
DIAGRAMMES

JOHN W. GRAY
Executable specifications for data-type constructors
Diagrammes, tome 24 (1990), p. 7-31
<http://www.numdam.org/item?id=DIA_1990__24__7_0>

© Université Paris 7, UER math., 1990, tous droits réservés.

L’accès aux archives de la revue « Diagrammes » implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=DIA_1990__24__7_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

VOLUnC 24

ACTI9 OCt JOUttNCCS CL.. I . T .

(UNtV. PAM1S 7. 27 JUXr*-2 JUILLET 1990)

Exécutable Spécifications for Data-Type
Constructors

by John W. Gray
University of Illinois at Urbana-Champaign

Abstract:
The theory of sketches is discussed briefly and the example of natural numbers is treated in détail
both in a simple and a more complicated version- Then the functor Setof(-) is constructed by
defining functions which return lists of rules depending on the parameter sketch that is substituted
in the slot position. The functor Setof(-) is applied to the sketch NAT, yielding a large sketch with
many properties. Finally, the functor Setof(-) is applied twice to NAT, resulting in a very large
sketch. Thèse constructions are implemented in the symbolic program Mathematica. Appendix A
shows a number of examples of the code and Appendix B is a complète listing of the program.

1. Introduction.

A sketch is a directed graph in which certain nodes (or objects) are declared to be formai
limits (e.g., products, equalizers, and pullbacks) of cxher objects, and certain diagrams made
up of edges (or arrows) of the graph are declared to be formally commutative. See [1], [2],
[5], [13], and [18] for detailed descriptions of the theory of sketches. Sketches are alterna
tives to algebraic spécifications as présentations of algebraic théories and data types. The
objects of the graph correspond to sorts and products of sorts in a spécification and the
arrows correspond to opérations and compositions of opérations. The formai commutative
diagrams correspond to équations. A model of a sketch is a function ("functor'*) M that
assigns a set to each object and a function to each arrow in such a way that formai limits
are taken to actual limits and formai commutative diagrams are taken to actual commutative
diagrams.

Sketches are much more tractable from a categorical point of view than spécifications.
In [13], I discussed a functorial construction Atof B where At is a sketch with additional
structure and B is an ordinary sketch. StacksOfChar and SetsOfBoole are examples. The
purpose of this paper is to show that this construction is computationally feasible. This
means first of ail that a direct description of a sketch can be given in Mathematica in such a
way that Mathematica will then carry out commutations in the initial algebra for the sketch;
i.e., it will reduce terms in the initial algebra to normal form. Furthermore, endofunctors on
sketches of the form Atof(-) can be constructed which accept Mathematica sketches as input
and produce Mathematica sketches as outpuL

r « 9 u \m 0 5 / 0 7 / 1

The construction AtofB is considerably more powerful that the parametric spécifications
found in [6] or [7] which are simple pushouts of pairs of sketches along common sub-
sketches. If one thinks of the two sketches in such a pushout as coordinate axes, then the
construction AtofB fills in a whole two dimensional rectangle. Every opération of one
sketch opérâtes on every sort of the other sketch. The effect is that very large, correct
sketches can be constructed from small inputs; i.e., large data types can be constructed from
small components.

i 2. Note about Mathematica.

This document was produced in Mathematica and is a printout of a Macintosh notebook
in that language. From our point of view, Mathematica is a rewrite-rule language and we
make extensive use of thèse facilities. Bold face Courier (fixed width) font is used for inputs
and the outputs from the program are in plain face Courier font Capitalized ternis in input
expressions are built-in functions. Ail other expressions are defined in this notebook. The
square boxes in the left margin indicate levels of outlining. Normally, the document is
closed up into the top level except for the cell being examined. Hère, of course, it is
entirely printed out

2.1. Three kinds of rewrite mies.

Rules of the form exprl s expr2 evaluate the right hand side immediately, and then are
automatically applied whenever possible to rewrite the left hand side as the right hand
side. Rules of the form exprl := expr2 evaluate the right hand side only when they are
applied. They are always used hère for "function'' définition, in the form f[x J := expr.
Hère x_ means a slot named x to be matched. Whatever matches x is then substituted for
ail occurrences of x in the right hand side. Rules of the form

exprl := expr2 /; expr3
are conditional rewrite rules which are only applied when expr3 évaluâtes to True. AU user
defined rules given by = rules or := rules are added to the global list of rewrite rules
maintained by Mathematica.

2.2 Pattern matching

The pattem matching in expressions like f[x J can be controlled by adding expressions
after the _. There are three forms for this. In an expression like

nat[n_Integer]:= True,
"Integer" is a built-in expression head. Any built-in or user-defined head can occur in this
position and then n_ will match only expressions with this head In an expression like

nat(s[nj?nat]]:= True,
nat is a user-defined predicate. Any predicate can occur in this position after N?N and then
n_ will match only those expressions for which the predicate évaluâtes to crue. Finally,
the two forms can be combined in the form f[x_head?predicate]. This form is not used
hère.

8

Rules of the form:
s e t i n s e r t r u l e s [o b j _] :» {

i n s e r t [o b j] [
r [n _ ? o b j , i n a e r t [o b j] [r[m_?obj , p _ ? (P [o b j])]]]

] :»
i n s e r t [o b j] [r [m , i n s e r t [o b j] [r [n , p]]]] / ;

!OrderedQ[{n,xn)] ,

i n s e r t [o b j] [
r [n _ ? o b j , i n s e r t [o b j] [r [n _ ? o b j , p _ ? (P [o b j])]]]

] :» i n s e r t [o b j] [r [n , p]]
)

play an important rôle in this program. When this expression is evaluated with some
argument for obj, then as a side effect, it adds the rules in the list (indicated by brackets {,
]) on the right hand side to the global list of rewrite rules. There are two rules in this list,
parameterized by obj, defining the function "insertfobj]"; Le., insert is a function whose
values are again functions. For example, when obj ranges over the objects of Setof(nat),
then the program produces a total of 32 rules for "insert".

• 2.3 Substitution

Substitution in an expression is indicated by "A" and ->. E. g.
% / . n [l] - > s [s [z e r o]]

means substitute s(s[zero]] for n[l] in %; Le., in the previous expression.

a 3. The Natural Numbers as a Sketch

• 3.1 The sketch for natural numbers

D 3.1.1 Dedekind-Lawvere natural numbers

Natural numbers are defined by a sketch. A very simple sketch for the
Dedekind-Lawvere natural numbers is illustrated as follows:

rtM zéro , s ,
one • nat » nat

In this graph, "one" means that the object one has been declared to be the empty formai
product; Le. the symbolic terminal objecL Thus "zéro" dénotes a constant and s dénotes
an endomorphism of nat. There are no other formai products and no formai commutative
diagrams.

A model of a sketch assigns a set to each node of the graph and a funcùon with the
indicated domain and codomain to each arrow. Formai limits in the graph are taken to
actual limits of sets and diagrams declared to be formally commutative are taken to
actual commutative diagrams of functions. The initial object in the category of ail
models of the sketch is realized by the term model whose value for each node consists of
ail closed terms with codomain that node. For the Dedekind-Lawvere natural numbers,
the terms with codomain nat are "zéro" and "s(s(... s(zero)...))" for any positive
number of occurrences of "s". Hence the initial model for this sketch is isomorphic to
the usual natural numbers.

In gênerai, the term model is constructed by a categorical completion process. (See
[1] or [16].) Starting from a directed graph, one constructs the free category on the
graph. Its objects are the objects of the graph and its arrows are paths of arrows in the
graph. Composition is just juxtaposition of paths. Now, if some object is supposed to
be a product of two others, then each pair of morphisms into the factors must détermine
a (unique) morphism into the producL Hence, more arrows hâve to be added to the free
category. But then there may be more composable paths which also hâve to be added, so
the process bas to be iterated, perhaps transfinitely often. If the original graph is finite,
with only finite formai limits, then there is a countable construction which is finite at
every stage for the free category with finite limits generated by a given graph with
formai limits. Finally, the formally commutative diagrams détermine a congruence
relation on the arrows in this free category with finite limits. The corresponding
quotient category is called the theory of the sketch, denoted by T(A). For any object a of
A, and hence of T(A), the set T(A)(one, a) of morphisms in T(A) from one to a, is the
set of closed terms of son ao

Hère is a cell which implements the Dedekind-Lawvere natural numbers. Everything
is preceded by a "dl" to distinguish it from the Peano natural numbers implemented
below. There isn't much that can be done with this cell, but it can be used in the later
parameterized sketches to test out how they work with very simple inpuL

o b j e c t s [d l n a t] = {dlone, d l n a t }
arrows [d lnat] - {d lzero , d i s)

domain [d l z e r o] = dlone
domain [d i s] - d lnat
c o d o m a i n [d l z e r o] = d l n a t
codomain [d i s] = d lnat

dlone [oo] - True
dlone [_] :=* False

d l n a t [z é r o] = True
d l n a t [s [n _ ? n a t]] := True
d lnat [_] := False

10

The first two lines describe the objects and arrows of the graph and the next four Unes
the beginning (domain) and end (codomain) of each arrow. The last five lines implement
the term model for this sketch. The first two of them say that the only élément of one
is "oo" and the last three say that the éléments of nat are are built up from zéro by
prepending "s" to already existing éléments. (See the next section for a more complète
description.)

a 3.1.2 Peano natural numbers

In this notebook we will implement a more elaborate sketch for the natural numbers,
which we will call the Peano natural numbers. It's sketch (in principle) looks as
follows:

minus

one • nat -•natî

true rut >

true
one I bool

false
Hère the node named "nat x nat" is (by virtue of its name) declared to be the formai
product of nat with itself and the node named "same" is declared to be the formai
equalizer of the two arrows "greq" and "true". The node "bool" will become the two
élément boolean algebra of truth values. The node "one" is repeated to make the sketch
easier to draw. The arrow "inc" is dashed because it is not implemented hère, except as a
subtype. The arrows "plus", "times", and "minus" will become the usual functions with
those names, except that minus(n, m) will not be reduced if m > n. The arrow "greq"
will become the predicate "greater than or equal to".

There are two practical considérations in implementing the term model for this
sketch. First of ail, the terms will in fact be Mathematica expressions, so we hâve to
pick out a subset of such expressions for each object in the graph. Therefore, our sets of
terms in the term model should be regarded as Von Neumann sets; Le., predicates on
the universe of ail Mathematica expressions. For instance, there will be a predicate "nat"
as in the previous section which takes the value True for the Mathematica expressions
"zéro" and "s[n]" providing nat(n] = True. This last condition is enforced by giving the
rule

nat[s[n_?nat]] = True.

11

We think of pattern matching expressions of the form "x_?pred" as having the same
force as type assertions "x : type" in other languages. We sometimes even use this
terminology when it seems appropriate.

The second, even more significant considération is that there is no way to implement
the équations implied by asserting that certain diagrams commute. For instance, one
équation that has to be implemented says that the diagram

plus
nat x nat > nat

idxs l |s

nat x nat > nat
plus

commutes; Le., that the équation plus[n,s[m]] = s[plus[n, m]] holds for ail n and m.
(Note that not ail of the arrows for this diagram hâve been indicated in the sketch. The
actual sketch for the Peano natural numbers is much larger than the part that is drawn
hère.) We dont know how to impose this équation, since imposing it would amount to
forming équivalence classes for the congruence relation it générâtes on terms. Instead,
we implement it also as a rewrite rule in the form:

plus[nj?nat,s[mj?nat]] := s[plus[n, m]]
This has the effect of choosing canonical members of congruence classes. Such a rewrite
rule can be represented in the sketch by decorating the diagram with a 2-cell indicating
the direction in which this rewrite rule is to be applied.

plus
nat x nat > nat

idx s I y<> I s

nat x nat > nat
plus

The actual sketch for the Peano natural numbers contains 14 such 2-cells. Thèse 2-cells
are ail accounted for in the implementation. The interprétation of the term model is now
also somewhat différent What one actually has in the implementation is a "signature",
or a "free sketch", by which we mean a directed graph with symbolic limits, but no
équations. Instead, it has 2-cells in certain diagrams. Such a structure is called an
order-enriched sketch. The rewrite rules described by such 2-cells détermine rewrite rules
for the terms of this signature. The sets of normal forms with respect to thèse rewrite
rules then constitute the initial algebra for our original sketch.

12

• 3.2 Description of the implementation of the natural numbers.

See the section entided "The natural numbers" in Appendix B.

a 3.2.1 The polymorphic identity and the polymorphic product
structure.

A polymorphic identity opération is defined by the requirements that for any
argument type, the expression "id[x_?arg]" has the same type as x and equals x; Le.,

arg[id[xj?arg] := True
id[x_?arg] :== x

To use this for nat, for instance, it is necessary to evaluate the command "setupid[nat]".
However, no type arguments are necessary to use "id" once it has been set up.

Similarly, there is a polymorphic product construction that constructs a product
arg 1 x arg 2 for any pair of types argl and arg2. Its éléments are records of the form
rfXy] where x has type argl and y has type arg2; Le., pairs are represented by the
notation r[a,b]. "r" is either the last letter of "pair" or the first letter of "record". First
and second projection functions, pi and p2 are defined and retum x and y respectively. In
conformance with the philosophy of sketches rather than catégories, ail possible
products are not constructed Only those particular products that are actually used are
constructed. Hère, the only such product is "nat x nat". The product constructor is a
function X[argl, arg2] which is frequendy written with infix notation (argl-X-arg2).
(The parenthèses are necessary.) One way to automatically construct the products of ail
the basic (Le., non-product) objects would be to use the command

Do[Thread[setupprod, objectlist{[i]], objecdist], (i, 1, Length[objectlist]}]
Finally, the corresponding construction for products of arrows is implemented, aithough
it is not used in this sketch.

O 3.2.2 The underlying graph.

We first construct the underlying directed graph of the sketch for the Peano natural
numbers by implementing the following définitions.

objectsfNAT] = (one, nat, nat-X-nat, bool, same)
arrows[NAT] = (oo, True, False, zéro, s, plus, times, greq, minus)

domainfoo] = one codomainfoo] = one
domain [True] = one codomain[True] = bool
domain[False] = one codomain[False] = bool
domain[zero] = one codomain[zero] = nat
domain[s] = nat codomain[s] = nat
domain[plus] = nat~X~nat codomain[plus] = nat
domain[times] = nat~X~nat codomain[times] = nat
domain[greq] = nat-X-nat codomainfgreq] = bool
domain[minus] = same codomain[minus] = nat

13

a 3.2.3 Implementation of the objects.

The name of the set of terms of a given type is the same as the name of the type.
The set denoted by one is the singleton set with one élément, the élément "oo"; Le., oo
is the only arrow from one to one - the only closed term of type one. The set denoted by
nat is defined recursively to contain zéro and the successor of any élément; Le., there are
rules:

nat[zero] = True
nat[s[n_?nat]] := True.

Zéro, s[zero], s[s[zero]]v etc. are ail (composed) arrows from one to nat so they are ail
closed terms of type nat "Nat" serves both as the name for the domain and codomain of
"s", and also as the predicate determining membership in the set of terms of type nat.
The set denoted by nat~X~nat is constructed as the product of nat with itself. "Same" is
implemented as a subtype of nat~X~naL

• 3.2.4 Implementation of the arrows.

The arrows with domains other than one are implemented by restricting their
arguments to be of the proper type and asserting that their values satisfy the predicate for
the corresponding codomain. Thus, for instance, we require that

nat[plus[r[n_?nat, m_?nat]]] = True,
except that this is written in the préférable form:

nat[pIus[t_?(nat~X~nat)]] = True.
There are similar équations for times and greq. However, minusfn, m] has type nat; Le.,
satisfies the predicate "nat", only if n > m. For anything else, it is unreduced.

Another view of the matler is that the expression
nat[plus[t_?(nat~X~nat)]] = True

say s that "plus[t_?(nat~X~nat)]" is a term of type nat and hence it is of exactly the same
character as the statements about nat in the preceding section. In other words, ail the
statements about nat are just characterizing the terms of type nat.

In the first view, plus, times and minus are functions whose values are specified by
the usual recursion formulas. Thus, for instance, we hâve the two rules:

plus(r[nj?nat, zéro]] := n
plus[r[n_?nat, s[mj?nat]]] := s[plus[r[n, m]]].

There are similar rules for times, greq, and minus, except that the recursive rule for
minus in only applied if n > m; that is, if r[n,m] belongs to "same".

minus[r[s[n_?nat],s[mj?nat]]]:= minus[r[n,m]] /; same[r[njn]].

The corresponding other view of thèse expressions is that plus, times and minus are
term constructors (Le., combinators) of appropriate types and the recursion formulas are
the rewrite rules that détermine the normal forms for the terms of various types. Much
of the power of Mathematica as a language for programming abstract mathematics
dérives from this dual view of ":= rules" as on the one hand specifying function values
and on the other as giving rewrite rules for expressions.

14

a 3.2.5 Integer arithmetic.

For convenience in examples and for use in later parameterized sketches, there is an extra
cell in Appendix B embedding ordinary arithmetic of integers into the Peano natural
numbers.

Q 3.2.6 Variables.

It is possible to hâve non-closed terms involving variables. The corresponding cell in
Appendix B constructs an infinité number of variables, called ni, which hâve type nat
and so can be used in natural number expressions. They behave correcdy with respect to
substitution since évaluation in Mathematica is given by substitution.

• 3 J Syntax of nat.

A sketch, or an algebraic spécification, can be viewed as a description of a small typed
functional programming language in which the sorts and products of sorts are the types
and the opérations are the terms. Such a language can be described by a formai syntax as
usual. The formai syntax of nat is quite simple. There are objects (or types) given by the
gramman

B :: one ! nat I bool I same
T : : B I T x T I T - » T

There are arrows (or terms) given by type assignments as in [22]. A type assertion is a
statement of the form x : type. In our formulation, this is équivalent to either of the
statements: x e type, or typefx] = True. A type assignaient T is a finite set of type
assertions x : t , where x is a variable and t is a type, such that no variable appears twice.
Write T, x : t for the type assignment with x : t added to T, where it is assumed that x
does not appear in T. Terms are introduced by formulas T > m : t, which can be read as
"m has type t relative to T."

The well-typed terms are generated freely by the following basic axioms and œdom
schemes which are part of the axioms for the grammar of any sketch.

0 > c : t where c is a constant of type t.
T, x : t > x : t
r > n : t -» t'. f > f : ï -» f

r > fin] : t -> t"
r > m : t -» t* . f > n : t -» t"

T > r[m, n] : t -> t*x f
f > p : t -» t'x t" f > p : t -> t * t"
r > pi[p] : t - * r r > p2[p] : t -> t"

15

There are 9 constants in the grammar of the sketch for nat:
oo : one -» one, zéro : one -> nat, True : one -» bool, False : one -» bool,
s : nat -» nat, plus : nat x nat -> nat, times : nat x nat -> nat,
minus : same -> nat, greq : nat x nat -> bool.

Nat does not hâve any additional axioms. Note that functional types are implemented hère
in the form: p : t —> t'if and only if domain [p] = t and codomain[p] = t'.

Equations are written in the form T > a = b : t
f > D : one -» nat x naL f > greofprl fol, pr^MI = True : one -» hool

T > p : one -> same
r > m ; one -> nau r > n ; one -» nat

r > plusfm, s[n]] = s[plus[m, n]] : one -» nat
etc.

a 4. SetOf(-) as a Constructor on Sketches

• 4.1 A non-parametric sketch for sets of data

Setofdata is a sketch whose underlying graph in a first approximation looks like:

empty m insert
1 • s j : d x s • d

pr2 pr,

See [13] for a description of the complète sketch. In what follows, "d" will be treated as a
variable slot to be filled by other sketches. For the moment, consider a model M of this
sketch with M[d] = D, where D is some unspecified set of data. Then M(s] - S is sup-
posed to consist of finite subsets of D; Le., éléments of S are finite subsets of D. Empty
is a constant of sort S and represents the empty set of data. Insert is a function from pairs
consisting of an élément d of S and a subset D'of D. Insert(d, D1) then dénotes the new
subset of D in which d has been added to D\ Two équations should be satisfied by inserr

insert(d, insert(d, DO) = insert(d, Xf)
insert(d, insert(d\ DO) = inser^d, insert(d, D1)).

Thus, insertîng an élément twice is the same as doing it once, and the order in which
éléments are inserted doesn't matter. Thus, inseit is an opération of D on the set S of
subsets of D which is idempotent and commutative.

Hère is a simple non-parametric version of sets of data in which any kind of data is
allowed.

objec t s [se to fdata] = {one, s e t , data}
arrows (setofdata] = (empty, i n s e r t }
domain [empty] = one; codomain [empty] » s e t
domain [inser t] = data~X~set; codomain [insert] = se t

16

one[oo] = True; one[_] :=» Taise
data[_] := True
s e t [empty] =» True
s e t [insert [r£n_?data, p j ? s e t]]] :» True

i n s e r t [r [n_?data, i n s e r t [
r[m_?data, p _ ? s e t]]]] : =

i n s e r t [r [m, i n s e r t [r [n, p]]]] / ;
!OrderedQ[(n,m}] ,

i n s e r t [r [n_?data, i n s e r t [
r[n_?data, p _ ? s e t]] l] : = i n s e r t [n,p]

Note that the first rule for insert only works because there is a global total order for ail
Mathematica terms. Otherwisc, this rule would just cycle infinitely often. The symbol !
is négation. This is required because OrderedQ[n, n] = True, which would prevent the
second rule from ever being used

4.2 Description of the data-type constructor Setof(-)

Setof(-) is a functor from the category of order-enriched sketches to itself. See [13].
Given an ordered-enriched sketch A as input, it produces an order-enriched sketch
SETOF(A) as outpuL Thus we hâve to define functions such that given A, they first
produce the underlying graph of SETOF(A), and then produce the collection of needed
rewrite rules for SETOF(A) from the rewrite rules of A.

We first construct the underlying directed graph function of setof(-) by implementing
the following définitions. Hère "ar&_" represents any sketch and SETOFfargJ represents
the sketch to be constructed. Upper case "U" hère means "union". From now on "P" is to
be thought of as the covariant "finite powerset" functor. Its value on arrows is denoted by
"Pm" (m for "morphism"). Le., in the context of set theory, for any set Z, P(Z) is the set
of finite subsets of Z, and for any function f, Pm(f) is the induced function (morphism) on
subsets taking a subset D'to the set

Pm(0(DO = (f(d) I d 6 D'}.
See, for instance, the example under the SetofINAT] heading in Appendix A.

objects[SETOF[argJ] = objectsfarg] u P[objects[arg]] u (arg x P[arg]}
arrows[SETOF[argJ] = arrowsfarg] u P[arrows[arg]] u (arrow x P[arrow]}

u empty[objects[arg]] u insert(objects[arg]]

domain[empty[objJ] = one
domain[insert{objJ] = obj x P[obj]
domain[Pm[arr J] = Pm[domain[arr]]
codomain[empty[objj] =P[obj]
codomain [insert[objJ] = P[obj]
codomain[Pm[arrJ] = Pm[codomain[arr]]

17

We need predicates for each object of the argument saying that empty[obj] and
insert[obj] hâve that type. In the alternative view, emptyfobj] and insertfobj] are terms of
type "P[obj]". Note that the only way to get an élément of P[obj] is to take either
emptyfobj] or insert an élément of the given type into a set of the given type.
Empty [obj] is the only basic élément. We define a function of one parameter whose value
for each object is the list of thèse two rules.

predsetof[objJ = {P[obj][empty(obj]] = True,
P[obj][insert[obj][nJ?obj, p_?(P[obj])]] = True)

In the implementation in Appendix B, "predsetof is given the attribute "Listable" so we
can apply it to the list of objects of the argument sketch.

Next, the équations for insert hâve to be implemented as rewrite rules. Again this is
done by a "Listable" function of one parameter whose value for each object is the list of
the two rules for insert.

setinsertrulesfobjj :=
{insert[obj][nJ?obj, insertfobj][m_?obj 4>J?(P[obj])]] :=

insertfobj][m^nsertfobj][n, p]] "provided" !OrderedQ[{n,m}],
insertfobj][n_?obj, insertfobj] [n_?obj,pJ?(Pfobj])]] := insertfobj] [n,p])

As ajjew ingrédient, we need the naturality rules that say empty and insert commute
with the induced set opérations in the argument type. Thèse induced opérations are denoted
by Pmfarr], where "arr" is any arrow in the argument sketch. Such an opération following
empty or insert is always rewritten in the opposite order. This is done by a "Listable"
function of one parameter which is applied to the arrows of the argument sketch.

setoprulesfarrj = {Pm(arr][empty[domain[arr]]] = empty[codomain[arr]],
Pm[aiT][insert[domain[arT]][n_? (domain [an]),

p_?(domain[Pm[arr]])]J
= inserttcodomaintarrJJfarrtnlJhiitarrJfp]]]

Thèse predicates and operator rules are given in functional form, so they need not be
mentioned when they are used. The function setofl-] is then defined which applies thèse
functions to an arbitrary sketch A. One can show that if the rewrite rules for A are
Church-Rosser, then so are the rewrite rules for setoffA].

Last of ail, there is included a formatting function which formats the output of ail of
the opérations as ordered lists without répétition. Notice that Format is given in terms of
a recursively defined function "format". Format itself cannot be specified recursively.

18

4.3 Syntax of Setof(-)

Setoft-] is given by a parameterized grammar. The types are given by:
T :: T[arg] I P[T[arg]] I T[arg] x P[T[arg]].

Hère "arg" stands for any sketch, T[arg] means the set of types of arg, and P[T[arg]] means
P applied to every type of arg. The terms are introduced by type assignments as before.
The constants for Setof[arg] consist of the following families.

i) Ail constants of arg are constants of Setoffarg].
ii) If t is a type of arg, then

emptyft] : one -* P[t]
insertft] : t x P[t] -» P[t]

are constants of Setof[arg].
In addition to the basic type assignment axioms, there are the following axiom schemes.

r > p : t -» f
T > Pm[p] : P[t] -> P[il

f > P ; t - M '
f > p x Pm[p] : t x P[t] -> t'x P[t']

The équations of Setoflarg] consist of ail équations of arg together with the following
équation schemes.

r > p = p' : t
T > Pm[p] = Pm[p'] : P[t]

r > n : t -» t'. f > f : t' -> t"
T > Pfffn]] == P[f][P[n]] : P[t] -> P[t"]

r > p ; t -> f
r > Pm[p][empty[t]] = emptyM : one -» P[t]

f > p ; t -r \'
r > Pm[p][insert[t] = insert[f][p x Pm[p]] : P[t x P[t]] -> Pft]

5. SetOf[NAT]

5.1 The sketch for SETOF(NAT)

The construction setof(-) is a functor from the category of sketches to itself. When it
is applied to a sketch A, it produces a new sketch SETOF(A). Each object of A is replaced
by a copy of setof data with the object in the place of "data". Each arrow of A détermines
new arrows between corresponding objects, as illustrated in the sketch SETOF(NAT)

19

insert[one]
P(one) \ onexp(one). -» or

empty[one]

P(nat) :

y[nat] |Pm[sl

Pmlzero]

insert[nat]

iraert(nat]

I zéro x
Pmlzero]

natxp(nat) -

Is xPm[s]

-> ne

one, e m p t y (n a i] P(nat) * = = ± n a t * P (n a t) •* m

*Tn«*i

same x
P(*ame) êmptyiftet̂ na'

ïfnserttnatxnat] nat x nat x
emptylbool] P (n a U n a t) t = = p(natxnat) > nat>

Pm[true] mlgreql true greq

insert [bool]
P(bool)J boolxP(bool) • bool

In this drawing, the unlabeled arrows are either projections from products onto factors
or inclusions of subobjects or arrows of the form arr x Pm[arr] which didn't fit in the
picture. Thèse latter arrows hâve not been implemented but the polymorphic code to do so
is part of this Notebook. Also, the arrows "true" and "false" from one to bool, together
with their associated arrows, are omitted for legibility. "Op" stands for "plus", "times",
and any other binary opération that may hâve been implemented in NAT.

6. Setof[setof[NAT]]

6.1 The sketch for setof(setof(nat))

A drawing of the sketch for setof(setof(nat)), where nat is just the Dedekind- Lawvere
can be found in [13]. A similar picture for the Peano natural numbers would be
impossible to draw. However, its objects and arrows are calculated in the setof(setof(nat))
examples section in Appendix A. Note that the arrows of setof(setof(nat)) are the basic
opérations in this data type. This very large data type has been constructed by the
program, not by us, from small components that are visibly correct by a method that is
visibly correct. Hence, it is also correct

20

• 7. Appendix A: Examples

A data type presented by a sketch is a small functional programming language. Thèse
examples can be viewed either as illustrating some of the basic functions in thèse languages
or as illustrating how the program reduces terms to normal form.

• 7.1 Setof(NAT) Examples

Q 7.1.1 Objects and arrows for SETOF(NAT).

Objects [SETOF[NAT]]

{ one, nat, X[nat, nat], bool, same, P[one], P[nat],
P[X[nat, nat]], P[bool], P[same], X[one, P[one]],
X[nat, P[nat]], X[X[nat, nat], P[X[nat, nat]]],
X[bool, P[bool]], X[same, P[same]])

arrows[SETOF[NAT]]

{ oo, zéro, s, plus, times, greq, minus, True, False,
Pm[oo], Pm[zero], Pm[s], Pm[plus], Pm[times],
Pm[greq], Pm[minus], Pm[True], PmfFalse],
Xm[oo, Pm[oo]], Xm[zero, Pm[zero]], Xm[s, Pm[s]],
Xm[plus, Pm[plus]], Xmftimes, Pm[times]],
Xm[greq, Pm[greq]], Xm[minus, Pmfminus]],
Xm[True, Pm[True]], Xm[False, Pm(False]], empty[one],
empty[nat], empty[X[nat, nat]], empty[bool],
empty[same], insert[one], insert[nat],
insert[X[nat, nat]], insert[bool], insert[same]}

a 7.1.2 Try out Pm(s) and Pm(plus) for SETOF(NAT).

Hère we check that Pm[operation] works correctly.

p a i r s e t = empty [nat-X-nat] ;
Do [p a i r s e t = insert [nat -X-nat] [r [r [i , s [i]] r

pairset]] ,
{ i , 8 , 0 , - 1 }] ;

p a i r s e t

{ r [0 , 1] , r [l , 2] , r [2 , 3] , r [3 , 4] , r [4 , 5] , r [5 , 6] ,

r [6 , 7] , r [7 , 8] , r [8 , 9]}

This output is a formatted set of pairs of natural numbers. Note that the inputs were
given in reverse order, but the rules hâve put them in canonical order.

Pm[plus] [p a i r s e t]

21

Il, 3, 5, 7, 9, U , 13, 15, 17}

Pm [times][pairset]

{0, 2, 6, 12, 20, 30, 42, 56, 72}

Pm[s] [Pxu[plus] [p a i r s e t]]

{ 2 , 4 , 6, 8, 10 , 12 , 14, 16, 18}

Thus, Pm[plus] applied to a set of pairs returns the set consisting of the sum of each
pair. Next, we check how pairs are ordered and that Pm[greq] works correctly.

n e w p a i r s e t * i n s e r t [n m t - X - n a t] [r [r [6 , 5] , p a i r s e t]]

{ r [0 , 1] , r [l , 2] , r [2 , 3] , r [3 , 4] , r [4 , 5] , r [5 , 6] ,

r [6 , 5] , r [6 , 7] , r [7 , 8] , r [8 , 9] }

Again, the canonical ordehng has put r[6,5] in the correct place.

P m [g r e q] [n e w p a i r s e t]

{ F a l s e , True}

The output is the set of two truth values, not a list of 10 such values.

• 7.2 Setof(setof(NAT)) Examples

D 7.2.1 Objects and arrows of SETOF[SETOF[NATJ].

The output of the next two cells has been edited to save space and improve legibility.

O b j e c t s [S E T O F [SETOF[NAT]]]

{ o n e , nat , X[nat , n a t] , boo l , same,

P [o n e] , P [n a t] , P[X[nat , n a t]] , P [b o o l] , P[same] ,
X[one , P [o n e]] , X[nat , P [n a t]] , X[X[nat , n a t] , P[X[nat , na
X [b o o l , P [b o o l]] , X[same, P [s a m e]] ,
P [P [o n e]] , P [P [n a t]] , P[P[X[nat, n a t]]] , P [P [b o o l]] , P [P [s
P [X[one , P [o n e]]] , P[X[nat , P [n a t]]] , P[X[X[nat , n a t] ,
P [X [n a t , n a t]]]] , P[X[bool , P [b o o l]]] , P[X[same, P [same]]]
X [P [o n e] , P [P [o n e]]] , X [P [n a t] , P [P [n a t]]] ,
X [P [X [n a t , n a t]] , P[P[X[nat , n a t]]]] , X [P [b o o l] , P [P [b o o l]
X [P [s a m e] , P [P [s a m e]]] , X[X[one, P [o n e]] , P[X[one, P [o n e]]
X[X[nat , P [n a t]] , P[X[nat , P [n a t]]]] ,
X[X[X[nat , n a t] , P [X[nat ,nat]]] , P [X [X [n a t , n a t] , P[X[nat ,
X [X [b o o l , P [b o o l]] , P[X[bool , P [b o o l]]]] ,
X[X[same, P [s a m e]] , P[X[same, P [s a m e]]]] }

22

a r r o w s [S E T O F [SETOF[NAT]]]

(o o , z é r o , s , p l u s , t i m e s , g r e q , m i n u s , T r u e , F a l s e ,
P m [o o] , P m [z e r o] , Pm[s] , P m [p l u s] , P m [t i m e s] , P m [g r e q] ,
P m [m i n u s] , P m [T r u e] , P m [F a l s e] ,
Xm[oo, P m [o o]] , Xmfzero, P m f z e r o]] , Xm[s, P m [s]] , Xm[plus ,
Xm[t imes , P m [t i m e s]] , Xm[greq, P m [g r e q]] , Xm[minus, Pm[min
Xm[True, P m f T r u e]] , Xm[False , P m [F a l s e]] ,
e m p t y [o n e] , e m p t y [n a t] , e m p t y [X [n a t , n a t]] , e m p t y [b o o l] , e
i n s e r t [o n e] , i n s e r t [n a t] , i n s e r t [X [n a t , n a t]] ,
i n s e r t [b o o l] , i n s e r t [s a m e] ,
Pm[Pm[oo]] , Pm[Pm[zero]] , P m [P m [s]] , Pm[Pm[plus]] , Pm[Pm[t
Pm[Pm[greq]] , Pm[Pm[minus]] , Pm[Pm[True]] , Pm[Pm[False]] ,
Pm(Xm[oo, P m [o o]]] , Pm[Xm[zero, P m f z e r o]]] , Pm[Xm[s, Pm[s]
Pm[Xm[plus , P m [p l u s]]] , Pm[Xm[t imes, P m [t i m e s]]] ,
Pm[Xm[greq, P m [g r e q]]] , Pm[Xm[minus, P m [m i n u s]]] ,
Pm[Xm[True, P m [T r u e]]] , Pm[Xm[False , P m [F a l s e]]] ,
Pm[empty [one]] , Pm[empty [n a t]] , Pm[empty [X [n a t , n a t]]] ,
P m [e m p t y [b o o l]] , Pm[empty [same]] ,
P m [i n s e r t [o n e]] , P m f i n s e r t [n a t]] , P m [i n s e r t [X [n a t , n a t]]] ,
P m [i n s e r t [b o o l]] , P m [i n s e r t [s a m e]] ,
Xm[Pm[oo], Pm[Pm[oo]]] , Xm[Pm[zero] , Pm[Pm[zero]]] ,
Xm[Pm[s] , P m [P m [s]]] , Xm[Pm[plus] , Pm[Pm[plus]]] ,
Xm[Pm[t imes] , Pm[Pm[times]]] , Xm[Pm[greq] , Pm[Pm[greq]]] ,
Xm[Pm[minus] , Pm[Pm(minus]]] , Xm[Pm[True] , Pm[Pm[True]]] ,
Xm[Pm[False] , Pm[Pm[False]]] , Xm[Xm[oo, P m [o o]] , Pm[Xm[oo,
Xm[Xm[zero, P m [z e r o]] , Pm[Xm[zero, P m [z e r o]]]] ,
Xm[Xm[s, P m [s]] , Pm[Xm[s, P m [s]]]] ,

Xm[Xm[plus, P m [p l u s]] , Pm[Xm[plus, P m [p l u s]]]] ,
Xm[Xm[times, P m [t i m e s]] , Pm[Xm[t imes, P m [t i m e s]]]] ,
Xm[Xm[greq, P m f g r e q]] , Pm[Xra[greq, P m [g r e q]]]] ,
Xm[Xm[minus, Pm[minus]] , Pm[Xm[minus, Pm[minus]]]] ,
Xm[Xm[True, P m [T r u e]] , Pm[Xm[True, P m [T r u e]]]] ,
Xm[Xm[False, P m [F a l s e]] , Pm[Xm[False , Pm[Fa l se]]]] ,
Xm[empty [o n e] , Pm[empty [one]]] ,
X m [e m p t y [n a t] , P m [e m p t y [n a t]]] ,
Xm[empty [X[na t , n a t]] , P m [e m p t y [X [n a t , n a t]]]] ,
Xm [empty [b o o l] , Pm [empty [b o o l]]] , Xm [empty [same] , Pm [empty
X m [i n s e r t [o n e] , P m [i n s e r t [o n e]]] , X m [i n s e r t [n a t] , P m [i n s e r
X m [i n s e r t [X [n a t , n a t]] , P m [i n s e r t [X [n a t , n a t]]]] ,
X m [i n s e r t [b o o l] , P m f i n s e r t [b o o l]]] ,
X m f i n s e r t [s a m e] , P m f i n s e r t [s a m e]]] ,

23

e m p t y [P [o n e]] , e m p t y [P [n a t]] , e m p t y [P [X [n a t , n a t]]] , empty
e m p t y [P [s a m e]] , empty [X[one , P [o n e]]] , e m p t y [X [n a t , P (n a t]
e m p t y [X [X [n a t , n a t] , P [X [n a t , n a t]]]] , empty [X [b o o l , P [boo
e m p t y [X [same, P [same]]] ,

i n s e r t (P [o n e]] , i n s e r t [P [n a t]] , i n s e r t [P [X [n a t , n a t]]] ,
i n s e r t [P [b o o l]] , i n s e r t [P [s a m e]] , i n s e r t [X [o n e , P [o n e]]] ,
i n s e r t [X [n a t , P [n a t]]] , i n s e r t [X [X [n a t , n a t] , P [X [n a t , n a t
i n s e r t [X [b o o l , P [b o o l]]] , i n s e r t [X [s a m e , P [s a m e]]] }

Q 7.2.2 Pm[Pm[operator]]

We construct a set of sets of pairs of natural numbers.

s e t s o f p a i r s » empty [P [n a t - X - n a t]] ;
Do [s e t s o f p a i r s = i n s e r t [P[nat-X~nat]] [

r [i n s e r t [n a t - X - n a t] [
r [r [4 i + 3 , 4 i + 4] ,
i n s e r t [n a t - X - n a t] [r [r [4 i + l , 4 i + 2] ,

e m p t y [n a t - X - n a t]]]]] ,
s e t s o f p a i r s]] ,

U , 0, 3)] ;
s e t s o f p a i r s

{ { r [l , 2] , r [3 , 4] } , { r [5 , 6] , r [7 , 8] } ,

{ r [9 , 1 0] , r [l l , 1 2] } , { r [1 3 , 1 4] , r [1 5 , 16] }}

Pm[Pm[plus]] [s e t s o f p a i r s]

{ { 3 , 7 } , { 1 1 , 1 5 } , 119, 2 3 } , {27, 31}}

Pm [Pm[t imes]] [s e t s o f p a i r s]

{ { 2 , 1 2) , {30, 5 6) , {90, 1 3 2) , {182, 240}}

D 7.2.3 Pm[insert[nat]]

We construct a set of pairs, each pair consisting of a natural number and a set of natural
numbers. Then for each entry in the set, Pm [insert[nat]] will insert the natural number
into the set of natural numbers.

amaz ing = empty [nat ~X~P [nat]] ;
Do[amaz ing »

i n s e r t [nat-X-P [n a t]] [r [r [3 i + 3 ,
i n s e r t [n a t] [r [3 i + 2 ,

i n s e r t [nat] [r [3 i + l , empty [n a t]]]]]] ,
amazing]] , { i , 0, 3 }] ;

amaz ing

24

{r[3, {1, 2}], r[6, {4, 5}], r[9, {7, 8}],

r[12, {10, 11}]}

Pm[insert [nat]] [amazing]

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}

D 7.2.4 Programming example

We show how to use the language for SetOf[SetOfI-]] to write a simple program by
constructing a function union[obj] that takes expressions of type P[P[obj]] to P[obj].
Eléments of P[P[obj]] are families of sets of éléments of obj. Union is to hâve its usual
meaning for such a family of sets. Note that it is only necessary to give rules for union
where the argument has the form empty[P[obj]] or the form insert(P[obj]][- - -] since
the rewrite rules guarantee that every term of type P[P[obj]] has a normal form of one of
thèse kinds. The opération of union does not exist at any lower level in the hierarchy of
types. As a concept, it does not occur for obj or for SetOflobj],

u n i o n [o b j _] [empty [P [o b j _]]] » empty [o b j]

u n i o n [o b j _] [i n s e r t [P [obj_]] [r [empty [ob j_] ,Q_]]] : =
u n i o n [o b j] [Q]

u n i o n [ob j _] [i n s e r t [P [ob j _]] [
r [p _ , empty [P [o b j _]]]]] := p

u n i o n [ob j _] [i n s e r t [P [ob j _]] [
r [i n s e r t [o b j _] [r [n _ , p _]] , Q _]]] : =

i n s e r t [o b j] [r [n ,
u n i o n [o b j] [i n s e r t [P [o b j]] [r [p , Q]]]]]

To test this, consider an expression, threes, of type P[P[nat]].

t r i p l e s = empty [nat -X-P [n a t]] ;
D o [t r i p l e s = i n s e r t [n a t ~ X ~ P [n a t]] [r [r [3 i + 7 ,

i n s e r t [n a t] [r [3 i + 4 ,
i n s e r t [n a t] [r [3 i + l , e m p t y [n a t]]]]]] ,

t r i p l e s]] , { i , 1 , 6 }] ;
t h r e e s = Pm [i n s e r t [na t]] [t r i p l e s]

{ { 4 , 7, 1 0 } , {7 , 10 , 1 3 } , {10, 13, 1 6 } , {13 , 16, 191,

{16 , 19 , 2 2 | , {19 , 22, 25}}

u n i o n [n a t] [t h r e e s]

{ 4 , 7, 10 , 1 3 , 16, 19, 22 , 25)

25

• 8. Appendix B: Implementation

• 8.1 The natural numbers

D 8.1.1 The polymorphic product structure

This constructs the polymorphic identity function

setupid[arg_] :«
{ a r g [i d [x _ ? a r g]] :* True, id[x_?arg] := x}

This constructs the product object argl x arg2 whose éléments are records r[x,y] where x
is of type argl and y is of type arg2.

setupprod [argl_, arg2_] : *
{X[argl,arg2] [r[x_?argl,y_?arg2]] :=» True,
pl[r[x_?argl,y_?arg2]] := x,
p2[r[x_?argl,yj?arg2]] :» y)

This constructs a function f x g from argl x arg3 to arg2 x arg 4.

s e t u p p r o d m a p [a r g l _ , f_, a r g 2 _ , a r g 3 _ , g_, a r g 4 _] : =
{ X [a r g 2 , a r g 4] [Xm[f,g] [t_? (X [a r g l , a r g 3])]] :=True

/ ; (arg2[f [x_?arg l]]=True &&
arg4[g[y_?arg3]]==True),

X m [f , g] [t _ ? (X [a r g l , a r g 2]) J :=
r [f [p l [t]] , g [P 2 [t]]] }

a 8.1.2 The Peano natural numbers.

objecta[NAT]= (one, na t , (nat-X-nat) , boo l , same}
arrows[NAT] = (oo, zéro , s , p l u s , t imes , greq,

minus, True, False}

domain [oo] » one; codomain [oo] = one
domain [True] = one; codomain [True] = bool
domain [F a l s e] = one; codomain [False] = bool
domain [zéro] = one; codomain [zéro] = nat
domain [s] = nat; codomain [s] » nat
domain [p l u s] = nat -X-nat ; codomain [p lus] = nat
domain [t i m e s] = nat~X~nat; codomain [t imes] = nat
domain [greq] = nat~X-nat; codomain [greq] = bool
domain [minus] = same; codomain [minus] = nat

Thèse functions implement the predicates for bool, one, nat, nat~X~nat, and same.

26

one[oo] = True
onefj :» False
bool[True] s True
b o o l [F a l s e] =* True
b o o l [_] := False

n a t [z é r o] = True
n a t [s [n _ ? n a t]] :=» True
n a t [_] := False

s e t u p p r o d [n a t , n a t]
same [t_? (nat-X-nat)] := True / ;

g r e q [r [p l [t] , P 2 [t]]]

Thèse functions implement plus, times and minus as functions from nat~X~nat to nat,
and greq as a function from nat~X~nat to bool.

n a t [p l u s [t_? (nat -X-nat)]] :* True
n a t [t i m e s [t _ ? (n a t - X - n a t)]] :» True
nat [minus [t_?same]] : » True
b o o l [g r e q [t _ ? (n a t - X - n a t)]] :=» True

The values of plus,times,greq, and minus are defined recursively, and exceptions are
propagated

p l u s [r [n _ ? n a t , z éro]] := n
p l u s [r [n_?nat , s [m_?nat]]] := s [p l u s [r [n,m]]]

t i m e s [r [n _ ? n a t , zéro]] :» zéro
t i m e s [r [n _ ? n a t , s [m_ ? n a t]]] : =

p l u s [r [t i m e s [r [n,m]] , n]]

g r e q [r [n_?nat, zéro]] :» True
g r e q [r [z é r o , s [nj?nat]]] := F a l s e
g r e q [r [s [n_?nat] , s [m_?nat]]] := g r e q [r [n,m]]

minus [t_?same] := p l [t] / ; p 2 [t] == zéro
minus [r [s [n_?nat] , s [m_?nat]]] :*

minus [r [n,m]] / ;same [r[n,m]]

O 8.1.3 Integer arithmetic

n a t [n _ I n t e g e r] := True
s [n_Integer] :* n + 1
p l u s [r [n _ I n t e g e r , m_Integer]] := n + m

t i m e s [r [n_Integer , xn_Integar]] :=* n m
g r e q [r [n_Integer , m_Integer]] := (n >= m)
m i n u s [r [n _ I n t e g e r , m _ I n t e g e r]] :=n-m/ ; g r e q [r [n , m]]

27

a 8.1.4 Variables

This defines varnat as a subtype of nat and formats variables with subscripts.

nat [n_?varnat] :^ True
v a r n a t [n [i _ I n t e g e r]] :» True

Format [n [i — I n t e g e r]] :=* Subscr ip ted[n [i]]

• 8.2 Setof(-)

a 8.2.1 Underlying graph of Setof[-].
At tr ibutes [SETOF] » (L i s t a b l e)
A t t r i b u t e s [P] * (L i s t a b l e)

o b j e c t s [S E T O F [a r g _]] :» F l a t t e n [(
o b j e c t s [arg] ,
P [o b j e c t s [a r g]] ,
T h r e a d [X [o b j e c t s [a r g] , P [o b j e c t s [a r g]]]])]

A t t r i b u t e s [empty] - (L i s t a b l e)
A t t r i b u t e s [i n s e r t] = (L i s t a b l e)
A t t r i b u t e s [Pm] » (L i s tab le)
arrows[SETOF[arg_]] := F l a t t e n [(

arrows[arg] ,
Pm[arrows[arg]] ,

Thread[Xm[arrows[arg] , P m [a r r o w s [a r g]]]] ,
empty[objects [arg]] ,

i n s e r t [o b j e c t s [a r g]])]

domain [empty [obj_]] :« one
domain [i n s e r t [o b j _]] := X[obj , P [obj]]
domain [Pm[arrow_]] := P [domain [arrow]]
codomain [empty [obj_]] := P[obj]
codomain [i n s e r t [o b j _]] :» P [o b j]
codomainfPmfarrowJ] := P [codomain[arrow]]

A t t r i b u t e s [d i a g p r o d] = (L i s t a b l e)
d i a g p r o d [o b j _] := s e tupprod[obj , P [obj]]

Q 8.2.2 Predicates and rules for Setofl-].

At tr ibutes [predsetof] = (Listable)
predsetof [obj_] := {

P / : P [obj] [empty [obj]] := True,
P / : P [obj] [inser t [obj] [r[nJ?obj,

P I ? (P [o b j])]]] : = True)

28

A t t r i b u t e s [s e t i n s e r t r u l e s] - (Lis table)
s e t i n s e r t r u l e s [o b j _] :* (

i n s e r t [o b j] [r [n _ ? o b j ,
inser t [obj] [r [m_?obj , p _ ? (P f o b j])]]]] :=
i n s e r t [o b j] [r [m , i n s e r t [o b j] [r [n , p]]]] / ;

!0rderedQ[(n,m}],
i n s e r t [o b j] [r [n _ ? o b j ,

in ser t [ob j] [r [n_?obj ,p_? (P[obj])]]]] :=
insert [obj] [r [n ,p]])

A t t r i b u t e s [setoprules] - (Lis table)
se toprules [arr_] :* (

Pmftrr] [empty [domain[arr]]] :»
empty[codomain[arr]],

Pmfarr][insert[domain[arr]][
r[n_? (domain [arr]) ,

p_? (domain[Pm[arr]])]]] : =
insert[codomain[arr]] [r[arr[n] , Pm[arr] [p]]] }

D 8.2.3 The function setof[-].

setof[argj :=Flatten[(
diagprod[objects[arg]],
predsetof[objects [arg]],
setoprules[arrows[arg]],
setinsertrules[objects[arg]] }]

D 8.2.4 Formatting rules for Setof[-].

format [empty[obj_]] :* {}
format [in ser t [obj_] [r[n_, p_]]] : =

Prepend[format[p],n]
Format [empty [obj_]] := format [empty [obj]]
Format [i n s e r t [obj_] [r [n_,p_]]] :*

format[insert[obj][r[n,p]]]

• 8.3 Evaluation of Setof[Nat] and SetoflSetoflNat]]

setof[NAT]; setof[SETOF[NAT]];

29

9. Références

[1]: M. Barr and C Wells, Toposesjriples and Theories.Sçnngct-Wtrlzg, New York,
1985.
[2] : A. Bastiani and C. Ehresmann, Catégories of sketched structures, Cahiers de Top. et
Géom. Diff. 13(1972), 103 - 214.
[3] : J. Benabou, Structures algébrique dans les catégories, Cahiers de Top. et Géom. Diff.
10(1968), 1 - 126.
[4]: R. Burstall and D. Rydeheard, Computational Category Theory, preprint, 1985.
[5]: L. Coppey and C. Lair, Leçons de Théorie des Esquisses (I), Diagrammes, Vol. 12,
Paris, 1984.
[6]: H. Ehrig, H.-J. Kreowski, J. W. Thatcher, E. G. Wagner and J. B. Wright, Parameter
passing in algebraic spécification languages. Theoretical Computer Science 28(1984),45
- 8 1 .
[7]: H. Ehrig and B. Mahr, Fundamentals of Algebraic Spécifications I. Equations and
Initial Semantics, EATCS Monographs 6, Springer- Verlag, New York 1985.
[8]: A. C. Ehresmann, Synopsis and comments, in : Charles Ehresmann, Oeuvres
Complètes et Commentées, Part IV - 1, Supp. 1, Vol. XX3I (1981), and Part N - 2, Supp.
2, Vol. XXffl (1982) to Cahiers de Top. et Géom. Diff.
[9]: P. Freyd, Algebra valued functors in gênerai and tensor products in particular.
Colloq. Math. 14(1966), 89 - 106.
[10]: J. Goguen, Parameterized programming, IEEE Transactions on Software
Engineering, Vol. SE-10, No.5, 1984, 528 - 543.
[11]: J. Goguen and J. Meseguer, Initiality, induction, and computability, in Algebraic
Methods in Semantics, M. Nivat and J. C. Reynolds (eds), Cambridge University Press,
1985.
[12]: J. W. Gray, Formai Category Theory: Adjointness for 2-Categories, Lecture Notes
in Mathematics 391, Springer Verlag, New York, 1974.
[13]: J. W. Gray, Categorical aspects of data-type constructors, Theoretical Computer
Science,50 (1987), 103-135
[14]: J. W. Gray, The category of sketches as a model for algebraic semantics, in Catégories
in Computer Science and Logic, Contemporary Mathematics 92, Amer. Math. Soc. 1989,
109 - 135.
[15]: G. M. Kelly, Structures defined by finite limits in the enriched context, 1, Cahiers
de Top. et Géom. Diff. 23(1982), 3 - 42.
[16]: G. M. Kelly, On the essentially-algebraic theory generated by a sketch. Bull.
Australian Math. Soc. 26(1982), 45 - 56.
[17]: G. M. Kelly and R. Street, Lecture Notes in Mathematics 420, Springer-Verlag,
New York, 1974.
[18]: C. Lair, Etude Générale de la Catégorie des Esquisses, Esquisses Mathématiques 23,
Paris 1975, 1 - 62.
[19]: J. Lambek, and P. J. Scott, Introduction to Higher Order Categorical Logic,
Cambridge Univ. Press, 1986.
[20]: F. W. Lawvere, Functorial semantics of algebraic théories, Proc. Nat. Acad. Sci. 50
(1963), 869 - 872.

30

[21]: S. Mac Lane, Catégories for the Worldng Mathematician, Springer Verlag New
York, 1972.

[22]: J. C. Mitchell and P. J. Scott, Typed lambda models and cartesian closed catégories,
in Catégories in Computer Science and Logic, Contemporary Mathematics 92, Amer
Math. Soc. 1989,301-316.
[23]: J. W. Thatcher, E. G. Wagner and J. B. Wright, Data type spécifications:
Parameterizations and the power of spécification techniques, ACM Trans. on Programming
Languages and Systems, 4(1982), 711 - 732.

31

