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B-CATBGOKIES AID GAXUTS 

S. Kasangian 

Introduction. 

In 171 R. Street defined "gamuts" as the V-counterpart of 
cofibrations in V-Cat in order to recover modules as codiscrete 
cofibrations. In [51 we observed that automata seen as enriched 
catégories (C23) were an example of gamuts and that the 
behaviour-realization local adjunction could be proved for a 
gênerai biclosed category V , and for arbitrary modules rather 
than just endobimodules of the trivial V -ca tégor ie 1 . 

Ve made however a further step towards generality in C33, where 
we described tree automata as catégories enriched over a 
bicategory B , or rather as gamuts in B-mod. The behaviour 
module is not any longer an endobimodule, and a behaviour-
realization theorem holds, very similar to the classical one. 
Thus, we deem that an exposition of the B-categorical machinery 
necessary to get to this generalization is useful. This is the 
content of §1, of a somewhat expository nature, and of §2, where 
the main results are given. 
In §3 we illustrate examples; in particular, in example 3,2 we 
give a brief account of aur categorical treatment of tree 
automata, following the line of C31 and providing motivation for 
our gênerai resuit. Thence, we think that a very short and 
informai recall of the classical notion of tree automata has an 
appropriate place in this Introduction. 

The classical theory of tree automata (see e. g. CIO]) 
relies on the notion of Z-algebra, where E is a set of 
opérations symbols that, together with an "arity" function from 
l to the non négative integers, constitutes a similarity type; a 
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E-algebra is then a set A (the carrier of the algebra) together 

with a map a assigning to each symbol h of arity (say) n in 

E an actual opération a^iA^A . ïullary opérations are called 

constants, 
A deterministic ï-automaton is essentially a E-algebra (the 

set of states of the automaton is given by the carrier and for 

each input symbol hcE the corresponding transition map is the 
opération a^ ) plus a subset F (the final states) of A .The 

a-images of the constants are the initial states. The inputs of 

the automaton are given by the set TE of terjns (or trees) of 

the type E , that is the smallest subset of the free monoïd on 

E such that: 

a) the constants are terms, 

b) if f is an n-ary opération symbol and ti,...,tneTs , then 

f (ti trOeTs. 

Thus a term corresponds to a computation involving several 

opérations of various arities, the séquence of which is often 

represented as a graph, namely a tree, where n-ary branchings 

visualize n-ary opérations: the nodes can be either constants or 

subtreest that is, according to the inductive définition above, 

again terms. 

The notion of non deterministic automaton is obtained in a 

similar way from the notion of relational algebra^ where 

transition maps are substituted by transition relations 
phiA^A, relative to the input h . 

Ve call reaciabJe states (or definable éléments) of a 

deterministic (resp. non deterministic) automaton the a-images 

(resp. p-images) of the terms. Ve say an automaton is reachable 
when ail the states are reachable. The behavlour g A. of a non 

deterministic automaton A = (A,p,F) is the set of trees 

recognized by A, i. e. #A = {teTs / p(t)AF * 0}. 
Of course, since the "dynamics" of an automaton (i. e. 

forgetting terminal states) is just an algebra, ail the notions 

above can be rephrased in terms of Lawvere's functorial 

semantics. 

A theory T is a category whose objects are finite sets 

[n] = <l,...,n} , n = 0,1,2 and which admits the category 

of finite sets as a subcategory. The initial object is [0] = 0 

and [1] = <1> is the terminal one. Notice further that [m] is 

the m-fold coproduct of [ 1] , so that an arrow a:[m]-*[n] is 

équivalent to an m-tuple of "injections" ai:[13-*[n] . 

A T-algebra is then a product preserving functor AîTopMSet and 

a morphism of T-algebras is a natural transformation. 
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Vith this said, it is obvious to define a deterministic automaton 
as a pair given by a T-algebra and a set of final states F 
which is a subset of AC1] , where AI 11 is again the carrier of 
the algebra. 

Non deterministic automata correspond then analogously to 
relationnal T-algebra, i. e. lax functors A:T°^Rel(S) ( Rel (S) 
is the bicategory of sets and relations) sending coproducts in T 
ta quasi-products in Rel (S) . Ve will describe in 3.2 a 
bicategory B(T) constructed out of the theory T and such that 
T-algebras corresponds to B(T)-categories, while automata 
correspond to certain diagrams, to take into account final states 
and behaviour. 

In fact, the behaviour itself is a functor and, as a conséquence 
of our gênerai resuit, it is possible to construct a 
"realization" functor which assigns to each behaviour a canonical 
automaton with a "quasi-universal" property which exhibits the 
realization as a very weak adjoint to the behaviour. This is the 
"best" analogue to the classical Goguen's behaviour-realization 
adjunction in this non deterministic context. 
Finally, let us observe further that gamuts and cofibrations, 

crucial in the work of Rosebrugh and Vood ([6]), are even in this 
case an instance of gamuts in a bicategory of the form B-mod (see 
the remark at the end of §1). 

1. Gamuts and B-categories. 

Let B be a locally complète and cocomplete biclosed 
bicategory, i. e. with right liftings and right extensions. 
Namely, given 1-cells with common domain f:a-*c and g:a-*d , 

there is a 1-cell from c to d satisfying the universal 
property of a right Kan extension. The extension will be denoted 
by [f,g] . 

As for the lifting of 1-cells with common codomain, it is 
defined ta be an extension in B*00*5 (the bicategory obtained 
from B by reversing both the 1-cells and the 2-cells). The 
lifting will be denoted by <f,g> . 

Ve recall hère briefly the basic notions of B-category 
theory, referring the reader to (e. g.) [9] and [1] for further 



détails and applications. Our gênerai référence for bicategories 

is [11. 

A B-category X is a set X together with a function 

e:X-*ObjB and a function X(-,-) :XxX->MorphB such that: 

(i) X(xi ,Xs>):e(xi )->e(X2), 

(ii) <SÏU<:>O->X(X,X), 

(iii) M:X<X*,X3).X(XI,X2)-*X(XI,X3), 

satisfying the obvious axioms of left and right identities and 

associativities. 

If x is an object of a B-category X , e(x) is called the 

"underlying object" of x in B or also the "extent" of x . 

The 2-cells S and JJI are the identity and composition 2-cells. 

Notice that if we consider a monoïdal (biclosed) category V as 

a one object bicategory whose 1-cells are the "objects" of V 

and 2-cells are the "arrows" of V , then the définition above 

specializes to the classical notion of V-category. 

Exaaple ([111). If L is a locale, the bicategory of relations 

Rel(L) is defined as follows: 

- objects of Rel(L): opens u in L , 

- arrows from u to v : éléments w$u v , 

- 2-cells: order in L , 

- composition of arrows: intersection. 

In Cil] Valters showed that the category Sheaves(L) is 

équivalent to a suitable subcategory of Cauchy-complete (see 

below for a définition) Rel(L)-categories. 

A B-functor F from X to a B-category Y is a function 

F:X-*Y such that: 

(i) e(F(x)) = e(x) , 

(ii) F>o,:>:X(x,x')-*Y(Fx,Fx' ). 

The 2-cell F>c>,> is called the strength of the functor; notice 

again that the définition above gêneraiizes the notion of V-

functor. 

Ve call B-cat the bicategory of B-categories and B-functors. 

If X and Y are B-categories a blmodule 0:X-+->Y assigns: 

- to each pair of objects x in X and y in Y over u, v 

respectively, a 1-cell 0(x,y):u-»v in B, 

- to objects x, x' in X and y in Y , a 2-cell (right 

action) p:*(x' ,y)X(x,x* )=>* (x,y), 

- to objects x in X and y» y1 in Y , a 2-cell (left 

action) X: Y (y, y» ) * (x, y)=tf (x, y» ), 
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satisfying the axions expressing the compatibilities of the left 

and right actions. 

Again this définition gêneraiizes the notions of V-module and 
distributor. Further, as in the V-categorical case, a B-functor 
F:X->Y yields a pair of bimodules F*:X-+->Y and F*:Y-+->X 
given by: 

- F*(x,y) = Y(Fx,y), 

- F*<y,x) = Y(y,Fx). 

Given bimodules *,y:A-+->C , a 2-cell 8:0=>y is a family of 

2-cells 8«^:* (a, c)=*y (a, c) in B compatible with the actions. 

The composite y*:A-+->X of bimodules 0:A-+->C and y:C-+->X 

is defined as follows: 

- y^(a,x) is the colimit in B(ea,ex) of the diagram 

y(c,x)*(a,c)< (c* ,x)C(c,c' ) (a,c) >y(c* ,z>l<a,c' ) 
p. f (a,c) y (c* ,x) 

where c, c' vary over ail objects of C . The actions are the 

obvious ones induced by the actions of t and y . Notice that 

the existence of the colimit is guaranteed by the assumption of 

the local cocompleteness of B . Ve write this colimit with the 

coend natation: 

/c:y(c,x).0(a,c). 

Thus we can define the bicategory B-mod of B-categories and 

bimodules. 

It is also possible to speak of adjoint bimodules. 

An important example is provided by the bimodules F* and F* 

induced by a B-functor F : we hâve the adjonction F* -I F*. 

A B-category is Cauchy-complete if every adjoint pair of 

bimodules ^,y:X^Y arises from a functor from X to Y. 

To test Cauchy-completeness is sufficient to consider bimodules 

to/from trivial B-categories, that is one object B-categories 

(say u" ) over an object u , with uA(*,t) = 1^. 

Notice that in our assumptions, B-mod is again a biclosed 

bicategory. Indeed in the diagramm: 
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* C 

c*,y] 

the components [*,y](c,d) of the bimodule C*fy] are given by 

the equalizer of the following diagram: 

ïï [*(a,c),y(a,d)3 3 TT lj (a,c). A(a» ,a),y(a' ,d)3 

and are 1-cells e(c)->e(d). 

Ve will use for this equalizer the end notation: 

[*,y](c,d) = /m [*(atc),y(a,d)]. 

Notice also that the various forms of Yoneda lemma, involving 
intégral notation, hold. 

In [73 Ross Street defined gamuts in V-mod , which are 

actually defineable in any bicategory, being just diagrams 

defined by lax functors from the bicategory 3 . 

So, a gamut in B-mod (or a B-gamut) from A to D is a diagram 
(C,0,y,8,X); 

A morphism of gamuts (C,*,y,8, X)-*(C ,** ,y*,8', X' > is then given 

by (StOc^Y) where S is a bifunctor C-»Cf and a, 0, Y are 

2-cells a:0=>S*./T , £:y.S*=>y» , ï:e=>ef such that: 
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> D = *D 

where S* dénotes the right adjoint in the pair of modules 
induced by the functor S . 

As an aside, we mention the fact that the resuit of Street 
([7]) concerning the (biéquivalence between the (bi)category of 
V-gamuts from A to D and the (bi)category of cofibrations 
from A to D can be extended to the B-categorical context. 
However this is beyond the scope of the présent paper. 

Gamuts hâve been also considered by Rosebrugh and Vood in 
the context of their "proarrow equipments" ([63) Top-*LTop , 
where Top is the bicategory of topoï and géométrie morphisms 
and LTop is the bicategory of topoï and left exact functors. 
Vhat is interesting for us is that this is one example of 

gamuts in bicategories of the form B-mod . In fact, by Barr's 
theorem (see [43, p. 252) BLTop (boolean topoï) is a dense 
subbicategory of LTop , and we hâve LTop * BLTop-modf ±n , where 
"tin" means that we are considering just finite BLTop-
categories. 

2. The canonical décomposition. 

For each small category A , there exists a B-category PA 
which represents modules, in the sensé that, for modules 
8îA-+->C , we hâve: 

(1) 
8:A-+->C 

T:C->PA 
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Notice that T(c) is 6(-,c) , which is a module from A to 
e*(c) . 

The B-category PA is defined as follows (see also [93): 

- objects are modules *:A-+->uA , u ranging in B , and for 
y:A-+->vA we set, using the biclosed structure of B-mod, 

PA(*,y) = [*,y3 =«/![**,y*3. 

Since we will consider also gamuts with a large "top" category 
(in fact PA ), we hâve to suppose B embedded in a B* 
corresponding to a higher universe Set' , in such a way that the 
inclusion of B in B' préserves local limits and Set'-small 
local colimits. 

Let us recall now some classical propositions of V-category 
theory (see [53) which extend easily to the B-categorical case. 

Proposition 2.1. Let F:A->C be a fully faithful functor between 
two small B-categories and let i be a module from A to D . 
Then we hâve F*[F*,*3 * i . 

Proposition 2.2. Given a module 8:A-+->C , the gamut below has 
an invertible 2-cell; 

> C 

(hère T is the functor corresponding to 8 in (1) and Y is 
the Yoneda embedding). 

Notice that the proofs rely essentialy on the validity of the 
B-categorical forms of Yoneda lemma. 
The gamut of Proposition 2.2 is called canonlcal décomposition 

of the module 8 . 
Obviously, to any gamut from A to C is possible to assign 
canonically a module, the bottom one. This process amounts to a 
"forgetful" homomorphism: 
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F: B-gam(A, C)-»B-mod(A, C) 

Ve define also a homomorphism: 

R: B-mod (A, C)-*B-gam(A, C) 

sending a module 8 to its canonical décomposition and a 2-cell 
^:8481 to the morphism of gamuts R* = (IRA, id, V*,?) , where 
Ï*:T*=*T'* . 
Observe that B-mod(A,C) is a discrète bicategory. 

Recalling now (see [23 for the détails) that a homomorphism 
of bicategories Q:V-*D has a right local adjoint A:D->V if for 
each v in V and d in D there is an adjunction 
Âvd -I Qvd! 

D(Qv,d) * "* ç V(v,Ad) 

Qvd 

with appropriate naturality conditions, we hâve the following: 

Theorem 2.3. The homomorphism F: B-gam(A, C)-»B-mod(A,C) has a 

right local adjoint R: B-mod(A,C)-*B-gam(A,C>. 
Proof. Ve hâve to prove that, for arbitrary 8 in B-mod(A, C) 
and X = (D,0,y,6*,X) in B-gam(A,C), it holds: 

B-mod(FX,8) < ** > B-gam(X,R8) 

Rx<=» 

W i t h Rxe -I F x e . 

Let ï:8'=>8 in B-mod (FX, 8). Notice that since the latter is 
just a set, if (S,a,#, X) :X->R8 is a morphism of gamuts, to say 
that Rxe is left adjoint to Fxe amounts to the following: 

Rxe(7)=XS,a,3,*) 

7=>ï 

where 7-»¥ is in a discrète category, so either 7 = V or there 
is no 2-cell. So there is exactly one 2-cell Rxe(7)=*(S,a, p, t) 
iff 7 = t . This is to say that for each Y:8'=>8 , the full 
subcategory of B-gam(X,R) given by the (S, a,JS, *) : X-*R8 with 
this v , has an initial object. It is easily checked that (just 
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like in [53, theorem 9) this is obtained observing that to give a 
morphism of gamuts (S,a,£, t) :X-*R6 is to give the module 
<r:A-+->D corresponding to S under the bijection (1) , plus 2-
cells a:*=><r , €:y<r=»8 and ¥:8'=*8 . 
Ve hâve the initial object by putting <r = ^ , a = i d , e = ï X . 

3. Examples. 

3.1. The one object catégories A in B are to be thought 
of as monads (v,m) with m = A (a, a) on v = e(a) in B . 
Then the fibre (PA)U is the B(u,u)-category of wr opalgebras 
with codomaln u . So PA is the (large) B-category of 
opalgebras with ail possible codomains. 
Ve can define a morphism of opalgebras with différent codomains 
t:v-*u and s:v->w as [t,s3 in B. This is the hom in PA . 
Now Y*(a,t) = PA(Ya,t) = [m,t3 . 
Given a module <r:A-+->C , where C = (u,n) , the corresponding 
functor S: C-*PA is the 1-cell <r:v-*u. 
So S*(t,c) = PA<t,<r) = [t,o-3 and 

Y*S*(a,c) =/t-PA(m,t)-PA(t,(r) = PA(m,oO = [m,<r3 

and, by Proposition 2.2, [m, <r3 * (r . 

3.2. In [33 tree automata are described as catégories 
enriched on a bicategory. Ve already recall in the Introduction 
that a (non deterministic) tree automaton is a (relational) T-
algebra (plus the initial and terminal states), where T is a 
Lawvere's theory, i. e. a category whose objects are finite sets 
and which admits the category of finite sets as a subcategory. 
Starting from the theory T , a bicategory B(T) is defined as 
follows: 
- B(T) has the same objects as T , 
- the 1-cells from u to v in B(T) are the subsets of 
T(u,v) and 2-cells are inclusions, 
- composition of 1-cells and identities are the obvious one. 
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B(T) satisfies the assumptions of SI, in particular it is 
biclosed, with 

£[R,S3 

given by [R,S3 = <k:v->w in T such that kRÇS). 
In [33 it is shown that the category of "reachable" T-algebras is 
isomorphic to the category of "reachable" B(T)-catégories. 
A tree automaton is defined as a gamut: 

[13A > [03 

where X is a B(T)-category (i. e. an algebra) and [ni" 
dénotes the trivial category over [n3 . If b = (bi,...,bn) is 
an X-object over [n] , then I(b) = X(b,Xo) , i. e. it provides 
n-tuples of trees (xo dénotes hère the unique X-object over 0), 
while T(b) = (geT([ 13, [ni ) / 3 aeFCXcn and geX(a,b)> , where 
F is the set of final states, so that T détermines sets of 
opérations which are succesful if performed on those trees (see 
[33 for ail the détails). The composite module T. I is now the 
behaviour of the automaton (the set of trees computed by the 
opérations of the automaton which are recognizable, i. e. which 
belong to the set of final states). 
Ve can apply hère our theorem on local adjoints, where the right 
local adjoint to the "behaviour" (i. e. the forgetful functor) is 
the realization functor, which associâtes to a behaviour 
8:[13A-+->[03A the gamut: 
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PC13 

[13A I v C03A 

This resuit is a gêneraiization of both [23 and [53, and provides 

furthermore a motivation for the "abstract" theorem of [53, where 

modules were taken between two différent V-categories, although 

in the leading example of ordinary automata they both coïncide 

with the trivial category [13A. In fact, in the case of tree 

automata the "behaviour" module is necessary defined between two 

différent catégories, namely [13A and [03" . 
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