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VOLUnC 24 

ACTI9 OCt JOUttNCCS CL.. I . T . 

(UNtV. PAM1S 7. 27 JUXr*-2 JUILLET 1990) 

Exécutable Spécifications for Data-Type 
Constructors 

by John W. Gray 
University of Illinois at Urbana-Champaign 

Abstract: 
The theory of sketches is discussed briefly and the example of natural numbers is treated in détail 
both in a simple and a more complicated version- Then the functor Setof(-) is constructed by 
defining functions which return lists of rules depending on the parameter sketch that is substituted 
in the slot position. The functor Setof(-) is applied to the sketch NAT, yielding a large sketch with 
many properties. Finally, the functor Setof(-) is applied twice to NAT, resulting in a very large 
sketch. Thèse constructions are implemented in the symbolic program Mathematica. Appendix A 
shows a number of examples of the code and Appendix B is a complète listing of the program. 

1. Introduction. 

A sketch is a directed graph in which certain nodes (or objects) are declared to be formai 
limits (e.g., products, equalizers, and pullbacks) of cxher objects, and certain diagrams made 
up of edges (or arrows) of the graph are declared to be formally commutative. See [1], [2], 
[5], [13], and [18] for detailed descriptions of the theory of sketches. Sketches are alterna­
tives to algebraic spécifications as présentations of algebraic théories and data types. The 
objects of the graph correspond to sorts and products of sorts in a spécification and the 
arrows correspond to opérations and compositions of opérations. The formai commutative 
diagrams correspond to équations. A model of a sketch is a function ("functor'*) M that 
assigns a set to each object and a function to each arrow in such a way that formai limits 
are taken to actual limits and formai commutative diagrams are taken to actual commutative 
diagrams. 

Sketches are much more tractable from a categorical point of view than spécifications. 
In [13], I discussed a functorial construction Atof B where At is a sketch with additional 
structure and B is an ordinary sketch. StacksOfChar and SetsOfBoole are examples. The 
purpose of this paper is to show that this construction is computationally feasible. This 
means first of ail that a direct description of a sketch can be given in Mathematica in such a 
way that Mathematica will then carry out commutations in the initial algebra for the sketch; 
i.e., it will reduce terms in the initial algebra to normal form. Furthermore, endofunctors on 
sketches of the form Atof(-) can be constructed which accept Mathematica sketches as input 
and produce Mathematica sketches as outpuL 
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The construction AtofB is considerably more powerful that the parametric spécifications 
found in [6] or [7] which are simple pushouts of pairs of sketches along common sub-
sketches. If one thinks of the two sketches in such a pushout as coordinate axes, then the 
construction AtofB fills in a whole two dimensional rectangle. Every opération of one 
sketch opérâtes on every sort of the other sketch. The effect is that very large, correct 
sketches can be constructed from small inputs; i.e., large data types can be constructed from 
small components. 

i 2. Note about Mathematica. 

This document was produced in Mathematica and is a printout of a Macintosh notebook 
in that language. From our point of view, Mathematica is a rewrite-rule language and we 
make extensive use of thèse facilities. Bold face Courier (fixed width) font is used for inputs 
and the outputs from the program are in plain face Courier font Capitalized ternis in input 
expressions are built-in functions. Ail other expressions are defined in this notebook. The 
square boxes in the left margin indicate levels of outlining. Normally, the document is 
closed up into the top level except for the cell being examined. Hère, of course, it is 
entirely printed out 

2.1. Three kinds of rewrite mies. 

Rules of the form exprl s expr2 evaluate the right hand side immediately, and then are 
automatically applied whenever possible to rewrite the left hand side as the right hand 
side. Rules of the form exprl := expr2 evaluate the right hand side only when they are 
applied. They are always used hère for "function'' définition, in the form f[x J := expr. 
Hère x_ means a slot named x to be matched. Whatever matches x is then substituted for 
ail occurrences of x in the right hand side. Rules of the form 

exprl := expr2 /; expr3 
are conditional rewrite rules which are only applied when expr3 évaluâtes to True. AU user 
defined rules given by = rules or := rules are added to the global list of rewrite rules 
maintained by Mathematica. 

2.2 Pattern matching 

The pattem matching in expressions like f[x J can be controlled by adding expressions 
after the _. There are three forms for this. In an expression like 

nat[n_Integer]:= True, 
"Integer" is a built-in expression head. Any built-in or user-defined head can occur in this 
position and then n_ will match only expressions with this head In an expression like 

nat(s[nj?nat]]:= True, 
nat is a user-defined predicate. Any predicate can occur in this position after N?N and then 
n_ will match only those expressions for which the predicate évaluâtes to crue. Finally, 
the two forms can be combined in the form f[x_head?predicate]. This form is not used 
hère. 
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Rules of the form: 
s e t i n s e r t r u l e s [ o b j _ ] :» { 

i n s e r t [ o b j ] [ 
r [ n _ ? o b j , i n a e r t [ o b j ] [r[m_?obj , p _ ? ( P [ o b j ] ) ] ] ] 

] :» 
i n s e r t [ o b j ] [ r [ m , i n s e r t [ o b j ] [ r [ n , p ] ] ] ] / ; 

!OrderedQ[{n,xn) ] , 

i n s e r t [ o b j ] [ 
r [ n _ ? o b j , i n s e r t [ o b j ] [ r [ n _ ? o b j , p _ ? ( P [ o b j ] ) ] ] ] 

] :» i n s e r t [ o b j ] [ r [ n , p ] ] 
) 

play an important rôle in this program. When this expression is evaluated with some 
argument for obj, then as a side effect, it adds the rules in the list (indicated by brackets {, 
]) on the right hand side to the global list of rewrite rules. There are two rules in this list, 
parameterized by obj, defining the function "insertfobj]"; Le., insert is a function whose 
values are again functions. For example, when obj ranges over the objects of Setof(nat), 
then the program produces a total of 32 rules for "insert". 

• 2.3 Substitution 

Substitution in an expression is indicated by "A" and ->. E. g. 
% / . n [ l ] - > s [ s [ z e r o ] ] 

means substitute s(s[zero]] for n[l] in %; Le., in the previous expression. 

a 3. The Natural Numbers as a Sketch 

• 3.1 The sketch for natural numbers 

D 3.1.1 Dedekind-Lawvere natural numbers 

Natural numbers are defined by a sketch. A very simple sketch for the 
Dedekind-Lawvere natural numbers is illustrated as follows: 

rtM zéro , s , 
one • nat » nat 

In this graph, "one" means that the object one has been declared to be the empty formai 
product; Le. the symbolic terminal objecL Thus "zéro" dénotes a constant and s dénotes 
an endomorphism of nat. There are no other formai products and no formai commutative 
diagrams. 



A model of a sketch assigns a set to each node of the graph and a funcùon with the 
indicated domain and codomain to each arrow. Formai limits in the graph are taken to 
actual limits of sets and diagrams declared to be formally commutative are taken to 
actual commutative diagrams of functions. The initial object in the category of ail 
models of the sketch is realized by the term model whose value for each node consists of 
ail closed terms with codomain that node. For the Dedekind-Lawvere natural numbers, 
the terms with codomain nat are "zéro" and "s(s(... s(zero)... ))" for any positive 
number of occurrences of "s". Hence the initial model for this sketch is isomorphic to 
the usual natural numbers. 

In gênerai, the term model is constructed by a categorical completion process. (See 
[1] or [16].) Starting from a directed graph, one constructs the free category on the 
graph. Its objects are the objects of the graph and its arrows are paths of arrows in the 
graph. Composition is just juxtaposition of paths. Now, if some object is supposed to 
be a product of two others, then each pair of morphisms into the factors must détermine 
a (unique) morphism into the producL Hence, more arrows hâve to be added to the free 
category. But then there may be more composable paths which also hâve to be added, so 
the process bas to be iterated, perhaps transfinitely often. If the original graph is finite, 
with only finite formai limits, then there is a countable construction which is finite at 
every stage for the free category with finite limits generated by a given graph with 
formai limits. Finally, the formally commutative diagrams détermine a congruence 
relation on the arrows in this free category with finite limits. The corresponding 
quotient category is called the theory of the sketch, denoted by T(A). For any object a of 
A, and hence of T(A), the set T(A)(one, a) of morphisms in T(A) from one to a, is the 
set of closed terms of son ao 

Hère is a cell which implements the Dedekind-Lawvere natural numbers. Everything 
is preceded by a "dl" to distinguish it from the Peano natural numbers implemented 
below. There isn't much that can be done with this cell, but it can be used in the later 
parameterized sketches to test out how they work with very simple inpuL 

o b j e c t s [ d l n a t ] = {dlone, d l n a t } 
arrows [d lnat ] - {d lzero , d i s ) 

domain [ d l z e r o ] = dlone 
domain [d i s ] - d lnat 
c o d o m a i n [ d l z e r o ] = d l n a t 
codomain [d i s ] = d lnat 

dlone [oo] - True 
dlone [_] :=* False 

d l n a t [ z é r o ] = True 
d l n a t [ s [ n _ ? n a t ] ] := True 
d lnat [_] := False 
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The first two lines describe the objects and arrows of the graph and the next four Unes 
the beginning (domain) and end (codomain) of each arrow. The last five lines implement 
the term model for this sketch. The first two of them say that the only élément of one 
is "oo" and the last three say that the éléments of nat are are built up from zéro by 
prepending "s" to already existing éléments. (See the next section for a more complète 
description.) 

a 3.1.2 Peano natural numbers 

In this notebook we will implement a more elaborate sketch for the natural numbers, 
which we will call the Peano natural numbers. It's sketch (in principle) looks as 
follows: 

minus 

one • nat -•natî 

true rut > 

true 
one I bool 

false 
Hère the node named "nat x nat" is (by virtue of its name) declared to be the formai 
product of nat with itself and the node named "same" is declared to be the formai 
equalizer of the two arrows "greq" and "true". The node "bool" will become the two 
élément boolean algebra of truth values. The node "one" is repeated to make the sketch 
easier to draw. The arrow "inc" is dashed because it is not implemented hère, except as a 
subtype. The arrows "plus", "times", and "minus" will become the usual functions with 
those names, except that minus(n, m) will not be reduced if m > n. The arrow "greq" 
will become the predicate "greater than or equal to". 

There are two practical considérations in implementing the term model for this 
sketch. First of ail, the terms will in fact be Mathematica expressions, so we hâve to 
pick out a subset of such expressions for each object in the graph. Therefore, our sets of 
terms in the term model should be regarded as Von Neumann sets; Le., predicates on 
the universe of ail Mathematica expressions. For instance, there will be a predicate "nat" 
as in the previous section which takes the value True for the Mathematica expressions 
"zéro" and "s[n]" providing nat(n] = True. This last condition is enforced by giving the 
rule 

nat[s[n_?nat]] = True. 
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We think of pattern matching expressions of the form "x_?pred" as having the same 
force as type assertions "x : type" in other languages. We sometimes even use this 
terminology when it seems appropriate. 

The second, even more significant considération is that there is no way to implement 
the équations implied by asserting that certain diagrams commute. For instance, one 
équation that has to be implemented says that the diagram 

plus 
nat x nat > nat 

idxs l |s 

nat x nat > nat 
plus 

commutes; Le., that the équation plus[n,s[m]] = s[plus[n, m]] holds for ail n and m. 
(Note that not ail of the arrows for this diagram hâve been indicated in the sketch. The 
actual sketch for the Peano natural numbers is much larger than the part that is drawn 
hère.) We dont know how to impose this équation, since imposing it would amount to 
forming équivalence classes for the congruence relation it générâtes on terms. Instead, 
we implement it also as a rewrite rule in the form: 

plus[nj?nat,s[mj?nat]] := s[plus[n, m]] 
This has the effect of choosing canonical members of congruence classes. Such a rewrite 
rule can be represented in the sketch by decorating the diagram with a 2-cell indicating 
the direction in which this rewrite rule is to be applied. 

plus 
nat x nat > nat 

idx s I y<> I s 

nat x nat > nat 
plus 

The actual sketch for the Peano natural numbers contains 14 such 2-cells. Thèse 2-cells 
are ail accounted for in the implementation. The interprétation of the term model is now 
also somewhat différent What one actually has in the implementation is a "signature", 
or a "free sketch", by which we mean a directed graph with symbolic limits, but no 
équations. Instead, it has 2-cells in certain diagrams. Such a structure is called an 
order-enriched sketch. The rewrite rules described by such 2-cells détermine rewrite rules 
for the terms of this signature. The sets of normal forms with respect to thèse rewrite 
rules then constitute the initial algebra for our original sketch. 
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• 3.2 Description of the implementation of the natural numbers. 

See the section entided "The natural numbers" in Appendix B. 

a 3.2.1 The polymorphic identity and the polymorphic product 
structure. 

A polymorphic identity opération is defined by the requirements that for any 
argument type, the expression "id[x_?arg]" has the same type as x and equals x; Le., 

arg[id[xj?arg] := True 
id[x_?arg] :== x 

To use this for nat, for instance, it is necessary to evaluate the command "setupid[nat]". 
However, no type arguments are necessary to use "id" once it has been set up. 

Similarly, there is a polymorphic product construction that constructs a product 
arg 1 x arg 2 for any pair of types argl and arg2. Its éléments are records of the form 
rfXy] where x has type argl and y has type arg2; Le., pairs are represented by the 
notation r[a,b]. "r" is either the last letter of "pair" or the first letter of "record". First 
and second projection functions, pi and p2 are defined and retum x and y respectively. In 
conformance with the philosophy of sketches rather than catégories, ail possible 
products are not constructed Only those particular products that are actually used are 
constructed. Hère, the only such product is "nat x nat". The product constructor is a 
function X[argl, arg2] which is frequendy written with infix notation (argl-X-arg2). 
(The parenthèses are necessary.) One way to automatically construct the products of ail 
the basic (Le., non-product) objects would be to use the command 

Do[Thread[setupprod, objectlist{[i]], objecdist], (i, 1, Length[objectlist]} ] 
Finally, the corresponding construction for products of arrows is implemented, aithough 
it is not used in this sketch. 

O 3.2.2 The underlying graph. 

We first construct the underlying directed graph of the sketch for the Peano natural 
numbers by implementing the following définitions. 

objectsfNAT] = (one, nat, nat-X-nat, bool, same) 
arrows[NAT] = (oo, True, False, zéro, s, plus, times, greq, minus) 

domainfoo] = one codomainfoo] = one 
domain [True] = one codomain[True] = bool 
domain[False] = one codomain[False] = bool 
domain[zero] = one codomain[zero] = nat 
domain[s] = nat codomain[s] = nat 
domain[plus] = nat~X~nat codomain[plus] = nat 
domain[times] = nat~X~nat codomain[times] = nat 
domain[greq] = nat-X-nat codomainfgreq] = bool 
domain[minus] = same codomain[minus] = nat 
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a 3.2.3 Implementation of the objects. 

The name of the set of terms of a given type is the same as the name of the type. 
The set denoted by one is the singleton set with one élément, the élément "oo"; Le., oo 
is the only arrow from one to one - the only closed term of type one. The set denoted by 
nat is defined recursively to contain zéro and the successor of any élément; Le., there are 
rules: 

nat[zero] = True 
nat[s[n_?nat]] := True. 

Zéro, s[zero], s[s[zero]]v etc. are ail (composed) arrows from one to nat so they are ail 
closed terms of type nat "Nat" serves both as the name for the domain and codomain of 
"s", and also as the predicate determining membership in the set of terms of type nat. 
The set denoted by nat~X~nat is constructed as the product of nat with itself. "Same" is 
implemented as a subtype of nat~X~naL 

• 3.2.4 Implementation of the arrows. 

The arrows with domains other than one are implemented by restricting their 
arguments to be of the proper type and asserting that their values satisfy the predicate for 
the corresponding codomain. Thus, for instance, we require that 

nat[plus[r[n_?nat, m_?nat]]] = True, 
except that this is written in the préférable form: 

nat[pIus[t_?(nat~X~nat)]] = True. 
There are similar équations for times and greq. However, minusfn, m] has type nat; Le., 
satisfies the predicate "nat", only if n > m. For anything else, it is unreduced. 

Another view of the matler is that the expression 
nat[plus[t_?(nat~X~nat)]] = True 

say s that "plus[t_?(nat~X~nat)]" is a term of type nat and hence it is of exactly the same 
character as the statements about nat in the preceding section. In other words, ail the 
statements about nat are just characterizing the terms of type nat. 

In the first view, plus, times and minus are functions whose values are specified by 
the usual recursion formulas. Thus, for instance, we hâve the two rules: 

plus(r[nj?nat, zéro]] := n 
plus[r[n_?nat, s[mj?nat]]] := s[plus[r[n, m]]]. 

There are similar rules for times, greq, and minus, except that the recursive rule for 
minus in only applied if n > m; that is, if r[n,m] belongs to "same". 

minus[r[s[n_?nat],s[mj?nat]]]:= minus[r[n,m]] /; same[r[njn]]. 

The corresponding other view of thèse expressions is that plus, times and minus are 
term constructors (Le., combinators) of appropriate types and the recursion formulas are 
the rewrite rules that détermine the normal forms for the terms of various types. Much 
of the power of Mathematica as a language for programming abstract mathematics 
dérives from this dual view of ":= rules" as on the one hand specifying function values 
and on the other as giving rewrite rules for expressions. 
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a 3.2.5 Integer arithmetic. 

For convenience in examples and for use in later parameterized sketches, there is an extra 
cell in Appendix B embedding ordinary arithmetic of integers into the Peano natural 
numbers. 

Q 3.2.6 Variables. 

It is possible to hâve non-closed terms involving variables. The corresponding cell in 
Appendix B constructs an infinité number of variables, called ni, which hâve type nat 
and so can be used in natural number expressions. They behave correcdy with respect to 
substitution since évaluation in Mathematica is given by substitution. 

• 3 J Syntax of nat. 

A sketch, or an algebraic spécification, can be viewed as a description of a small typed 
functional programming language in which the sorts and products of sorts are the types 
and the opérations are the terms. Such a language can be described by a formai syntax as 
usual. The formai syntax of nat is quite simple. There are objects (or types) given by the 
gramman 

B :: one ! nat I bool I same 
T : : B I T x T I T - » T 

There are arrows (or terms) given by type assignments as in [22]. A type assertion is a 
statement of the form x : type. In our formulation, this is équivalent to either of the 
statements: x e type, or typefx] = True. A type assignaient T is a finite set of type 
assertions x : t , where x is a variable and t is a type, such that no variable appears twice. 
Write T, x : t for the type assignment with x : t added to T, where it is assumed that x 
does not appear in T. Terms are introduced by formulas T > m : t, which can be read as 
"m has type t relative to T." 

The well-typed terms are generated freely by the following basic axioms and œdom 
schemes which are part of the axioms for the grammar of any sketch. 

0 > c : t where c is a constant of type t. 
T, x : t > x : t 
r > n : t -» t'. f > f : ï -» f 

r > fin] : t -> t" 
r > m : t -» t* . f > n : t -» t" 

T > r[m, n] : t -> t*x f 
f > p : t -» t'x t" f > p : t -> t * t" 
r > pi[p] : t - * r r > p2[p] : t -> t" 
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There are 9 constants in the grammar of the sketch for nat: 
oo : one -» one, zéro : one -> nat, True : one -» bool, False : one -» bool, 
s : nat -» nat, plus : nat x nat -> nat, times : nat x nat -> nat, 
minus : same -> nat, greq : nat x nat -> bool. 

Nat does not hâve any additional axioms. Note that functional types are implemented hère 
in the form: p : t —> t'if and only if domain [p] = t and codomain[p] = t'. 

Equations are written in the form T > a = b : t 
f > D : one -» nat x naL f > greofprl fol, pr^MI = True : one -» hool 

T > p : one -> same 
r > m ; one -> nau r > n ; one -» nat 

r > plusfm, s[n]] = s[plus[m, n]] : one -» nat 
etc. 

a 4. SetOf(-) as a Constructor on Sketches 

• 4.1 A non-parametric sketch for sets of data 

Setofdata is a sketch whose underlying graph in a first approximation looks like: 

empty m insert 
1 • s j : d x s • d 

pr2 pr, 

See [13] for a description of the complète sketch. In what follows, "d" will be treated as a 
variable slot to be filled by other sketches. For the moment, consider a model M of this 
sketch with M[d] = D, where D is some unspecified set of data. Then M(s] - S is sup-
posed to consist of finite subsets of D; Le., éléments of S are finite subsets of D. Empty 
is a constant of sort S and represents the empty set of data. Insert is a function from pairs 
consisting of an élément d of S and a subset D'of D. Insert(d, D1) then dénotes the new 
subset of D in which d has been added to D\ Two équations should be satisfied by inserr 

insert(d, insert(d, DO) = insert(d, Xf) 
insert(d, insert(d\ DO) = inser^d, insert(d, D1)). 

Thus, insertîng an élément twice is the same as doing it once, and the order in which 
éléments are inserted doesn't matter. Thus, inseit is an opération of D on the set S of 
subsets of D which is idempotent and commutative. 

Hère is a simple non-parametric version of sets of data in which any kind of data is 
allowed. 

objec t s [ se to fdata ] = {one, s e t , data} 
arrows (setofdata] = (empty, i n s e r t } 
domain [empty] = one; codomain [empty] » s e t 
domain [ inser t ] = data~X~set; codomain [ insert] = se t 
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one[oo] = True; one[_] :=» Taise 
data[_] := True 
s e t [empty] =» True 
s e t [ insert [r£n_?data, p j ? s e t ] ] ] :» True 

i n s e r t [r [n_?data, i n s e r t [ 
r[m_?data, p _ ? s e t ] ] ] ] : = 

i n s e r t [r [m, i n s e r t [r [n, p] ] ] ] / ; 
!OrderedQ[(n,m}] , 

i n s e r t [r [n_?data, i n s e r t [ 
r[n_?data, p _ ? s e t ] ] l ] : = i n s e r t [n,p] 

Note that the first rule for insert only works because there is a global total order for ail 
Mathematica terms. Otherwisc, this rule would just cycle infinitely often. The symbol ! 
is négation. This is required because OrderedQ[n, n] = True, which would prevent the 
second rule from ever being used 

4.2 Description of the data-type constructor Setof(-) 

Setof(-) is a functor from the category of order-enriched sketches to itself. See [13]. 
Given an ordered-enriched sketch A as input, it produces an order-enriched sketch 
SETOF(A) as outpuL Thus we hâve to define functions such that given A, they first 
produce the underlying graph of SETOF(A), and then produce the collection of needed 
rewrite rules for SETOF(A) from the rewrite rules of A. 

We first construct the underlying directed graph function of setof(-) by implementing 
the following définitions. Hère "ar&_" represents any sketch and SETOFfargJ represents 
the sketch to be constructed. Upper case "U" hère means "union". From now on "P" is to 
be thought of as the covariant "finite powerset" functor. Its value on arrows is denoted by 
"Pm" (m for "morphism"). Le., in the context of set theory, for any set Z, P(Z) is the set 
of finite subsets of Z, and for any function f, Pm(f) is the induced function (morphism) on 
subsets taking a subset D'to the set 

Pm(0(DO = (f(d) I d 6 D'}. 
See, for instance, the example under the SetofINAT] heading in Appendix A. 

objects[SETOF[argJ] = objectsfarg] u P[objects[arg]] u (arg x P[arg]} 
arrows[SETOF[argJ] = arrowsfarg] u P[arrows[arg]] u (arrow x P[arrow]} 

u empty[objects[arg]] u insert(objects[arg]] 

domain[empty[objJ] = one 
domain[insert{objJ] = obj x P[obj] 
domain[Pm[arr J] = Pm[domain[arr]] 
codomain[empty[objj] =P[obj] 
codomain [insert[objJ] = P[obj] 
codomain[Pm[arrJ] = Pm[codomain[arr]] 
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We need predicates for each object of the argument saying that empty[obj] and 
insert[obj] hâve that type. In the alternative view, emptyfobj] and insertfobj] are terms of 
type "P[obj]". Note that the only way to get an élément of P[obj] is to take either 
emptyfobj] or insert an élément of the given type into a set of the given type. 
Empty [obj] is the only basic élément. We define a function of one parameter whose value 
for each object is the list of thèse two rules. 

predsetof[objJ = {P[obj][empty(obj]] = True, 
P[obj][insert[obj][nJ?obj, p_?(P[obj])]] = True) 

In the implementation in Appendix B, "predsetof is given the attribute "Listable" so we 
can apply it to the list of objects of the argument sketch. 

Next, the équations for insert hâve to be implemented as rewrite rules. Again this is 
done by a "Listable" function of one parameter whose value for each object is the list of 
the two rules for insert. 

setinsertrulesfobjj := 
{insert[obj][nJ?obj, insertfobj][m_?obj 4>J?(P[obj])]] := 

insertfobj][m^nsertfobj][n, p]] "provided" !OrderedQ[{n,m}], 
insertfobj][n_?obj, insertfobj] [n_?obj,pJ?(Pfobj])]] := insertfobj] [n,p]) 

As ajjew ingrédient, we need the naturality rules that say empty and insert commute 
with the induced set opérations in the argument type. Thèse induced opérations are denoted 
by Pmfarr], where "arr" is any arrow in the argument sketch. Such an opération following 
empty or insert is always rewritten in the opposite order. This is done by a "Listable" 
function of one parameter which is applied to the arrows of the argument sketch. 

setoprulesfarrj = {Pm(arr][empty[domain[arr]]] = empty[codomain[arr]], 
Pm[aiT][insert[domain[arT]][n_? (domain [an]), 

p_?(domain[Pm[arr]])]J 
= inserttcodomaintarrJJfarrtnlJhiitarrJfp]]] 

Thèse predicates and operator rules are given in functional form, so they need not be 
mentioned when they are used. The function setofl-] is then defined which applies thèse 
functions to an arbitrary sketch A. One can show that if the rewrite rules for A are 
Church-Rosser, then so are the rewrite rules for setoffA]. 

Last of ail, there is included a formatting function which formats the output of ail of 
the opérations as ordered lists without répétition. Notice that Format is given in terms of 
a recursively defined function "format". Format itself cannot be specified recursively. 
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4.3 Syntax of Setof(-) 

Setoft-] is given by a parameterized grammar. The types are given by: 
T :: T[arg] I P[T[arg]] I T[arg] x P[T[arg]]. 

Hère "arg" stands for any sketch, T[arg] means the set of types of arg, and P[T[arg]] means 
P applied to every type of arg. The terms are introduced by type assignments as before. 
The constants for Setof[arg] consist of the following families. 

i) Ail constants of arg are constants of Setoffarg]. 
ii) If t is a type of arg, then 

emptyft] : one -* P[t] 
insertft] : t x P[t] -» P[t] 

are constants of Setof[arg]. 
In addition to the basic type assignment axioms, there are the following axiom schemes. 

r > p : t -» f 
T > Pm[p] : P[t] -> P[il 

f > P ; t - M ' 
f > p x Pm[p] : t x P[t] -> t'x P[t'] 

The équations of Setoflarg] consist of ail équations of arg together with the following 
équation schemes. 

r > p = p' : t 
T > Pm[p] = Pm[p'] : P[t] 

r > n : t -» t'. f > f : t' -> t" 
T > Pfffn]] == P[f][P[n]] : P[t ] -> P[t"] 

r > p ; t -> f 
r > Pm[p][empty[t]] = emptyM : one -» P[t] 

f > p ; t -r \' 
r > Pm[p][insert[t] = insert[f][p x Pm[p]] : P[t x P[t]] -> Pft] 

5. SetOf[NAT] 

5.1 The sketch for SETOF(NAT) 

The construction setof(-) is a functor from the category of sketches to itself. When it 
is applied to a sketch A, it produces a new sketch SETOF(A). Each object of A is replaced 
by a copy of setof data with the object in the place of "data". Each arrow of A détermines 
new arrows between corresponding objects, as illustrated in the sketch SETOF(NAT) 
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insert[one] 
P(one) \ onexp(one). -» or 

empty[one] 

P(nat) : 

y[nat] |Pm[sl 

Pmlzero] 

insert[nat] 

iraert(nat] 

I zéro x 
Pmlzero] 

natxp(nat) -

Is xPm[s] 

-> ne 

one, e m p t y ( n a i ] P(nat) * = = ± n a t * P ( n a t ) •* m 

*Tn«*i 

same x 
P(*ame) êmptyiftet̂ na' 

ïfnserttnatxnat] nat x nat x 
emptylbool] P ( n a U n a t ) t = = p(natxnat) > nat> 

Pm[true] mlgreql true greq 

insert [bool] 
P(bool)J boolxP(bool) • bool 

In this drawing, the unlabeled arrows are either projections from products onto factors 
or inclusions of subobjects or arrows of the form arr x Pm[arr] which didn't fit in the 
picture. Thèse latter arrows hâve not been implemented but the polymorphic code to do so 
is part of this Notebook. Also, the arrows "true" and "false" from one to bool, together 
with their associated arrows, are omitted for legibility. "Op" stands for "plus", "times", 
and any other binary opération that may hâve been implemented in NAT. 

6. Setof[setof[NAT]] 

6.1 The sketch for setof(setof(nat)) 

A drawing of the sketch for setof(setof(nat)), where nat is just the Dedekind- Lawvere 
can be found in [13]. A similar picture for the Peano natural numbers would be 
impossible to draw. However, its objects and arrows are calculated in the setof(setof(nat)) 
examples section in Appendix A. Note that the arrows of setof(setof(nat)) are the basic 
opérations in this data type. This very large data type has been constructed by the 
program, not by us, from small components that are visibly correct by a method that is 
visibly correct. Hence, it is also correct 
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• 7. Appendix A: Examples 

A data type presented by a sketch is a small functional programming language. Thèse 
examples can be viewed either as illustrating some of the basic functions in thèse languages 
or as illustrating how the program reduces terms to normal form. 

• 7.1 Setof(NAT) Examples 

Q 7.1.1 Objects and arrows for SETOF(NAT). 

Objects [SETOF[NAT] ] 

{ one, nat, X[nat, nat], bool, same, P[one], P[nat], 
P[X[nat, nat]], P[bool], P[same], X[one, P[one]], 
X[nat, P[nat]], X[X[nat, nat], P[X[nat, nat]]], 
X[bool, P[bool]], X[same, P[same]]) 

arrows[SETOF[NAT] ] 

{ oo, zéro, s, plus, times, greq, minus, True, False, 
Pm[oo], Pm[zero], Pm[s], Pm[plus], Pm[times], 
Pm[greq], Pm[minus], Pm[True], PmfFalse], 
Xm[oo, Pm[oo]], Xm[zero, Pm[zero]], Xm[s, Pm[s]], 
Xm[plus, Pm[plus]], Xmftimes, Pm[times]], 
Xm[greq, Pm[greq]], Xm[minus, Pmfminus]], 
Xm[True, Pm[True]], Xm[False, Pm(False]], empty[one], 
empty[nat], empty[X[nat, nat]], empty[bool], 
empty[same], insert[one], insert[nat], 
insert[X[nat, nat]], insert[bool], insert[same]} 

a 7.1.2 Try out Pm(s) and Pm(plus) for SETOF(NAT). 

Hère we check that Pm[operation] works correctly. 

p a i r s e t = empty [nat-X-nat] ; 
Do [ p a i r s e t = insert [nat -X-nat ] [ r [ r [ i , s [ i ] ] r 

pairset ] ] , 
{ i , 8 , 0 , - 1 } ] ; 

p a i r s e t 

{ r [ 0 , 1 ] , r [ l , 2 ] , r [ 2 , 3 ] , r [ 3 , 4 ] , r [ 4 , 5 ] , r [ 5 , 6 ] , 

r [ 6 , 7 ] , r [ 7 , 8 ] , r [ 8 , 9]} 

This output is a formatted set of pairs of natural numbers. Note that the inputs were 
given in reverse order, but the rules hâve put them in canonical order. 

Pm[plus] [ p a i r s e t ] 
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Il, 3, 5, 7, 9, U , 13, 15, 17} 

Pm [times][pairset] 

{0, 2, 6, 12, 20, 30, 42, 56, 72} 

Pm[s] [Pxu[plus] [ p a i r s e t ] ] 

{ 2 , 4 , 6, 8, 10 , 12 , 14, 16, 18} 

Thus, Pm[plus] applied to a set of pairs returns the set consisting of the sum of each 
pair. Next, we check how pairs are ordered and that Pm[greq] works correctly. 

n e w p a i r s e t * i n s e r t [ n m t - X - n a t ] [ r [ r [ 6 , 5 ] , p a i r s e t ] ] 

{ r [ 0 , 1 ] , r [ l , 2 ] , r [ 2 , 3 ] , r [ 3 , 4 ] , r [ 4 , 5 ] , r [ 5 , 6 ] , 

r [ 6 , 5 ] , r [ 6 , 7 ] , r [ 7 , 8 ] , r [ 8 , 9 ] } 

Again, the canonical ordehng has put r[6,5] in the correct place. 

P m [ g r e q ] [ n e w p a i r s e t ] 

{ F a l s e , True} 

The output is the set of two truth values, not a list of 10 such values. 

• 7.2 Setof(setof(NAT)) Examples 

D 7.2.1 Objects and arrows of SETOF[SETOF[NATJ]. 

The output of the next two cells has been edited to save space and improve legibility. 

O b j e c t s [ S E T O F [SETOF[NAT] ] ] 

{ o n e , nat , X[nat , n a t ] , boo l , same, 

P [ o n e ] , P [ n a t ] , P[X[nat , n a t ] ] , P [ b o o l ] , P[same] , 
X[one , P [ o n e ] ] , X[nat , P [ n a t ] ] , X[X[nat , n a t ] , P[X[nat , na 
X [ b o o l , P [ b o o l ] ] , X[same, P [ s a m e ] ] , 
P [ P [ o n e ] ] , P [ P [ n a t ] ] , P[P[X[nat, n a t ] ] ] , P [ P [ b o o l ] ] , P [ P [ s 
P [X[one , P [ o n e ] ] ] , P[X[nat , P [ n a t ] ] ] , P[X[X[nat , n a t ] , 
P [ X [ n a t , n a t ] ] ] ] , P[X[bool , P [ b o o l ] ] ] , P[X[same, P [ same] ] ] 
X [ P [ o n e ] , P [ P [ o n e ] ] ] , X [ P [ n a t ] , P [ P [ n a t ] ] ] , 
X [ P [ X [ n a t , n a t ] ] , P[P[X[nat , n a t ] ] ] ] , X [ P [ b o o l ] , P [ P [ b o o l ] 
X [ P [ s a m e ] , P [ P [ s a m e ] ] ] , X[X[one, P [ o n e ] ] , P[X[one, P [ o n e ] ] 
X[X[nat , P [ n a t ] ] , P[X[nat , P [ n a t ] ] ] ] , 
X[X[X[nat , n a t ] , P [X[nat ,nat ] ] ] , P [ X [ X [ n a t , n a t ] , P[X[nat , 
X [ X [ b o o l , P [ b o o l ] ] , P[X[bool , P [ b o o l ] ] ] ] , 
X[X[same, P [ s a m e ] ] , P[X[same, P [ s a m e ] ] ] ] } 
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a r r o w s [ S E T O F [SETOF[NAT]] ] 

( o o , z é r o , s , p l u s , t i m e s , g r e q , m i n u s , T r u e , F a l s e , 
P m [ o o ] , P m [ z e r o ] , Pm[s ] , P m [ p l u s ] , P m [ t i m e s ] , P m [ g r e q ] , 
P m [ m i n u s ] , P m [ T r u e ] , P m [ F a l s e ] , 
Xm[oo, P m [ o o ] ] , Xmfzero, P m f z e r o ] ] , Xm[s, P m [ s ] ] , Xm[plus , 
Xm[ t imes , P m [ t i m e s ] ] , Xm[greq, P m [ g r e q ] ] , Xm[minus, Pm[min 
Xm[True, P m f T r u e ] ] , Xm[False , P m [ F a l s e ] ] , 
e m p t y [ o n e ] , e m p t y [ n a t ] , e m p t y [ X [ n a t , n a t ] ] , e m p t y [ b o o l ] , e 
i n s e r t [ o n e ] , i n s e r t [ n a t ] , i n s e r t [ X [ n a t , n a t ] ] , 
i n s e r t [ b o o l ] , i n s e r t [ s a m e ] , 
Pm[Pm[oo ] ] , Pm[Pm[zero] ] , P m [ P m [ s ] ] , Pm[Pm[plus] ] , Pm[Pm[t 
Pm[Pm[greq] ] , Pm[Pm[minus] ] , Pm[Pm[True] ] , Pm[Pm[False] ] , 
Pm(Xm[oo, P m [ o o ] ] ] , Pm[Xm[zero, P m f z e r o ] ] ] , Pm[Xm[s, Pm[s] 
Pm[Xm[plus , P m [ p l u s ] ] ] , Pm[Xm[t imes, P m [ t i m e s ] ] ] , 
Pm[Xm[greq, P m [ g r e q ] ] ] , Pm[Xm[minus, P m [ m i n u s ] ] ] , 
Pm[Xm[True, P m [ T r u e ] ] ] , Pm[Xm[False , P m [ F a l s e ] ] ] , 
Pm[empty [one] ] , Pm[empty [ n a t ] ] , Pm[empty [ X [ n a t , n a t ] ] ] , 
P m [ e m p t y [ b o o l ] ] , Pm[empty [ same] ] , 
P m [ i n s e r t [ o n e ] ] , P m f i n s e r t [ n a t ] ] , P m [ i n s e r t [ X [ n a t , n a t ] ] ] , 
P m [ i n s e r t [ b o o l ] ] , P m [ i n s e r t [ s a m e ] ] , 
Xm[Pm[oo], Pm[Pm[oo] ] ] , Xm[Pm[zero] , Pm[Pm[zero] ] ] , 
Xm[Pm[s] , P m [ P m [ s ] ] ] , Xm[Pm[plus] , Pm[Pm[plus] ] ] , 
Xm[Pm[ t imes ] , Pm[Pm[times] ] ] , Xm[Pm[greq] , Pm[Pm[greq] ] ] , 
Xm[Pm[minus] , Pm[Pm(minus] ] ] , Xm[Pm[True] , Pm[Pm[True] ] ] , 
Xm[Pm[False] , Pm[Pm[False] ] ] , Xm[Xm[oo, P m [ o o ] ] , Pm[Xm[oo, 
Xm[Xm[zero, P m [ z e r o ] ] , Pm[Xm[zero, P m [ z e r o ] ] ] ] , 
Xm[Xm[s, P m [ s ] ] , Pm[Xm[s, P m [ s ] ] ] ] , 

Xm[Xm[plus, P m [ p l u s ] ] , Pm[Xm[plus, P m [ p l u s ] ] ] ] , 
Xm[Xm[times, P m [ t i m e s ] ] , Pm[Xm[t imes, P m [ t i m e s ] ] ] ] , 
Xm[Xm[greq, P m f g r e q ] ] , Pm[Xra[greq, P m [ g r e q ] ] ] ] , 
Xm[Xm[minus, Pm[minus ] ] , Pm[Xm[minus, Pm[minus] ] ] ] , 
Xm[Xm[True, P m [ T r u e ] ] , Pm[Xm[True, P m [ T r u e ] ] ] ] , 
Xm[Xm[False, P m [ F a l s e ] ] , Pm[Xm[False , Pm[Fa l se ] ] ] ] , 
Xm[empty [ o n e ] , Pm[empty [one] ] ] , 
X m [ e m p t y [ n a t ] , P m [ e m p t y [ n a t ] ] ] , 
Xm[empty [X[na t , n a t ] ] , P m [ e m p t y [ X [ n a t , n a t ] ] ] ] , 
Xm [empty [ b o o l ] , Pm [empty [ b o o l ] ] ] , Xm [empty [ same] , Pm [empty 
X m [ i n s e r t [ o n e ] , P m [ i n s e r t [ o n e ] ] ] , X m [ i n s e r t [ n a t ] , P m [ i n s e r 
X m [ i n s e r t [ X [ n a t , n a t ] ] , P m [ i n s e r t [ X [ n a t , n a t ] ] ] ] , 
X m [ i n s e r t [ b o o l ] , P m f i n s e r t [ b o o l ] ] ] , 
X m f i n s e r t [ s a m e ] , P m f i n s e r t [ s a m e ] ] ] , 
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e m p t y [ P [ o n e ] ] , e m p t y [ P [ n a t ] ] , e m p t y [ P [ X [ n a t , n a t ] ] ] , empty 
e m p t y [ P [ s a m e ] ] , empty [X[one , P [ o n e ] ] ] , e m p t y [ X [ n a t , P ( n a t ] 
e m p t y [ X [ X [ n a t , n a t ] , P [ X [ n a t , n a t ] ] ] ] , empty [ X [ b o o l , P [boo 
e m p t y [X [same, P [same] ] ] , 

i n s e r t ( P [ o n e ] ] , i n s e r t [ P [ n a t ] ] , i n s e r t [ P [ X [ n a t , n a t ] ] ] , 
i n s e r t [P [ b o o l ] ] , i n s e r t [ P [ s a m e ] ] , i n s e r t [ X [ o n e , P [ o n e ] ] ] , 
i n s e r t [ X [ n a t , P [ n a t ] ] ] , i n s e r t [ X [ X [ n a t , n a t ] , P [ X [ n a t , n a t 
i n s e r t [ X [ b o o l , P [ b o o l ] ] ] , i n s e r t [ X [ s a m e , P [ s a m e ] ] ] } 

Q 7.2.2 Pm[Pm[operator]] 

We construct a set of sets of pairs of natural numbers. 

s e t s o f p a i r s » empty [P [ n a t - X - n a t ] ] ; 
Do [ s e t s o f p a i r s = i n s e r t [P[nat-X~nat] ] [ 

r [ i n s e r t [ n a t - X - n a t ] [ 
r [ r [ 4 i + 3 , 4 i + 4 ] , 
i n s e r t [ n a t - X - n a t ] [ r [ r [ 4 i + l , 4 i + 2 ] , 

e m p t y [ n a t - X - n a t ] ] ] ] ] , 
s e t s o f p a i r s ] ] , 

U , 0, 3 ) ] ; 
s e t s o f p a i r s 

{ { r [ l , 2 ] , r [ 3 , 4 ] } , { r [ 5 , 6 ] , r [ 7 , 8 ] } , 

{ r [ 9 , 1 0 ] , r [ l l , 1 2 ] } , { r [ 1 3 , 1 4 ] , r [ 1 5 , 16 ] }} 

Pm[Pm[plus] ] [ s e t s o f p a i r s ] 

{ { 3 , 7 } , { 1 1 , 1 5 } , 119, 2 3 } , {27, 31}} 

Pm [Pm[t imes] ] [ s e t s o f p a i r s ] 

{ { 2 , 1 2 ) , {30, 5 6 ) , {90, 1 3 2 ) , {182, 240}} 

D 7.2.3 Pm[insert[nat]] 

We construct a set of pairs, each pair consisting of a natural number and a set of natural 
numbers. Then for each entry in the set, Pm [insert[nat]] will insert the natural number 
into the set of natural numbers. 

amaz ing = empty [nat ~X~P [nat ] ] ; 
Do[amaz ing » 

i n s e r t [nat-X-P [ n a t ] ] [ r [ r [ 3 i + 3 , 
i n s e r t [ n a t ] [ r [ 3 i + 2 , 

i n s e r t [nat] [r [ 3 i + l , empty [ n a t ] ] ] ] ] ] , 
amazing ] ] , { i , 0, 3 } ] ; 

amaz ing 
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{r[3, {1, 2}], r[6, {4, 5}], r[9, {7, 8}], 

r[12, {10, 11}]} 

Pm[ insert [nat]] [amazing] 

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}} 

D 7.2.4 Programming example 

We show how to use the language for SetOf[SetOfI-]] to write a simple program by 
constructing a function union[obj] that takes expressions of type P[P[obj]] to P[obj]. 
Eléments of P[P[obj]] are families of sets of éléments of obj. Union is to hâve its usual 
meaning for such a family of sets. Note that it is only necessary to give rules for union 
where the argument has the form empty[P[obj]] or the form insert(P[obj]][ - - - ] since 
the rewrite rules guarantee that every term of type P[P[obj]] has a normal form of one of 
thèse kinds. The opération of union does not exist at any lower level in the hierarchy of 
types. As a concept, it does not occur for obj or for SetOflobj], 

u n i o n [ o b j _ ] [empty [ P [ o b j _ ] ] ] » empty [ o b j ] 

u n i o n [ o b j _ ] [ i n s e r t [P [obj_] ] [r [empty [ob j_ ] ,Q_] ] ] : = 
u n i o n [ o b j ] [Q] 

u n i o n [ob j _ ] [ i n s e r t [P [ob j _ ] ] [ 
r [ p _ , empty [ P [ o b j _ ] ] ] ] ] := p 

u n i o n [ob j _ ] [ i n s e r t [P [ob j _ ] ] [ 
r [ i n s e r t [ o b j _ ] [ r [ n _ , p _ ] ] , Q _ ] ] ] : = 

i n s e r t [ o b j ] [ r [ n , 
u n i o n [ o b j ] [ i n s e r t [ P [ o b j ] ] [ r [ p , Q ] ] ] ] ] 

To test this, consider an expression, threes, of type P[P[nat]]. 

t r i p l e s = empty [ nat -X-P [ n a t ] ] ; 
D o [ t r i p l e s = i n s e r t [ n a t ~ X ~ P [ n a t ] ] [ r [ r [ 3 i + 7 , 

i n s e r t [ n a t ] [ r [ 3 i + 4 , 
i n s e r t [ n a t ] [ r [ 3 i + l , e m p t y [ n a t ] ] ] ] ] ] , 

t r i p l e s ] ] , { i , 1 , 6 } ] ; 
t h r e e s = Pm [ i n s e r t [na t ] ] [ t r i p l e s ] 

{ { 4 , 7, 1 0 } , {7 , 10 , 1 3 } , {10, 13, 1 6 } , {13 , 16, 191, 

{16 , 19 , 2 2 | , {19 , 22, 25}} 

u n i o n [ n a t ] [ t h r e e s ] 

{ 4 , 7, 10 , 1 3 , 16, 19, 22 , 25) 
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• 8. Appendix B: Implementation 

• 8.1 The natural numbers 

D 8.1.1 The polymorphic product structure 

This constructs the polymorphic identity function 

setupid[arg_] :« 
{ a r g [ i d [ x _ ? a r g ] ] :* True, id[x_?arg] := x} 

This constructs the product object argl x arg2 whose éléments are records r[x,y] where x 
is of type argl and y is of type arg2. 

setupprod [argl_, arg2_] : * 
{X[argl,arg2] [r[x_?argl,y_?arg2] ] :=» True, 
pl[r[x_?argl,y_?arg2]] := x, 
p2[r[x_?argl,yj?arg2]] :» y ) 

This constructs a function f x g from argl x arg3 to arg2 x arg 4. 

s e t u p p r o d m a p [ a r g l _ , f_, a r g 2 _ , a r g 3 _ , g_, a r g 4 _ ] : = 
{ X [ a r g 2 , a r g 4 ] [Xm[f,g] [ t_? ( X [ a r g l , a r g 3 ] ) ] ] :=True 

/ ; (arg2[f [x_?arg l ] ]=True && 
arg4[g[y_?arg3]]==True), 

X m [ f , g ] [ t _ ? ( X [ a r g l , a r g 2 ] ) J := 
r [ f [ p l [ t ] ] , g [ P 2 [ t ] ] ] } 

a 8.1.2 The Peano natural numbers. 

objecta[NAT]= (one, na t , (nat-X-nat) , boo l , same} 
arrows[NAT] = (oo, zéro , s , p l u s , t imes , greq, 

minus, True, False} 

domain [oo] » one; codomain [oo] = one 
domain [True] = one; codomain [True] = bool 
domain [ F a l s e ] = one; codomain [False] = bool 
domain [zéro] = one; codomain [zéro] = nat 
domain [ s ] = nat; codomain [s] » nat 
domain [ p l u s ] = nat -X-nat ; codomain [p lus] = nat 
domain [ t i m e s ] = nat~X~nat; codomain [ t imes] = nat 
domain [greq] = nat~X-nat; codomain [greq] = bool 
domain [minus] = same; codomain [minus] = nat 

Thèse functions implement the predicates for bool, one, nat, nat~X~nat, and same. 
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one[oo] = True 
onefj :» False 
bool[True] s True 
b o o l [ F a l s e ] =* True 
b o o l [ _ ] := False 

n a t [ z é r o ] = True 
n a t [ s [ n _ ? n a t ] ] :=» True 
n a t [ _ ] := False 

s e t u p p r o d [ n a t , n a t ] 
same [ t_? (nat-X-nat) ] := True / ; 

g r e q [ r [ p l [ t ] , P 2 [ t ] ] ] 

Thèse functions implement plus, times and minus as functions from nat~X~nat to nat, 
and greq as a function from nat~X~nat to bool. 

n a t [ p l u s [ t_? (nat -X-nat ) ] ] :* True 
n a t [ t i m e s [ t _ ? ( n a t - X - n a t ) ] ] :» True 
nat [minus [t_?same] ] : » True 
b o o l [ g r e q [ t _ ? ( n a t - X - n a t ) ] ] :=» True 

The values of plus,times,greq, and minus are defined recursively, and exceptions are 
propagated 

p l u s [ r [ n _ ? n a t , z éro ] ] := n 
p l u s [r [n_?nat , s [m_?nat ] ] ] := s [ p l u s [r [n,m] ] ] 

t i m e s [ r [ n _ ? n a t , zéro ] ] :» zéro 
t i m e s [ r [ n _ ? n a t , s [m_ ? n a t ] ] ] : = 

p l u s [r [ t i m e s [r [n,m] ] , n ] ] 

g r e q [ r [n_?nat, zéro] ] :» True 
g r e q [ r [ z é r o , s [nj?nat] ] ] := F a l s e 
g r e q [ r [ s [n_?nat ] , s [m_?nat] ] ] := g r e q [ r [n,m] ] 

minus [t_?same] := p l [ t ] / ; p 2 [ t ] == zéro 
minus [r [ s [n_?nat ] , s [m_?nat] ] ] :* 

minus [r [n,m] ] / ;same [r[n,m] ] 

O 8.1.3 Integer arithmetic 

n a t [ n _ I n t e g e r ] := True 
s [n_Integer ] :* n + 1 
p l u s [ r [ n _ I n t e g e r , m_Integer] ] := n + m 

t i m e s [r [n_Integer , xn_Integar] ] :=* n m 
g r e q [ r [n_Integer , m_Integer]] := (n >= m) 
m i n u s [ r [ n _ I n t e g e r , m _ I n t e g e r ] ] :=n-m/ ; g r e q [ r [ n , m ] ] 
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a 8.1.4 Variables 

This defines varnat as a subtype of nat and formats variables with subscripts. 

nat [n_?varnat] :^ True 
v a r n a t [ n [ i _ I n t e g e r ] ] :» True 

Format [n [ i — I n t e g e r ] ] :=* Subscr ip ted[n [ i ] ] 

• 8.2 Setof(-) 

a 8.2.1 Underlying graph of Setof[-]. 
At tr ibutes [SETOF] » ( L i s t a b l e ) 
A t t r i b u t e s [ P ] * ( L i s t a b l e ) 

o b j e c t s [ S E T O F [ a r g _ ] ] :» F l a t t e n [ ( 
o b j e c t s [arg ] , 
P [ o b j e c t s [ a r g ] ] , 
T h r e a d [ X [ o b j e c t s [ a r g ] , P [ o b j e c t s [ a r g ] ] ] ] ) ] 

A t t r i b u t e s [empty] - ( L i s t a b l e ) 
A t t r i b u t e s [ i n s e r t ] = ( L i s t a b l e ) 
A t t r i b u t e s [Pm] » (L i s tab le ) 
arrows[SETOF[arg_]] := F l a t t e n [ ( 

arrows[arg] , 
Pm[arrows[arg]] , 

Thread[Xm[arrows[arg] , P m [ a r r o w s [ a r g ] ] ] ] , 
empty[objects [arg] ] , 

i n s e r t [ o b j e c t s [ a r g ] ] )] 

domain [empty [obj_] ] :« one 
domain [ i n s e r t [ o b j _ ] ] := X[obj , P [obj ] ] 
domain [Pm[arrow_] ] := P [domain [arrow] ] 
codomain [empty [obj_ ] ] := P[obj ] 
codomain [ i n s e r t [ o b j _ ] ] :» P [ o b j ] 
codomainfPmfarrowJ ] := P [codomain[arrow] ] 

A t t r i b u t e s [ d i a g p r o d ] = ( L i s t a b l e ) 
d i a g p r o d [ o b j _ ] := s e tupprod[obj , P [obj] ] 

Q 8.2.2 Predicates and rules for Setofl-]. 

At tr ibutes [predsetof] = (Listable) 
predsetof [obj_] := { 

P / : P [obj] [empty [obj]] := True, 
P / : P [obj] [ inser t [obj] [r[nJ?obj, 

P I ? ( P [ o b j ] ) ] ] ] : = True ) 
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A t t r i b u t e s [ s e t i n s e r t r u l e s ] - (Lis table) 
s e t i n s e r t r u l e s [ o b j _ ] :* ( 

i n s e r t [ o b j ] [ r [ n _ ? o b j , 
inser t [obj ] [r [m_?obj , p _ ? ( P f o b j ] ) ] ] ] ] := 
i n s e r t [ o b j ] [ r [ m , i n s e r t [ o b j ] [ r [ n , p ] ] ] ] / ; 

!0rderedQ[(n,m}], 
i n s e r t [ o b j ] [ r [ n _ ? o b j , 

in ser t [ob j ] [ r [n_?obj ,p_? (P[obj ] ) ] ] ] ] := 
insert [obj ] [r [n ,p] ] ) 

A t t r i b u t e s [setoprules] - (Lis table) 
se toprules [arr_] :* ( 

Pmftrr] [empty [domain[arr] ] ] :» 
empty[codomain[arr]], 

Pmfarr][insert[domain[arr]][ 
r[n_? (domain [arr] ) , 

p_? (domain[Pm[arr]])]]] : = 
insert[codomain[arr]] [r[arr[n] , Pm[arr] [p]]] } 

D 8.2.3 The function setof[-]. 

setof[argj :=Flatten[( 
diagprod[objects[arg]], 
predsetof[objects [arg] ], 
setoprules[arrows[arg]], 
setinsertrules[objects[arg] ] } ] 

D 8.2.4 Formatting rules for Setof[-]. 

format [empty[obj_] ] :* {} 
format [ in ser t [obj_] [r[n_, p_] ] ] : = 

Prepend[format[p],n] 
Format [empty [obj_] ] := format [empty [obj] ] 
Format [ i n s e r t [obj_] [r [n_,p_] ] ] :* 

format[insert[obj][r[n,p]]] 

• 8.3 Evaluation of Setof[Nat] and SetoflSetoflNat]] 

setof[NAT]; setof[SETOF[NAT]]; 
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