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GEOMETRIE DIFFERENTIELLE CATEGORIQUES

THE TOTAL EXTERIOR DIFFERENTIAL
by M. BARILE, F. BARONE and W.M. TULCZYJEW

Abstract. The definition of mixed jets includes the finite
sequences of vertical vectors tangent to jet bundles. This al-
lows us to define differential operators on vertical forms on jet
bundles by using mixed jets prolongations. The total exterior
differential is a special case.

Résumé. La définition de jets mixtes inclut les suites finies
de vecteurs verticaux tangents a des fibrés de jets. Cela nous
permet de définir des opérateurs différentiels sur des formes
verticales & un fibré de jets, en utilisant les prolongements
de jets mixtes. Le différentiel exterieur total en est un cas
particulier.

KEYWORDS: Jet bundles, differential operators.
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1. Introduction.

The total exterior differential presented in this paper is an opera-
tor that generalizes the total derivative [3][4] and its construction is
strongly based on the notion of mixed jets introduced in Section 3.
Our line of thought can be clarified by means of the following simple
example. Let TM be a tangent bundle and

f:TM =R : t'y(0) — f(t'v(0)) (1)

be a differentiable function defined on TM. The total derivative of f
is the following differentiable function defined on the second tangent
bundle T2M:

drf: T?°M — R : t*7(0) — D(f o t'7)(0), (2)

where t'y : R — TM is the prolongation of the curve v to TM, i.e.
its tangent lift, and D is the usual derivative of real functions. In the
definition (2) we explicitly use two basic facts: any second tangent
vector is an equivalence class of curves, and any curve on the manifold
M can be prolonged to a curve on the tangent bundle TM.

If we now regard f as a O-form on TM, we may look for an extension
of the total derivative to g-forms on TM, i.e., to multilinear totally
antisymmetric mappings

Q: x4, T(TM) — R. (3)

What we expect, as a result, is a mapping

drQ: X%, T(T2M) - R (4)

still multilinear and totally antisymmetric.

In order to follow the same pattern as above, we need to consider the
elements of the fiber product X¥,,,T(T?M) as equivalence classes of
(families of) curves on M, and we need the definition of their prolon-
gations to X1,,T(TM). This is made possible by the notion of mixed
tangent vector.

Now notice that in (2) the derivative D acting on real functions could
as well be interpreted as the exterior differential d. We will then obtain
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a further extension of the total derivative, if the role played by D is
taken over by the exterior differential d. In this passage, the role of
the iterated tangent bundles will be played by the vertical bundles
tangent to k-jets and the mixed tangent vectors will be replaced by
mixed jets. The result will be the total exterior differential.

The paper is subdivided into two main parts and an appendix. The
first part is devoted to the definition of mixed jets, restricted to the
case of those mixed jets that can be identified with g-uples of vertical
vectors tangent to k-jets. The second part deals with the total exterior
differential, starting from the special case of the total derivative. In
the appendix we will give the coordinate-based approach to the main
constructions presented in the paper.

Remark. The total derivative appears in the Euler-Lagrange operator
acting on Lagrangian forms defined on iterated tangent bundles. The
total exterior differential will take over its role in the case of the Euler-
Lagrange operator acting on Lagrangian forms defined on jet bundles.
This is the topic of a forthcoming paper.

2. Preliminaries.

In this paper we will adopt the algebraic interpretation of jets [2], [6].
Unless otherwise specified, all mappings considered in the paper will
be local and differentiable. Let M and N be differential manifolds. A
mapping ¢ from M to N will be also denoted by ¢ : M — N without
specifying its domain. The set of all mappings from M to N which
are defined at x € M will be denoted by D(N|M, z).

Consider the following equivalence relation in D(N|M,z): ¢ and ¢’
are equivalent if they coincide on some open neighbourhood of z. The
equivalence class of o, denoted by jp(x), is called the germ of ¢ at z.
The set of all germs at x is denoted by J°(/N|M, z) and we set

J(N|IM) = | J(NIM, z). (5)
zEM

Consider the special case N = R. In this case the set of germs at x
of real functions, denoted by A¢(M, ), is a commutative associative
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algebra with a unit element, and has a unique maximal ideal, namely
I°0(M, x) = {|f(z) € A*(M, z); f(z) =0}. (6)
In the algebra A°(M, z) we have the sequence of ideals
I0(M, x), Iy (M, z),...,I%(M,x), %1 (M, ), ... (7
where, for any k € N,
(M, z) = (I°o(M, z))**. (8)

Inclusion relations

|ck(M,.'13) C |ck/(M,£I:) (9)

hold for all ¥’ and k in N such that k’'<k.
In the set D(N|M,z) we have, for each k € N, another equivalence
relation: ¢’ and ¢ are equivalent if

°(fo)(@) = (f o @) (@) € I°h(M, 2) (10)

for any function f on N for which the compositions (fo¢’) and (fop)
make sense. The equivalence class of ¢, denoted by j*¢(x), is called
the k-jet of ¢ at x. The set of all k-jet at x is denoted by J*(N|M, z)

and we set
JS(N|M) = ) JF(N M, ). (11)

zeM

The set J*(IN|M) can be endowed with a structure of a differential
manifold (Cf.(A18)) such that the k-jet-source projection

Ok(N|M) Jk(N|M) — M :jk(p(x) — T (12)
and the k-jet-target projection
Tk(N|M) 1Jk(N|M) - N:jksa(x) — () (13)

are differentiable fibrations.
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The k-jet prolongation of a mapping ¢: M — N is the mapping
Fo: M — H(NIM):z — [Fo(z). (14)

The case M = R is of special interest: the k-tangent fibration

TEN
Tk Nl (15)
N

of a manifold N can be regarded as the restriction of the projection
T (v[R) : J¥(N|R) — N to the fiber J*(N|R,0). In view of this identi-

fication, we will always write t*y(0) instead of j*y(0) for every curve
v in N.
From the tangent fibration

TJ*(N|M)
TJ*(N|M) (16)
JE(N|M)
we select the subfibration
VJF(N|M)
Ugk(N|M) (17)
JE(N|M)
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vertical with respect to the fibration (12), i.e, for each z € J*(IN| M),
V. J¥(N|M) = (v (njan) "1 (2) = ker Too (v ), (18)

where T, 04(n|nr) is the tangent mapping of ok (n|n) at 2.
We finally recall that a g-form on a manifold M is a mapping

Q: x4, TM — R, (19)

multilinear and totally antisymmetric. It can be identified with a
section of the fiber bundle

NIT* M
" (20)
M

The space of all g-forms on the manifold M will be denoted by AY(M)
and then A(M) will be the exterior algebra on M.

3. Mixed Jets.

In this section we focus on mappings defined on a cross-product of two
manifolds. The first step will be the construction of a class of ideals
which describe the behaviour of the mappings on the two manifolds
separately. Then we will use these ideals to define the mixed jets.
For our purposes it will be sufficient to choose R? as one of the two
manifolds involved.

Let M be an m-dimensional differential manifold, consider the cross-
product R? x M and denote by pr; and pr; the natural projections
onto R? and M, respectively.

Now let (0,z) € R? x M and consider the mapping

A*(R?,0) — A*(R? x M, (0,)):j*f(0) — |*(f o pr1)(0,2). (21)
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We denote the image of the ideal I{(R?,0) by I{(R?,0) o j*pr1(0, z).
Then we consider the ideal of A¢(R? x M, (0,x)) generated by this
image

15 (R (M,2)), = (1{(R?,0) 0 [*pr1(0,3)). (22)

Any element in the above ideal (22) is then the germ at (0,z) of a
function on R? x M that is the sum of products

(fopri)g, (23)

where g is any function on R? x M, and, owing to Proposition A1, in
the notation introduced in the Appendix, f : R? — R satisfies,

Opf(z) =0 (24)

for any g-multi-index p such that |p|<1.
We repeat the construction starting, this time, with the mapping

A (M,z) — A°(R? x M, (0,z)):j°¢(z) — j“(popr2)(0,z). (25)
We first consider the image of the ideal If,(M,z), which will be de-

noted by If,(M, z) ojprs(0, z), and then the ideal of A°(RY x M, (0, z))
generated by this image

15 (R9,0); M), = (15(M,2) 0 'pr>(0, ) ). (26)

Any element in the above ideal (26) is still the germ at (0,z) of a
function on R? x M that is the sum of products

(f opra)g, (27)
but, this time, f : M — R satisfies
Auf(z)=0 (28)
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for any m-multi-index g such that |u|<k.
Finally consider the ideal sum

161 5)(R? x M, (0,z)) = I§ (R% (M, ), + 15 ((R?,0); M) . (29)

Any element in the mixed ideal (29) is then the germ at (0,z) of a
function on R? x M that is the sum of terms

(fiopri)gr + (f2 o pra)g2 (30)
with
apfl (.’17) =0
Opfa(z) =0 (3

for any g-multi-index p and m-multi-index p such that |p|<1 and

lpl<k.
We have the following inclusions

15 (R%; (M, ), C I(R? x M, (0,)) (32)

I;((RQ,O);M)QB C I;(Rq x M, (0, x)), (33)
moreover relations
|E1,k) (Rq x M, (O,a:)) - Ifl’k,)(Rq x M, (O,a:)) (34)

hold for all ¥’ and k in N such that k'<k.
The mixed ideals (29) will now lead to the definition of mixed jets.
Let N be an n-dimensional differential manifold. In the set D(N|R? x

M, (O,x)) we introduce, for each £ € N, the following equivalence
relation: x’ and x are equivalent if

(f o x)(0,2) = *(f o x)(0, ) € Iy ) (R? x M, (0, 7)) (35)

for any function f on N for which the compositions make sense.
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The equivalence class of x is denoted by j(*'*)x(z) and is called the
(1, k)-jet of x at . The set of all (1, k)-jets at = will be denoted by
JAE) (N|R? x M, z) and we set

JAB (NR? x M) = U JAOE)(N|R? x M, ). (36)

zeEM

The set J(LF) (N|R? x M) can be endowed with a differential structure
(Cf.(A.31)) such that the (1, k)-jet-source projection

O(1,k) (N|RIx M) WO (NIR x M) — M :[*Fx(z) — (37)
and the (1, k)-jet-target projection
Tk (NRaxany PP (NRT x M) — N:jEFy(z) - x(0,z)  (38)

are differentiable fibrations.
The (1, k)-jet prolongation of a mapping x : R? x M — N is the map-
ping

OB M — JED(N|RT x M) :z — j3F (). (39)

We conclude this section by showing how g-uples of vertical vectors
tangent to jet spaces can be related to mixed jets. Let us consider the
fiber product of g copies of the vertical bundle (17),

X 9% vy VE (N |M)

vjk(sz) (40)

JH(N|M)

Proposition 1. The elements of JO*)(N|R? x M) are in a one-to-
one correspondence with the elements of X§, (N M)VJ’“(N |M).
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PROOF: Let LR y(z) € JA*)(N|R? x M) and j € {1,...,q}. For
any real number s’ in a suitable neighbourhood of 0 € R, we can
consider the mapping

X (s?,-) =x(0,...,0,s,0,...,0,-): M — N (41)
and its k-jet, j*x*(s?,-)(z), at z. In this way we define g curves
7R — IN(N|M, z):87 — [ (s, ) (@) (42)

in the fiber J*(IN|M, x), whose tangent vectors tv7(0) are, therefore,

vertical. We set ‘ ‘
ti*x7(0, ) := t¥}(0). (43)

Note that, since
Xl(Oa')=°--=Xq(0a')=X(0")’ (44)
we have that

PFx'(0,-)(z) = ... = *x7(0,-)() = *x(0, - )(x) (45)

and, as a consequence,

(tjkxl(O, z),...,tjFx?(0, x)) € Xjk(N|M)VJk(N|M). (46)
We have constructed the mapping

Plaary T (VIR X M) — X )y V(N |M)
(47)
HHEPx(2) = (X1 (0,2), -, 1" x?(0, 2)).

We will prove that it is a bijection. Let £ and 7 be charts on M and
N, respectively. On the one hand j('*)x(z) admits the coordinates

(€(),9p0ux(0:2)) pi<s i » (48)
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(Cf. Appendix, (A.31)), on the other hand, the coordinate expression
of the j-th curve 42 in VJU*(IN|M) is

(@), 8ux’ (7, ) (@) |y » (49)

(Cf. Appendix, (A.18)). From (49) it follows that the tangent vector
tv2(0) has coordinates

(6@, 04X 0,) @) DEW (. )@) ) |, o (50)
or, owing to (44),
(6@, 0ux(©,2): D@ (7, )@) @) - 6D

The g-uple (t72(0),...,t72(0)) € Xjk(NlM)VJk(NIM) can then be

given the coordinates

(&), Bux(0,2); D (Bux* (s*,)(2)) (0), .., D (Oux*(s%, )(2)) (0) ) ISk

= (@), ux(0,2));:00ux(0,2)) (52)

= (£(), 8pOux(0,)) pi<1, i<k

This together with (48) shows that the mapping (47) is injective. We
prove that it is also surjective.
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Let (w',...,w?) € X nanVI*(N|M) and let

=1 =-m =1 =n 1 —n
(:L‘ ooyl ’yl,lnu-,yl[,ypuy"°’yplj)|p|<1’|#|<k (53)

be its coordinates. For each A = 1,...,n, consider the following poly-
nomial function on R? x R™:

PAGsY, .. s% 2t 2™) =
1 _ _
) e A G R Gl (54)
1<k see s Mm:

1
D i Uow (87 (s (@t = &) (@ - am)
Bz, Prlpglt !
1Pl1=1

The mapping
(P',...,P"):RY x R™ — R" (55)

is the coordinate expression of the mapping
x=n"to(P,...,P")of:RIxM — N, (56)

where £ = £ oidge. It is easy to check that the image of the (1, k)-jet
j(1*) % (0, z) in the mapping (47) is the assigned g-uple (w?,...,w9). g

The bijection gofjgl M) defined in the proof of the above proposition

gives rise to the following commutative diagram
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kv
PN M)

JAR(N|R? x M) X S (vyany VIF (N | M)

T(1,k)(N|Rq x‘l\/ Yl,k)(qu x M) / o
N X N
M

(57)

with
T = Te(N|M) © Ulk (N| 1) (58)

and
0 = Ok(N|M) ° “jk(mM)' (59)

A super-representative of a sequence (w!, .., w9) € XJk(NIM)VJk(N|M),

-1
is any representative of the corresponding jet (cpl(cl’gl M)> (wh,..,w9) €

JAF) (N|R? x M).
From Proposition 1 it follows that the (1, k)-jet prolongation (39) of
a mapping x:R? x M — N can be identified with the mapping

BB M = XSG gy VIH(NIM) 2 (X0, 2), ., ti*x9(0, 7))

(60)
4. The total exterior differential.

We start the construction of the total exterior differential from a spe-
cial case, i.e., the total derivative. It is a differential operator known in
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the calculus of variations. An intrinsic construction of this operator,
obtained as the result of a generalization of the Frolicher and Nijen-
huis theory of derivations [3], was presented in [4]. We are providing
here an alternative construction based on mixed jets of mappings on
RY? x R.

We will first regard g-uples in X7, NTT’“N as mixed jets. Let us con-
sider the diagram (57) in our special case M = R,

k.q
P(NIR
JAR) (N|R? x R) R X Je(vimy VIF (N R)
T(lyk)(NlmqV 0(1,k) (N|R xR) / o
N Ry N
R R
(61)

On the one hand the bijection <p’(°1’\?|R) induces a bijection between the

fibers at 0 € R,

k’ - E)
PiAR,0) TP (VIRT X R, 0) — X (g 0y VI*(IVIR, 0) (62)
R X (0) — (/X1 (0,0), . ..,tj*Xx(0,0)),

on the other hand, as we remarked in the preliminaries, we can make
the identification

JF(N|R,0) = TEN (63)

and then
VJ¥(N|R,0) = VT*N = TT*N. (64)
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If, moreover, we set

TARN .= JOB(N|R? x R, 0)

(65)
tR(0) 1= [BRx(0),
the mapping (62) becomes
cp’f\;q TOR N Xg.kNTTkN
(66)

R x(0) = (t*x(0,0), ..., 1t*x?(0,0)).

It follows that the diagram (61), when restricted to the fibers at 0 € R,
reduces to the following fiber isomorphism

k,q
TR N IN > XL TTEN
T(1,k) N Tk N © T (67)
N N

where 7(; x) N and 7'{’,, n are the restrictions to the fibers considered of
the projections 7(3 x)(njraxr) and vjk( NIR)’ respectively.

Finally, as a special case of (39), the (1, k)-tangent prolongation of a
local mapping x:R? x R — N is the mapping
tR R — X4 TTEN
(68)
1t (ttFx(0,¢ +-)(0),...,tt*x9(0,t + -)(0)).
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The representation of the elements of X%, , T T*N as mixed jets makes
operations on forms more efficient. We introduce an operator

dreky : A(TEN) — A(TFFIN) (69)

as follows.
Let
f:T*N SR (70)

be a 0-form on T*N, then dr(x)f is the O-form on T**! N given by

drQ: TFHN — R:tF*14(0) — D(Q2 o t*4)(0). (71)
If ¢ >0 and
Q: x4, TT*N - R (72)

is a g-form on T¥N, then dr ) is the g-form on T**!N given by

drQ: XLy TTFHIN S R
(73)
:(w',...,w?) = D(Qo i o tHFx)(0),

where x is any super-representative of (w!,...,w?).
The operator dp) is the total derivative. The coordinate expression
of its action is presented in the Appendix.

We will now introduce a more general operator, the total exterior
differential dg, where the role played in dp () by the derivation will
be played by the exterior differential.
Let

f:JF(N|M) - R (74)

be a 0-form on J*(N|M), then dy f is the 0-form on J*¥*1(N|M) given
by

du fIFHHNIM) — TM : [+ 1p(2) = d(f o [*¢)(z).  (75)
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More generally, we can consider a O-form on J*(N|M) with values in
APT*M, i.e., a bundle morphism

JE(N|M) Q - APT* M
s (76)
(o2
JE(N|M) FNIM)  ap

We obtain a 0-form on J**1(N|M) with values in APT1T* M

du)

Jk+1(N|M) > /\p+lT*M
bHl (77)
g
.]k'H(NlM) k+1(N|M) M

with the mapping d g2 defined by
duQ (*e(2)) = d(Q o j*¢)(2). (78)

We finally consider a vertical g-form on J*(IN|M) with values in the
set of p-forms on M, i.e., a bundle morphism

X% ian VIF(VIM) —S 5 npTxpg
'Uqu(NIM) W?M (79)
g,
J*(N|M) FVIM)
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Applying dy to it we obtain

dg
><3k+1(N|M)VJIH—1(‘Nlju) —Z, APHIT* M
v9 JE+1(N|M) ﬁﬁjl (80)
o
JEEL(N|M) RN

where the mapping dg 2 is defined by

dr: X Seia ypan VW (VM) — APTIT* M
(81)

1

s (w ,...,wq)r—»d(wocpzc’q

N|M) oj(l’k)X)(x)a

and x is a super-representative of (w!,...,w?).

The coordinate expression of the action of dy is presented in the Ap-
pendix. We conclude this presentation by remarking that, as is evident
from its construction, dg is only one of the possible operators that can
be defined by using mixed jets. Our choice is due to its future appli-
cation in the definition of the Euler-Lagrange operator.

5. Appendix.

In this section we give the coordinate-based approach to the main
constructions presented in the paper. First we give the differential
characterizations of the ideals we have introduced, from these we derive
differentiable atlases for the spaces of jets, and then we provide the
coordinate expressions of the actions of the operators dr () and dg.
In the sequel all the charts on manifolds will be arbitrarily chosen
within those which are compatible with the compositions involved.
We will adopt the following abridged notation.
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Let f : M — R. We set, for any chart £ = (z!,...,2™) on M and any
i=1,...,m,

_A(foe™ |

i f 5t £, (A.1)
and for any m-multi-index p = (&1, .., 4m),
OI(fog™t)
Opf = (Oz)H1 - - - (g™ )km °&, (4.2)

where |p| = p1 + - + fim.
Similarly, for any ¢ : M — N, we set

_ _OPl(nopog™)
Opp = (BzL)H1 - .. (O™ )km 0§,

(A.3)

where n = (y!,...,y") is any chart on N.
Finally, let x : R? x M — N, then for any other ¢g-multi-index p =

(p1s---,pq), We set

_ a|p|+|ﬂ'|(noxo§~_l) ~
OpOpx = (Bs1)P1 - - - (959)Pa (D)l - - - (D™ )b °g (4.4)

where, this time £ = idre x £ and idge = (s!,...,s9).
In particular, for a mapping x : R? x R — N, and any h € N, we set

8IPI+R(n o x)

h, _

6p6 X = (asl)l)l e (asq)Pq (6t)h (A5)
with (s!,...,s9,t) coordinates in R? x R.
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The symbols we adopted for partial derivatives of mappings do not
contain any reference to the charts on M and N used in their defini-
tion. This is because all the claims which follow are independent of the
choice of these charts, so that there is no need to mention them explic-
itly. The following propositions establish a link between the definition
of jet based on ideals of local algebras and the standard definition of
jet utilizing partial derivatives of mappings [5].

Proposition Al. Let f € D(R|M,z). Then, for each k € N, the
following conditions are equivalent.

(i) J°f(x) € (M, z);
(it) Ouf(x) =0, for any m-multi-index p such that |p|<k.

PROOF: We prove that (i) implies (ii). Each element of I, (M, x) is
the finite sum of germs of functions of the form

f=9091" .- 9k (A.6)
such that
i“gn(z) € 15(M, x) , O<h<k. (A.7)
It will then suffice to prove the claim for this kind of products.
We have 8;f = S 5_09091 - -+ - gh—1 (3igh) Ght1 - - .- - gk, for each
i=1,...,m, hence
0:f(z) € lx_1 (M, z). (A.8)

By finite iteration, we obtain

[ f(x) € (M, z) = [Opf(x) € iy (M, z), (A.9)

for |u|<k. From the inclusion relations (9) we deduce that
0uf(z) € 15(M, z), (A.10)

whence (ii) immediately follows.
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We now prove that (ii) implies (i). Suppose that f fulfils (ii). Then
consider its Taylor expansion at x, with Lagrange remainder:

k
1 m

f=f@+)> ———0pf(2) (z' 2! ()" .. (@7~ 2™ (2)) " +R

=1 Hrbm

(A.11)

Owing to our hypothesis and the properties of the Lagrange remainder,

i*f(z) =jR(z) € I,(M, z). (A.12)

[

Proposition A2. Let ¢',¢o € D(N|M,z). Then, for each k € N,
the following conditions are equivalent.

(i) J*¢'(x) = Fp(z);
(ii) Ouy'(x) = Oup(z), for any m-multi-index p such that |p|<k.
n 7

ProoOF: If (i) holds then, by definition, we have that, for any function
fon N,

I (fog = foup)(z) € Ik (M,z), (A.13)
and then Proposition Al implies that
Ou(f o ¢')(@) = Ou(f o p)(z), (A.14)

for |u|<k. If we apply (A.14) to coordinate functions y* on N, we
have

oyt o 9)@) = Bu(yrop)(@), A=1,...,n,  (A15)
whence (ii) follows.

We now prove that (ii) implies (i). Let f : N — R be any function on
N. By virtue of the chain rule for derivatives (cf. [1]), our hypothesis
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implies that
Ou(foy')=0u(fon tonoy’)

_OM((fon oo ot .
(8;[;1)#1 e (6xm)ll'm

(A.16)
_OM((fon ) omopol™) .
(6;1;1)ﬂ1 . (axm)ﬂm
= Ou(fop)
and then, from Proposition A1 we have that
i“(foy' = fop)(z) € Ih(M,z), (A17)
whence (i) follows from the very definition of jets. n

Proposition A2 indicates how to construct a differential structure on
JE(N|M): let £ and n be charts on M and N, respectively, then j*¢(x)
can be given the coordinates

(§($)76M‘P(x))|#|<k . (A'18)

Proposition A3. Let f € D(R|R? x M,(0,z)). Then, for each
k € N, the following conditions are equivalent.

(i) °f(0,z) € Ifl’k)(qu x M, (0,z));

(ii) 0pOuf(0,x) =0, for any q-multi-index p and any m-multi-index
p such that |p|<1 and |p|<k.

PROOF: We prove that (i) implies (ii). Each element of If, . (R? x

M, (0,z)) is the finite sum of germ at (0, z) of functions of the form

(fiopri)gr + (f2 o pra)ge, (A.19)
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where | f1(0) € I15(R?,0), jf2(z) € I5,(M,z) and the projections pry,
pra refer to the cross-product R? x M. It will then suffice to prove the
claim for this kind of functions. We first consider the derivatives of

Fy = (fiopri)g. (A.20)
For all p and |p|<1, we have
BpOuF1(0,z) = 8p((f1 0pr1)dug:)(0,z). (A.21)

Since j°f1(0) € I§(R?,0), it follows that j(f1 o pr1)(0,z) € I§(R? x
M, (0,z)) by (22) and inclusion (32). As a consequence,

*(0pOuF1)(0,z) € I{(R? x M, (0,z)), (A.22)

and Proposition Al proves that

3pa”,F1 (0, .’B) =0. (A.23)
We then consider
Fy = (f2 0pr2)ge. (A.24)
We have, for all p,
OpFz = (f2 0 pr2)0pga. (A.25)

Since j° f2(x) € I5,(M, z), it follows, from (26) and inclusion (33), that
j(f20pr2)(0,z) € I5(R? x M, (0,z)). Then, j(9pF;)(0,z) € I (R x
M, (0,z)), and Proposition Al ensures that

ap,asz (0,.’13) =0 (A26)
for all |p|<k. This, together with (A.23), shows that (i) implies (ii).
We now show that (ii) implies (i). Let f € D(R|R? x M, (0,z)) and
consider its Taylor polynomial at (0,z) of order k + 1 with Lagrange

remainder. Up to a multiplicative constant, its generic term is

BpOp(0,2)(s)7 -+ (s7)Pe(a' —a* (@)1 - - (&™ —a™(z))*", (A.27)
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where |p| + |p|<k + 1. We have

122 = [*((s) -+ (s7)77)(0) € I5(R?,0), (A.28)

w2k +1= (@' =zl (@) - (™ — 2™ (z))'") (2) € (M, z).
(A.29)
We distinguish three possible cases.
If |p|>2, by (A.28), the term (A.27) belongs to I§ (R%; (M, z)),.

If |u|>k + 1, by (A.29), the term (A.27) belongs to If ((R?,0); M) .
If |p|<1 and |p|<k, then, by assumption, the term (A.27) vanishes.
It follows that the above Taylor polynomial belongs to IEL k)(]Rq X

M,(0,z)), and then f fulfils (i), provided that this is the case for
the Lagrange remainder. Note that this is the sum of terms of the
following form:

C (sh)Pr--- (s9)Pa(z! — 2 ()" - (2™ — 2™ (2))"™, (A.30)

where C € D(R|R? x M, (0,z)) and |p| + |u| = k + 2, which implies
that |p|>2 or |u|>k + 1. Hence, applying again (A.28) and (A.29) we
deduce that the germ at (0, z) of the remainder belongs to If; k) (R? x

M, (0,z)). This completes the proof. -

In the same way as we have derived Proposition A2 from Proposition
A1 one can derive the following proposition from Proposition A3.

Proposition A4. Let x',x € D(N|R? x M, (0,z)). Then, for each
k € N, the following conditions are equivalent.

(i) JERX (z) = HFx(x);

(i) 8,,6”)(’(0,:1:) = 8p6,,,x(0, x), for any q-multi-index p and any
m-multi-index p such that |p|<1 and |p|<k.

Proposition A4 indicates how to construct a differential structure on
JOF)(N|R? x M): let & and 1 be charts on M and N, respectively,
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then j(1*)x(z) can be given the coordinates

We now give the coordinate expression of the action of the total deriva-
tive dp(x). In the sequel we will use Einstein’s convention on repeated
indices. We will first consider O-forms and coordinate 1-forms and then
we will derive from these the action of dz () on arbitrary g-forms. For

the sake of semplicity, we will subdivide the coordinates on T*V into
blocks (y(h))oghgk and treat each block y(® = (y(M1 .. (M) a5 a

single coordinate.
Let f : TEN — R. We have, owing to (71),

drgy f: TFH'N — R, (A.32)

dr ey f (tF+14(0)) = D(f o t*4)(0)

(A.33)
3h+17(0)'
tky(0)

_y
= 8y(h)

Let us now consider blocks of coordinate 1-forms and treat them

as single coordinate 1-forms, in particular we set dy® : TT*N —

R™: u(k)J ay?’c)i — uM),

We have, owing to (71),

drgydy®™ : TTFHIN — R™, (A.34)

dT(k)dy(h) (w) = D(dy(h) ) <pf\;1 o t(l’k)x) (0), (A.35)
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where x : R x R — N is a super-representative of w.
The coordinate expression of the prolongation t(:F)y : R — TR N
is, owing to (A.31),

(ahX(O, ')a a18hX(0’ '))Oghgk (A36)

and it is also the coordinate expression of the prolongation
Pl otk i R — TTEN (A.37)

So we have

dr k) (dy™)(w) = D (810xx(0, -)) (0)

= 010r+1x(0,0) (A.38)
= dyP+V (w).
We conclude that
dpkydy™ = dyh+D). (A.39)
Let now
Q= Qp, p,dy") AL AdyPD, 0<hegk. (A.40)

be a g-form on TFM. Its total derivative

dr)Q = (drw)Qhy. h,dz") AL AdzPO, 0<he<k 4+ 1, (A41)

is the g-form on T¥+! M whose components are .

q
(dr)Vhy...hg = A7) Uhy. .0y + Z Qhyhe—y he—1hesr..hgr (A42)
=
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where

Qny.n, =0 if hy =k +1 or hy < 0 for some ¥¢. (A.43)

We now give the coordinate expression of the action of the differential
operator dgy. We adopt the followmg convention. We denote the
coordinates on J*(N|M) by (z* ,yu) where 1<i<m, 1<A<n, p € N™
and |p|<k.

Let f:J*(N|M) — R. We have, owing to (75),

dgf:JFTY(N|M) - T*M (A.44)
da f(** e(z)) = d(f o j*p)(z) = <a’: + aa;; 01115, ) dz?,
(A.45)

where 6; is the ith element of the canonical basis of R™, and we
have used the coordinate expression of the prolongation j*¢ : M —
J¥(N|M), which owing to (A.18), is (z¢,0u¢?), 1<i<m, 1<A<n,
p € N™ and |pu|<k. Let us now consider the action of dg on the
exact vertical 1-form dyﬁ. To this end let W € VJ¥+1(N|M) and set

W = j(Lk+1) (0, 2). We have

dudyf (W) = d(dyp o ©(aan ©1x) (@), (A.46)

where x is a super-representative of W. The coordinate expression of
the prolongation j(1:%*)x : M — J(LR)(N|R x M) is, owing to (A.31),

and it is also the coordinate expression of the prolongation

cp( ) oJ MR x 1 M — VIF(N|M). (A.48)
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So we have
dpdyfp(W) = d (8:10px?) (2)

= (210,,6,xdz") (2)

(A.49)
= Wﬁ+61dxz(x)
= dyﬁ+6i (W)dz*(x)
This shows that 4
dudyp; = dyﬁ+ 5, ®dz’. (A.50)
Let now
v gk (N M) ™, (A.51)
k Ok(N|M)
J*(N|M) > M
and set

oo A . .
o=l b . dyi AL Adyp @det AL Ads. (A52)

g3t1..

If we apply (A.45) and (A.50) to (A.52) we obtain that

du® = (dg@)k e

q;il...'ip+1

dyﬁi /\.../\dyﬁ: ®dz® A...Adatet,

(A.53)
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where
(dHe) s =
(A.54)
"'p+1 Agiiz..
and
6 q17‘1 Zp = 0 (A.55)

if |uy| = k + 1 or p, has a negative component for some ¢.
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