every $z \in G$, there exists a $\theta \in L\left(z^{3}\right)$ with $\theta(z) \neq 0$.
(2) Let $\theta_{0}, \ldots, \theta_{t}$ be a base of $L\left(Z^{3}\right)$. Suppose that $z_{1}, z_{2} \in G$ and $z_{11} \not \equiv z_{2} \bmod \Gamma$. Then the vectors $\left(\theta_{0}\left(z_{1}\right), \ldots, \theta_{L}\left(z_{1}\right)\right.$ and $\left(\theta_{0}\left(z_{2}\right), \ldots, \theta_{L}\left(z_{2}\right)\right)$ in $k^{t \neq 1}$ are linearly independent over k.

Proof.

(1.) For $\theta \in \mathbb{L}(Z)$ and $a, b \in G$ the functions

$$
\theta_{3}=\theta\left(z a^{-11}\right) \theta\left(z b^{-1}\right) \theta(z a b)
$$

belong to $L\left(\mathscr{Z}^{3}\right)$. Let $\theta \neq 0$, then the zero set X of 0 in G has codimension 1 . One can find a, b with $a^{-1}, b^{-1}, a b \notin z^{-1} X$. Hence $\theta_{3}(z) \neq 0$.
(2) Suppose that the vectors $\left(\theta_{0}\left(z_{1}\right), \ldots, \theta_{t}\left(z_{1}\right)\right)$ and $\left(\theta_{0}\left(z_{2}\right), \ldots, \theta_{t}\left(z_{2}\right)\right)$ are linearly dependent over k. For any $F \in L(\mathcal{Z})$ one has for any $z, b \in G$ and a fixed constant $c \in K^{*}$:

$$
F\left(z_{1} z^{-1}\right) F\left(z_{1} b^{-1}\right) F\left(z_{1} z b\right)=c F\left(z_{2} z^{-1}\right) F\left(z_{2} b^{-1}\right) F\left(z_{2} z b\right)
$$

Hence the meromorphic function (of z) $\left(F\left(z_{1} z z^{-1}\right)\right) /\left(F\left(z_{2} z z^{-1}\right)\right)$ has no zero's and no poles. So

$$
\frac{F\left(z_{1} z^{-1}\right)}{F\left(z_{2} z^{-1}\right)} \in A=\theta^{*}(G)
$$

That means $F\left(z_{\nu}\right)=a(z) F(z)$ with $\nu=z_{1} z_{2}^{-1}$ and $a \in A$. The explicit formula for the F^{\prime} s in $L(Z)$ given in (4.4.3) implies $v \in \Gamma$.
(4.5.2) LEMMA. - Let \mathcal{Z} be a positive definit 1 -cocycle and let $\theta_{0}, \ldots, \theta_{t}$ be a base of $L\left(Z^{3}\right)$. The holomorphic map $\varphi: G / \Gamma \rightarrow \underset{\sim}{\underset{\sim}{p}}(k)$ given by

$$
\varphi(z)=\left[\theta_{0}(z), \ldots, \theta_{t}(z)\right]
$$

has the properties

$$
1 i^{\circ} \quad X=i m(\varphi) \text { is an algebraic subspace of } \underset{\sim}{\underset{\sim}{P}}(k) \text { of dimension } n \text {. }
$$

$2^{\circ} \varphi: G / \Gamma \rightarrow X$ is an isomorphism of holomorphic spaces.

Proof.

$11^{0} \varphi: G / \Gamma \rightarrow \underset{\sim}{\underset{\sim}{P}}(\mathrm{k})$ is well defined and injective according to (4.5.1) part (11) and (2). Since G / Γ is "compact", the map φ is proper. By the proper mapping thevrem, $X=i m(\varphi)$ is a closed analytic subset of $\underset{\sim}{P}(k)$.

By GAGA, $X=\operatorname{im}(\varphi)$ is also an algebraically closed subset of $\underset{\sim}{\underset{\sim}{P}}(k)$. Since $\varphi: G / \Gamma \rightarrow X$ is bijective, we have

$$
\mathrm{n}=\operatorname{dim} \mathrm{G} / \Gamma=\operatorname{dim} X+\operatorname{dim}(f i b r e) \text { and } \operatorname{dim}(f i b r e)=0
$$

(2) A covering $Y_{i}(i=0, \ldots, t)$ by affine open pieces is given by $Y_{i}=\left\{\left[a_{0}, \cdots, a_{t}\right] \in \underset{\sim}{P}(k) ;\left|a_{j}\right| \leqslant\left|a_{i}\right|\right.$ for all $\left.j\right\} \simeq\left\{\left(\lambda_{1, p, \ldots, \lambda_{t}}\right) \in k^{t} ; a l 1\left|\lambda_{j}\right| \leqslant 1.\right\}$.

Put $X_{i}=Y_{i} \cap X ;$ then $\left(X_{i}\right) \in \operatorname{Cov}(X)$, and one can verify that

$$
\left(\varphi^{-1}\left(X_{i}\right)\right)_{i=0}^{t} \in \operatorname{Cov}(G / \Gamma)
$$

The $\operatorname{map} \varphi_{i}: \varphi^{-1}\left(X_{i}\right) \rightarrow X_{i} \quad$ is bijective, and after a calculation of derivatives and finds, for every $x \in X_{i}$,

$$
\hat{\theta}_{i, x} \rightarrow \hat{\theta}_{G(\Gamma, \varphi}{ }^{-1}(x)
$$

By methods of the type, explained in (2.10), it follows that $\varphi_{i}^{-1}: X_{i} \rightarrow \varphi^{-1}\left(X_{i}\right)$ is also holomorphic. Hence $\varphi: G / \Gamma \rightarrow X$ has an holomorphic inverse.
(4.6) Einal remarks.- Now every abelian variety over Q_{p} can be obtained as a holomorphic torus G / Γ. One can only parametrize those abelian varieties by a G / Γ, which degenerate over the residue field $\underset{\sim}{F} \underset{p}{ }$ of Q_{p}.

In particular, only those elliptic curves over k can be parametrized which split into projective lines over the residue field of k (Equivalently, the j invariant has absolute value >1, . (See [15]). In [12]. D. MUMFORD has shown that also degenerating curves of genus $g>1_{1}$, over a local field, have a nice non-archimedean representation.

REFERENCES

[1] BERGER (R*), KIEHL (R.), HUNZ (E*), NASTOID (H.-J.). - Differentialrechnung in der analytischen Geometrie. - Berlin, Sptinger-Verlag, 1967 (Lecture Notes in Mathematics, 38).
[2] GERRITZEN (L*). - Über Endomorphismen nichtarchimedischer holomorpher Tori, Invent. Mathe, t. 11, 1970, p. 27-36.
[3] GERRITZEN (L.). - On multiplication algebras of Riemann matrices, Math. Annalen, t. 194, 1971, p. 109-122.
[4] GERRITZEN (L.). - On non-archimedean representations of abelian varieties, Math. Annalen, t. 1196, 1971. p. 323-346.
[5] GERRITZEN (L.). - Periode und Index eines principal-homogenen Raumes üper gewissen Abelschen Varietäten, Manuscripta Math., t. 8, 1973, p. 131-142.
[6] GERRITZEN (L.) und GRAUERT (H.). - Die Azyklizität der affinoiden Oberdeckungen ; "Global analysis, Papers in honor of K. Kodaira", p. 159-184. - Princeton, University of Tokyo. Press and Princeton University, Press, 1.970 (Princeton mathematical Series, 29).
[7] GRAUERT (H.) und REMMERT (R.). - Nichtarchimedische Funktionentheorie, " "Festschr. Gedächtnisfeier K. Weierstrass", p. 393-476. - Köln, Westdentscher Verlag, $1,966$.
[8] GROSON (L.). - Fibrés vectoriels sur un polydisque ultramétrique, Annales scient. Ec. Norm. Sup., Série 2, t. 1., 1,968, p. 45-89.
[9] KIEHL (R.). - Der Endlichkeitssatz für eigentliche Abbildungen in der nichmohimedischen Funktionen theorie, Invent. Math., t. 2, 1967, P. 191-214.
[10] KIEHL (R.). - Theorem A und theorem B in der nichtarchimedischen Eunktionentheorie, Invent. Math., t. 2, 1967, p. 256-273.
[11] LUTKEEQHNERT (W.). - Steinsche Räume in der nichtarchimedischen Eunktionentheorie, Schriftenreihe Math. Inst. Univ. Münster, Série 2, Heft 6, 1i973, 54. p.
[12] MUMFORD (D.). - An analytic construction of degenerating curves over complete. local rings, Compositio Math., Groningen, t. 24, 1972, p. 129-174.
[13] RAYNAUD (Mc). - Géométrie analytique rigide, d'après Tate, Kiehl,, "Table ronde d^{\prime} analyse ultramétrique [1972].
[14] REMNERT (R.). - Algebraische Aspekte in der nichtarchimedischen Analysis, "Proceedings of the conference on local fields [1966. Driebergen]", p. 86-117. - Berlin, Springer-Verlag, 1,967.
[15] ROQUETTE (P.). - Analytic theory of elliptic functions over local fields. - Göttingen, Vandenhoeck and Ruprecht, 1970 (Hamburger mathematische Einzelschriften, 1).
[16] TAIE (J.). - Rigid analytic spaces, Invent. Math., t. 12, 1997, p. 257-289.
(Texte reçu le ler juillet 1976)
Marius VAN DER PUT
Ma thématiques
Université de Groningen:
GRONINGEN (Pays-Bas)

