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CAHIERS DE TOPOLOGIE E T  Vol. LI-4 (2010)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

OBJECTIVE CATEGORIES AND SCHEMES
by Wolfgang RUMP

Dedicated to B. V. M.

RESUME. Dans ce travail nous considérons les faisceaux quasi-cohérents 

sur un schéma comme des modules sur une catégorie “objective”. On montre 

que la catégorie Obj des catégories objectives est duale de la catégorie des 

schémas. Nous exhibéons Obj comme une sous-catégorie pleine reflexive de 

la catégorie POb (catégories préobjectives) dont les objets sont des fonc- 

teurs contravariants d ’un ensemble ordonné dans la catégorie des anneaux 

commutatifs tandis que les morphismes de POb sont relatifs à la structure 

responsable de la génération des schémas. De cette façon, la définition des 

morhismes des schémas prend une forme assez simple comme foncteurs entre 

des catégories objectives qui préservent la structure pertinente. Le résultat 
principal est une reconstruction des schémas plus explicite que celle due à 

Rosenberg (Noncommutative schemes, Compos. Math. 112 (1998), 93-125).

Abstract. Quasi-coherent sheaves over a scheme are regarded as 
modules over an objective category. The category Obj of objective cat­
egories is shown to be dual to the category of schemes. We exhibit 
Obj as a reflective full subcategory of a category POb (pre-objective 
categories) whose objects are contravariant functors from a poset to 
the category of commutative rings while the morphisms of POb take 
care of the structure responsible for the generation of schemes. In this 
context, morhisms of schemes just turn into functors between objective 
categories preserving the relevant structure. Our main result gives a 
more explicit version of Rosenberg’s reconstruction of schemes (Non­
commutative schemes, Compositio Math. 112 (1998), 93-125).

2000 Mathematics Subject Classification. Primary: 14A15, 18F20, 18D30. Sec­
ondary: 18A25, 18A35.

Key words and phrases. Scheme, short limit, objective category, fibered category, 
spectrum, quasi-coherent sheaf.
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Introduction

The most natural approach toward non-commutative algebraic ge­
ometry is based on suitable categories generalizing the abelian category 
Qcoh(X) of quasi-coherent sheaves over a scheme X . After Gabriel’s 
reconstruction [4] of noetherian schemes X  in terms of Qcoh(X), this 
approach was fully justified by Rosenberg [11] who extends Gabriel’s 
result to arbitrary schemes.

For an affine scheme X  with structure sheaf (?x, the category of 
quasi-coherent sheaves coincides with the module category Mod(i?) 
over the ring R  =  Gx{X) of global sections. If R  is non-commutative, 
R  can be recovered from Mod(i?) up to Morita equivalence, i. e. in­
stead of R  itself, the category proj(i?) of finitely generated projective 
/2-modules can be recovered from Mod(i?). Moreover, the objects of 
Mod(i?) are additive functors c£ ap —> Ab, where (€  can be chosen to 
be either proj(/?) or the one-object full subcategory {/?/?} of proj(Z?) 
which can be identified with the ring R.

If the scheme X  is non-affine, a reconstruction via projectives fails 
dramatically, even in the most simple case of a projective line X ,  where 
non-zero projectives in Qcoh(X) no longer exist. Nevertheless, the 
affine case suggests that it should be possible to associate a category 
6  to any scheme X  such that quasi-coherent sheaves over X  become 
certain modules over 6 .  In the present article, we define a category 
Obj of such categories & and prove that Obj is dual to the category of 
schemes. Since objects of 6  play a particular role, we call the categories 
6  € Obj objective.

More generally, we introduce pre-objective categories as a class of 
small skeletal preadditive categories G. We stick to the classical case 
and assume that the endomorphism rings ¿?(U) in & are commutative. 
The two axioms (01) and (02) for a pre-objective category 6  are based 
on the concept of short monomorphism i: U —* V , which means that 
every morphism f : U  —► V  is of the form /  =  ig for some g G &(U). 
Then (01) states that there is a short monomorphism U —> V  for any
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pair of objects U, V  with Ilom^ (U. V ) ^  0, and (02) asserts that short 
monomorphisms are closed under composition. In other words, (01) and 
(0 2 ) state that the short monomorphisms form a subcategory which is 
fibered over a partially ordered set on Ob G. Using the relationship 
between fibered categories and pseudo-functors [6], a pre-objective cat­
egory can be conceived as a functor p: ilop —> C R i from a partially 
ordered set into the category C R i of commutative rings, together 
with a cohomology class 7 € py ).

This cohomology class 7 vanishes for pre-objective categories G with 
a greatest object (Proposition 3), which are just our concern here. To 
make such pre-objective categories G into a suitable category PO b, 
we introduce the concept of short limit S( f )  of an endomorphism /  G 

G(U) in G and call an ¿^-module M  is quasi-coherent if M : G°p —> A b 
respects short limits of arbitrary endomorphisms in G. On the other 
hand, we say that an object U G Ob G is affine if the representable 
functor Hom^>(—, U) respects short limits of endomorphisms of U and if 
U satisfies two other properties related to the partially ordered structure 
of Ob G. Now a morphism between pre-objective categories is just a 
functor F : G —► G' which respects the relevant structure of G, namely, 
short monomorphisms, short limits, finite meets, and joins of affine 
objects - as far as they exist.

We call a pre-objective category G objective if joins of objects ex­
ist and the full subcategory Gas of affine objects is dense [9] in G. 
The latter categorical property is closely related to the recollement of 
schemes. With the benefit of hindsight, our categorification of schemes 
appears to be quite natural and almost inevitable. As already indicated 
above, we prove that the full subcategory O bj C P O b  of objective cat­
egories is dual to the category of schemes (Theorem 2). In this context, 
the awkward definition of morphisms between schemes takes a more 
pleasant form. Recall that such a morphism consists of a continuous 
map (p: X  —► Y  between the base spaces together with a morphism 
•d: Gy —> '~p* G \ of sheaves into the opposite direction which induces a 
local ring homomorphism : Gy^(x) Gx,x at the stalks. By con­
trast, morphisms between objective categories are just functors which 
respect the structure that ought to be respected.
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Note that as a (dual) objective category, a scheme is nothing else 
than a pre-objective category with joins and enough affines, while a 
pre-objective category is given by a fibering of unit groups of commu­
tative rings over a poset. Conversely, we associate a scheme to any 
pre-objective category (Theorem 1) and show that the full subcategory 
Obj of POb is reflective (Theorem 3). Thus in a sense, schemes are 
related to pre-objective categories like sheaves are related to presheaves.

Within this framework, a quasi-coherent sheaf over a scheme with 
corresponding objective category G becomes an ¿?afj-module which re­
spects short limits. An application to flat covers (see [3]) will be re­
served to a subsequent publication. Here we just give a brief discussion 
of Rosenberg’s result [11] and show how to reconstruct an objective 
category G from the abelian category Qcoh(^) of quasi-coherent Ggg- 
modules in a quite explicit way. More generally, we associate an ob­
jective category G ^ to any abelian category s i  such that G^ = G in 
the special case s i  =  Qcoh(^). To this end, a point of an abelian 
category s i  is defined to be a quasi-injective object P  with End^(P) a 
field such that every non-zero subobject of P  generates P. In contrast 
to Gabriel’s reconstruction of schemes which makes use of injective ob­
jects, we confine ourselves to quasi-injectives. If R  is a commutative 
ring, the points of Mod(i?) correspond to the prime ideals of R. Using 
points of ,c/. we introduce objects E  of finite type, and to any such E. we 
associate a subset Ue of the set Spec s i  of points. Then the Ue define 
a topology on Spec ,o/, and every open set U in Spec s i  gives rise to a 
Serre subcategory of s i . If G^{U) denotes the center of the abelian 
quotient category s i / 3\j. we obtain a pre-objective category G ^ which 
is objective and isomorphic to G whenever s i  =  Qcoh(^) for a given 
G e  Obj.

1 Short limits

Let ^  be a category. We call a monomorphism i: X  —► Y  short if every 
morphism / :  X  —► Y  is of the form /  =  ig for some endomorphism
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g of X . Clearly, a short monomorphism X  —> Y  is unique up to an 
automorphism of X .  So we could speak of a short subobject X  of Y.

Consider a functor C : ^  with .J? small. We define a short cone
c over C to be a collection of short monomorphisms Cj: X  —► C* (with 
i G Ob J?) such that for every a : i —> j  in there is a commutative 
square

X — X

a cj (l)

* ca *
Ci — ^  Cj

in ‘io. We call X  (together with c) a short limit of C  if every short 
cone d : X ' —> C factors uniquely through c, i. e. there is a unique 
/ :  X ' —» X  with o' =  Cif for all i G Ob We denote it by shlimC,. 
For =  0 , a short limit shlim 0  is just a terminal object.

E xam ple 1. For a ring R, the short submodules of an i?-module M  
are fully invariant, and every sum of short submodules of M  is again 
a short submodule. So the short submodules form a complete lattice. 
The short limit shlim Mj of a non-empty family of submodules Mi G M  
is given by the largest submodule L of f ] M t such that every inclusion 
L c—► Mi is a short monomorphism.

D efinition 1. We call a preadditive category commutative if the ring 
End^(X) is commutative for each X  G O b ^ .

As usual, we regard a partially ordered set as a small skeletal 
category with at most one morphism a —> b between any pair of objects. 
If such a morphism exists, we write a ^ b .  An ordinal A will be regarded 
as a well-ordered set

A =  {a G O rd  | a  < A}, 

i. e. a full subcategory of the category O rd  of all ordinals.

For a preadditive category . every morphism f : X o —>• Xi in ^  
gives rise to a functor 2 —> also denoted by / .  The short limit S ( f  )
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of an endomorphism f : X —>X  (viewed as a functor 2 —> ^ )  is given 
by a commutative diagram

RUMP - OBJECTIVE CATEGORIES AND SCHEMES

S(f) 
i

X -■ > X

(2)

with short monomorphisms i , j .  Thus j  = i f x with an automorphism 
f x of S(f ) .  This gives a commutative square

S( f )  S ( f )

i i 

' /

(3)

and S( f )  =  shlim /  means that every short monomorphism i ' : Y - +  
X  with f i '  = i'e for some automorphism e of Y  factors through i. 
We call S ( f  ) the support of / .  If cé  is commutative and skeletal, the 
automorphism /*  in (3) is unique. In fact, if we replace i by ie with an 
isomorphism e: Y  S( f ) ,  then Y  = S( f ) ,  and thus /  • ie =  i f xe — 
i e - r .

Regarding Z as a partially ordered set, let / z : Z —► ^  denote the 
functor with / z(n) := X  and / z (n —► n +  1) := / ,  i. e. the diagram

------► X -U  x  -U  X -»• • • • (4)

in <if. Then
S'(/) =  sh lu n /z (5)

We denote the natural morphism S( f )  —► / z (0) by if. So we have a 
commutative diagram

-------- ►S(/)£>S(/)£>S(/) — •••

iiI f  I  f  I

--------- »X —— >X > x ----- ► •••

(6 )
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D efinition 2. We define a commutative preadditive category @ to be 
pre-objective if it is small and skeletal such that the following hold.
(01) For every pair of objects U, V  with Hom^(f/, V) ^  0, there exists 

a short monomorphism U —> V.
(02) The set of short monomorphisms is closed under composition.

Note that the factorization in (01) is unique up to isomorphism, i. e.

if U —► U V  is a second factorization of / ,  we have a commutative 
diagram

jj--->jj — L+v

I e

U ----- >U -2-4  V
with an automorphism e. In what follows, we write G(U) instead of 
End#(U) for an object U of 6.

Proposition  1. Every short monomorphism i: U —> V in a pre-objective 
category G defines a ring homomorphism p\j\ G(V) —> 0(U) given by 
a commutative diagram

u u

i i (7)i f
V - * -* V

where f \u  '•= Pu(f) merely depends on f  G ^ (V )  and U € Ob&.

Proof. Let /  6 C(V) be given. By (01), the morphism f i  has a

factorization f i : U ^ U - ^ V  with a short monomorphism j . Further­
more, j  =  ie for some automorphism e of U. Hence f i  factors through 
i, and so we get a commutative diagram (7). Since i is monic, / 1u is 
unique. If i is replaced by j  = ie, we have f j  = f ie  =  i • f \ y  ■ e = 
ie • f \u — j  • /It/- Thus f \ u is determined by /  and U. □

For short monomorphisms U —► V  —> W  in 6 ,  the ring homomor­
phism of Proposition 1 satisfies

PuP̂ V = Pu 5 Pu ~ 1̂ (17) • (8)
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P roposition  2. Let i: U —> V and j \  V —> W  be morphisms in a pre­
objective category G such that j i  is a short monomorphism. Then i is a 
short monomorphism. Every short monomorphism U —> U is invertible.

Proof. If j i  = 0, then U =  0, and thus i is a short monomorphism. 
Otherwise, i /  0, and so there is a short monomorphism i ' : U  —»• V  
such that i = i'e with an endomorphism e of U. Hence j i '  = j i  • f  for 
some f : U —>U, and thus j i  ■ f e  = ji,  which gives f e =  1. Since G is 
commutative, e is invertible, whence i is a short monomorphism. The 
second assertion is trivial. □

Let G be a pre-objective category. For U, V  G Ob G, we write 
U ^  V  if there exists a monomorphism U —* V . By (01), (02), and 
Proposition 2, this makes Ob G into a partially ordered set. In fact, if 
U ^  U, there are short monomorphisms U —> V —> U by (01). So
V —► U is a split epimorphism by Proposition 2, hence invertible.

If U € Ob 6  and /  € G(U), then a short limit S ( f  ) is equivalent to 
a greatest V  < U in Ob 6  such that f \ v  is invertible. In other words, 
S ( f )  exists if and only if the join Uf := V {^  ^  U I Pv(f)  e  G(V)X} 
exists and f \uf is invertible.

For a pre-objective category G, the subset sh(^) of short monomor­
phisms can be regarded as a fibered category [6] over the partially or­
dered set Ob G such that the fiber over each U € Ob G consists of a 
single object, and every morphism in sh(^) is cartesian. In other words, 
sh(^) —► Ob G is a linear extension in the sense of Baues and Wirsching 

[!]•

By Eqs. (8), a pre-objective category G gives rise to a functor

p: Qop -> C R i (9)

from the dual of the partially ordered set Q := Ob G to the category 
C R i of commutative rings. So we get a functor px : Qop —> A b into the 
category A b of abelian groups which maps U G Q to the unit group 
p(l7)x. Furthermore, we obtain a 2-cocycle. Namely, if we assign a
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short monomorphism i \ j : U —> V  to each morphism U —> V  in fl, any 
relation U ^  V  < W  in leads to an equation

■W -V -W /m \
% =  iu ' °u v w  ( 10)

with cyvw  S 0 (U )X. The associativity of composition yields

Pu(cvwv)  ‘ CUWY ' CVVY ' CUVW =  1 (H)

for U ^  V  ^  W  ^  Y, which means that c is a 2-cocycle with respect 
to the functor p. (In the terminology of [1], we have to regard px as a 
natural system which assigns p(U)x to U ^  V .) If we set iy := ^e(u) 
for all U G Ob &, then c will be normalized, i. e. it satisfies

cuuv - cuvv  =  1- (12)

If the i\j are replaced by i\j ■ duv with duv € 0 (U )X, then c changes 
by a 2-boundary. This leads to the following explicit description of 
pre-objective categories.

Proposition 3. Up to isomorphism, there is a one-to-one correspon­
dence between pre-objective categories and pairs (p, 7 ), where p is a func­
tor (9) with a partially ordered set such that p(U) = 0 for at most 
one U, and 7 € H 2(Q,px).

Proof. Let (p, 7) be given. We define a pre-objective category G with 
Ob & := Q as follows. For U, V  € Cl, we set Horn <?({/, V) = 0 in case that 
U £ V .  If U < V, we define H ornet/, V) := p(U). Let 7 € H 2(Q,px) 
be represented by a 2-cocycle c. If we set U = V  =  W  or V  =  W  =  Y  
in Eq. (11), we get cuuv = cuuv  and P y(cv v v ) =  cu v v . Setting 
duv ■= cu v u , we have a 2-boundary (Sd)u v w  = p y (d Vw )  • duw  ' du v  = 
Pu(cv v v ) -  Therefore, we can normalize c by multiplying with .

For U ^  V  ^  W  in Q and morphisms /  € Hom^(C/, V) and g € 
Hom^(F, W) in we define

g f  ■=  Puig) ■ f  ■ cuvw- (13)
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With this composition, G becomes a small commutative preadditive 
category. Since p(U) = 0 occurs at most once, the category G is skeletal.

Every morphism U —*• V  in Q can be associated to the short mor­
phism U —► V  in G given by 1 € p(U). This implies (01). Assume that

/ iU —> U —► V  is a non-zero short monomorphism in G. Then i =  i f -g  for 
some g: U —► U. Thus f g  - 1, and i f  • g f  = i f  • 1 implies that g f  =  1. 
Since p(i) maps automorphisms to automorphisms, we get (02). Now 
it is straighforward to verify that the correspondence is one-to-one. □

Corollary. Let G be a pre-objective category with a greatest object X .  
Then the corresponding 7 € H 2(Ob G, p x) is trivial, i. e. G is just given 
by the functor (9).

Proof For U E Ob G, we choose a short monomorphism iy'- U —► X . 
Therefore, if U ^  V  in Ob G, there is a unique short monomorphism 
iy i U —*■ V  with iu =  iy-ïu- With this normalization of short monomor­
phisms, we get

«  =  i ïï  ; iuu = iu  (14)

for U ^  V  ^  W. Hence 7 is trivial. □

Example 2. In particular, the preceding corollary shows that every 
(commutatively) ringed space can be regarded as a pre-objective cate­
gory with trivial 2-cocycle.

2 Affine objects

In what follows, we write M od(^) for the category of G-modules, i. e. 
additive functors M  : Gop —► Ab. We identify G with the full subcate­
gory of representable functors via the Yoneda embedding

G ^  M od(^) (15)

which maps U € Ob G to Hom^(—, U).
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D efinition 3. Let f . U  —► U be an endomorphism in a pre-objective 
category €?. Assume that the short limit S( f )  exists. We call an 6-  
module M  regular with respect to /  or simply / -regular if the natural 
morphism

lim(M o / z) — ► M(S( f ) )  (16)

is invertible. We call M  is quasi-coherent if M  is /-regular for every 
morphism f : U —>U in O, provided that S( f )  exists for all such / .

Explicitly, the condition for M  € M od(^) to be regular with respect 
to /  £ G(U) states that the following are satisfied.

(LI) If a morphism g: U —► M  satisfies gif — 0, then g fn =  0 for some 
n € N.

(L2) For any g: S( f )  —> M  in M od(^), there is an n € N such that 
g ( f x )n factors through if.

RUMP - OBJECTIVE CATEGORIES AND SCHEMES

D efinition 4. We say that an object U of a pre-objective category 6  
is covered by a set "V C Ob & if every W  € Ob 6  with V  ^  W  for all 
V  € If1' satisfies U ^  W . We call U affine if the short limit (5) exists 
for every /  € &{U) and the following are satisfied.

(Al) As an ^-module, U is /-regular for all /  € 0(U).

(A2) If V ^ U ,  then V W )  < V \ f e  0(U )} = V.
(A3) If /  G 0(U), then S( f )  is covered by Y  C Ob 6  if and only if the 

ideal of G{\J) generated by the g € 0(U) with S(g) ^  S( f )  and 
S(g) ^  V  for some V  E V  contains a power of / .

The full subcategory of affine objects in @ will be denoted by ¿?aff-

P roposition  4. Let 6  be a pre-objective category, and let f ,g  be en­
domorphisms of U £ Ob G . Assume that the short limit S(e) exists for 
all e € 0{U). Then

S(fg)  = S ( f ) AS( g ) .  (17)

I f U  is affine, then S ( f  + g) is covered by {S( f ) ,S(g)}.

-25 3  -



Proof. First, there are short monomorphisms i f : S ( f ) —► U and 
ig: S(g) —> U. Since f\s(fg) is invertible, the short monomorphism 
i fg: S( fg)  —> U factors through if  and ig. Hence S(fg)  ^  S( f ) ,S(g)  
by Proposition 2. Now assume that V  ^  S(f ) ,  S(g). Then f \ v  and g\v 
are invertible. Hence (fg)\v  is invertible, and thus V  ^  S(fg).

Let U be affine. Then we have S( ( f  + g) ■ f )  — S ( f  + g) A S( f )  and 
S{( f  + g)-g) = S ( f  + g)/\S(g).  Since ( f + g) ■ f  + ( f  + g) • g = ( f + g)2, 
(A3) implies that S ( f  + g) is covered by {S( f ) ,  S(g)}. □

RUMP - OBJECTIVE CATEGORIES AND SCHEMES

In particular, Proposition 4 shows that S(fg)  =  S( f )  holds if g is 
invertible. The next proposition shows that for any /  6 G(U), the ring 
homomorphism Ps(f) of Proposition 1 can be regarded as a localization 
with respect to / .

P roposition  5. Let G be a pre-objective category. For any U € Ob ¿?aff 
and f  G G(U), there is a natural isomorphism

Û(S(f) )  S* û{U)f . (18)

Proof. For a given h € ^ (5 ( /) ) ,  there is an n € N such that 
h ( f x )n - <?|s(/) for some g 6 G(U). We define a map e: & (S ( f )) —* 
&{U)f by e(h) By (LI), this map is well-defined, and it is easily
checked that £ is a ring isomorphism. □

P roposition  6. Let O ’ be a pre-objective category, and let f :  U —> U 
be an endomorphism in Then S ( f )  is affine.

Proof. Let g € &{S{f )) be given. To verify (Al) for S( f ) ,  let 
h: S( f )  —> S( f )  be an endomorphism with hig = 0. Since /  satisfies 
(L2), there is an n £ N with if  ■ g ( f x )n = u - if  and if  ■ h ( f x )n =  v • if. 
Hence if  ■ g ( f x )n+1 = f  ■ if  • g ( f x)n = f u  ■ if. Since S( fu)  ^  S ( f ), 
this gives S{fu)  = S ( g ( f x )n+1) -  S(g). Therefore, v • ifu “  v ■ if ig = 
if  ■ h ( f x)nig =  0 implies that v{fu)m =  0 for some m £ N. Hence 
if hgm( f x)mn+m+n = v ■ !/ f ( / x)ran+m =  vumif ( f x)m = vumf mif  =  0, 
and thus hgm =  0. This proves (LI). Next let h : S(g) —► S( f )  be 
given. Then S( fu)  =  S(g) and f u \S(g) = gx ■ ( / x)n+1|s(s) implies
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that i fh(gx )k • ( f xYn+1̂ k\s(g) factors through i f ig for a suitable fceN . 
Hence h(gx)k - ( f x)('n+1'>k\s(g) factors through ig, and thus h(gx)k factors 
through ig. This shows that S( f )  satisfies (Al).

If V  ^  5 ( /) , then there is a subset F  C &(U) with \J{S(g) \ g G 

F} =  V. Hence \/{S(g\s(f)) \ g E F} = V,  which proves (A2) for S(f ) .

Finally, let g G 0{S( f ) )  and V  C Ob & be given. By multiplying 
g with a suitable power of / x, we can assume that g =  g'\s(f) for some 
g' G @{U), and S(g) =  S(g'). Let I  be the ideal of S ( f )) generated 
by the h G ¿?(S(f)) with S(g) ^  S(h) ^  V  for some V  G y ,  and let i7 
be the ideal of &{U) generated by the h G @{U) with S(g') ^  S(h) ^  V  
for some V  G Y .  Then the ideal I  is generated by Ps(f)(!')■ Hence I  
contains a power of g if and only if / '  contains a power of g'f.  This 
proves (A3) for S(f) .  □

Definition 5. We call an additive functor F: (3 —> O' between pre­
objective categories objective if the following are satisfied.

(FI) F  maps short monomorphisms to short monomorphisms.
(F2) If U G Ob 6  and /  G 0(U) such that S( f )  exists, then F S ( f ) =  

S(Ff ) .
(F3) F  respects finite meets whenever they exist.
(F4) For any V  G Ob 0 ,  the FU  with affine U ^  V  cover every affine 

W  ^  FV.

Let ^  be a preadditive category. Recall that a full subcategory 
is said to be dense if every object C of ^  satisfies

C =  Colim( 9 / C  -»• if). (19)

Here the slice category Q>jC has objects / :  D —> C with B  G Ob *2>. 
If / ' :  D' —> C is a second object, a morphism /  —► / '  in 9 j C  is 
a morphism g: D —* D' in ^  with f 'g  =  / .  The natural functor 
@/C  —* *€ maps / :  D —► C to D. Note that 3  C ^  is dense if and 
only if the functor

<€ — ► M od(^) (20)

which maps C to Hom^(—,C) is fully faithful (see [9], X.6, dual of 
Proposition 2).
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is a greatest object X .  So the corollary of Proposition 3 implies that 
the morphisms U —► V  in the partially ordered set Cl := Ob 6  can be 
regarded as short monomorphisms % E G via (14), i. e. Cl becomes 
a full subcategory of 6 .  In the sequel, we choose a fixed embedding 
i: Q, 6  with (14) for any objective category 6. In particular, if 
U E Ob @ and /  E G(U), we set i f  := ig^y

Axiom (04) is related to a recollement of sheaves.

P roposition  7. Let 0  be an objective category. For every Y  E Ob

Y  = \ / { U E O b 0 aS\ U ^ Y }  (21)

0{Y ) -  Hm{^(C7) | Y  > U E Ob 0 * } .  (22)

Proof. By definition, Y  — Colim(^aff/F —> C). Let Z  E Ob 6  be 
an object with U ^  Z  for all affine U ^  Y . Then the map *uf iZu f  
defines a cocone over Gas/Y —*• Hence there is a unique morphism 
h : Y  —> Z  with h • i^  = iy for all afiine U ^  Y . If Y  =  0, then Y  ^  Z. 
Otherwise, there exists a non-zero affine U ^  Y. Therefore, if, ^  0, 
which gives h ^  0. Thus Y  ^  Z. This proves (21).

To verify (22), we have to show that the restrictions p\j: &{Y) —* 
&{U) with Y  ^  U E Ob^aff form a limit cone. Thus let fu  E €?(U) 
be given for each affine U < Y  such that fu\v = fv  for affine V  < U. 
Then i y f  ■ fu  defines a cocone {G&sjY —»• 6 )  —► Y. So there
is a unique g : Y  —* Y  with giy =  i y fu  for all affine U ^  Y.  Whence 
g\u =  fu  for all U. □

Note that Definition 5(F4) can be regarded as a relative version of (04).
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D efinition 6. We define an objective category to be a pre-objective 
category Û which satisfies

(03) Arbitrary joins exist in Ob Û.

(04) The full subcategory is dense in Û.
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(03) implies that Ob G is a complete lattice. In particular, there
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3 The associated scheme

In this section, we associate a scheme Spec G to any pre-objective cat­
egory G. In Section 4, we will prove that Spec G determines G if G is 
objective.

Definition 7. We define a point of a pre-objective category f t  to be a 
non-empty subset x  of Ob G&s  such that the following are satisfied.

(PO) 0 i  x.
(PI) U ^ V  e x  => U E x .
(P2) U,V e  x => 3 W e x : W ^ U , V .  
(P3) U e x ,  f  e G{U) = ►  (S(f) e x  or 5(1 -  f) e x).

The set of points of G will be denoted by Spec G.

Let G be a pre-objective category. We introduce a topology on 
Spec G with basic open sets

U : = { x e  Spec G \ U  e x }  (23)

for each U e  Ob Gag. If a point x e  Spec G satisfies x e U fl V for two 
objects U, V of G^,  then UjV e x , and so the£e exists some W e x  
with W  ^  U, V . Thus x e W  C  U Pi V. So the U form a basis of open 
sets. For arbitrary V e  Ob G, we define

V :=  {x e SpecG\ 3U e x: U ^  V}. (24)

If V  is affine, this definition coincides with (23).

Proposition 8. Let G be a pre-objective category, and let U e  Ob G ^  
be covered by Y  G Ob G. For every x  € U, there exists some V  e V  
with x e V.
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Proof. Since U =  5(1 v) is affine, (A3) implies that the g G &{U) 
with S(g) ^  V  for some V  G V  generate @{U). Hence 1 u = ai9i 
with a,i,gi G G(U) and 5((&) ^  Vj G Suppose that 5(0*^) £ x  for 
all i G {1 ,... ,n}. We set fk := 5Zt=i ai9i■ Since 5(1[/) G x, there is 
a minimal m  >  1 with S(fm) G x. With a ■= fm—l\s(fm) ' ( /m ) 1 and  
b := amgm\S(fm) ■ (/™)-1, we have a +  b = 1. Therefore, (P3) implies 
that S(a) G x  or 5(6) G £. Prom 5(a) =  5 ( /m_i|s(/m)) < 5 ( /m_i) and 
S(b) ^  S(amgtn), we get 5 ( /m_i) G x or S(amgm) G x, a contradiction. 
Hence 5 (ai^) G a? for some i G {1 ,... , n}. Since 5 (a ,^ ) ^  5 (^ ) ^  V̂ , 
it follows that rc G □

For any x  E U with U G Ob we define

P* := { /  G <?(£/) | 5 ( /)  £ a;}. (25)

P roposition  9. Lei & be a pre-objective category. Then x px gives 
a homeomorphism

p : U — > Spec G(U) (26)

for every affine object U of @.

Proof. We show first that px is a prime ideal of &{U) for any x  G U. 
Thus let f , g  G 0{U) be given. Assume that /  G px- Then 5 ( /)  ^ x, 
and S(fg)  ^  5 ( /)  by Proposition 4. Hence (PI) of Definition 7 gives 
S(fg)  ^ a: and thus fg  G p:r. In particular, —/  G px. Furthermore, 
(PO) implies that 0 € pj. To show that px is an ideal of G(U), suppose 
that f , g  e p x and /  +  g <£ px. Then S( f) ,S (g )  x  but S ( f  + g) G x. 
Proposition 4 implies that 5 ( /  +  g) is covered by {S ( f) ,  S(g)}. So we 
get a contradiction to Proposition 8.

To show that px is a prime ideal, assume that f , g  G G{U) satisfy 
f g  G px. Then S(fg )  <£ x. Suppose that f , g  <£ px, i. e. S(f) ,S{g)  G 

x. By (P2), we find an object W  G x  with W  ^  S(f) ,S (g )  ^  U. 
Proposition 4 implies that W  ^ 5 ( / )  A 5(g) =  S(fg).  Thus S(fg)  G x, 
a contradiction. Finally, x G U implies that 5(1*/) =  U G x, whence
1 ^ px-
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Conversely, let p be a prime ideal of 0(U). We define

x := {V E O btfaS | 3 /  G 0{U) x  p : S( f )  < V] (27)

and show that £ is a point of 6.  If /  € &(U) \  p, then /  is not 
nilpotent. Hence, the (LI) part of (Al) implies that f  • if /  0, which 
yields 5 ( /)  ^  0. This proves (P0). As (PI) is trivial, let us prove (P2). 
If U, V  E x, there are / ,  g E €?(U) \  p with S( f )  ^  U and S(g) < V . 
Hence fg  £ p and U, V  ^  S( f )  A S(g) =  S(fg)  G x.

To verify (P3), let V E x  and /  € 6{V) be given. So there exists 
some g € @{U) \  p with S(g) ^  V. By the (L2) part of (Al), there 
is some n G N with f\s(g) • (gx )n = h\s(g) for some h G &(U). Since 
gn+i p j|. f0ii0ws that hg £ p or gn+1 — hg £ p. Hence S(hg) G x 
or S(gn+1 — hg) G x. Furthermore, S(hg) ^  S(g) and 5 (<7n+1 — hg) < 
S(g) implies that S(hg) = S( f \ S(g) ■ (gx)n+1) ^  S ( f |S(9)) < S( f )  and 
S(gn+1 -  hg) =  S((gx)"+1 -  / | s(ff) • (s>T+1) ^  5(1 -  f \ S{g)) ^  5(1 -  /) . 
Therefore, we get S ( f ) G x or 5(1 — / )  G x, which completes the proof 
of (P3). Thus x  is a point of G. Since 1 u G &(U) \  p and 5(1*/) =  U, 
we have U G x, i. e. x  G U. Next we show that px = p.

If /  € Px? then 5 ( /)  ^ x, which gives /  G p. Conversely, assume 
that /  §£ px - Then 5 (/)  G x. So there exists some g G ¿^(t/) \  p 

with S(g) ^  5 ( /) . Thus / |s (9) is invertible. By (Al), there exists some 
n G N such that ig • f\s(g) ' (9x)n = hig for some h G &{U). Hence 
fhig  = ig • (gy )n = gnig. By (Al), this gives fh g m =  gm+n for a suitable 
m  G N. Therefore, we get /  ^ p, which proves that px = p.

For the bijectivity of (26), it remains to be shown that

x = {V  G Ob ¿?aff | 3 /  G 0(U) \  px : S( f )  ^  V}  (28)

holds for any point x  G U. The inclusion “D ” follows by (25). Con­
versely, assume that V e x .  Then (P2) yields an object W  E x  such 
that W  < U, V. By (A2), it follows that W  is covered by the 5 ( /)  with 
/  G €?(U) and 5 ( /)  ^  W . Furthermore, Proposition 6 implies that 
these 5 ( /)  are affine. Hence Proposition 8 yields some /  G 0{U) with 
S( f )  ^  W  and 5 ( /)  G x. Thus (25) gives /  G &(U) \ p z and 5 ( /)  < V. 
This proves (28).
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Finally, (A2) of Definition 4 implies that the S ( f ) with /  € G(U) 
form a basis of U. Therefore, Proposition 5 shows that the map (26) is 
a homeomorphism. □

By Proposition 9, every affine object U of a pre-objective category 
G gives rise to an embedding

Spec G(U) Spec G (29)

such that Spec G(U) can be identified with U C Spec G. To any basic 
open set U of Spec G, we associate the commutative ring

G(U) := G(U). (30)
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4 Objective categories

In the sequel, we write POb for the category of pre-objective categories 
with a greatest object and with objective functors as morphisms. By 
the corollary of Proposition 3, the objects of POb can be regarded as 
functors p : fiop —> CRi such that the partially ordered set ft has a 
greatest element, and p(a) =  0 for at most one element a E Î2. Note 
that by (F3) of Definition 5, a morphism Û —» G' in POb respects the
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By Eqs. (8), this makes 0  into a presheaf on Spec G. So we obtain

Theorem 1. For a pre-objective category the associated presheaf 
makes Spec 6  into a scheme.

Proof For an open set V  C Spec 6 ,  we define

fi(V )  := lto 5cl, 0(U), (31)

where U runs through Ob By Proposition 5, the U are affine 
schemes. Hence Spec O is a scheme with structure sheaf (30) by [5], 
0.3.2.2. □
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greatest object / \  0  of &. By Obj we denote the full subcategory of 
POb consisting of the objective categories. The category of schemes as 
locally ringed spaces (see [7], II.2) will be denoted by Sch.

Proposition 10. Let 6  be a pre-objective category. For U, V  G Ob 0  
with U affine,

U ^  V « = ► U c V .  (32)

If @ is objective, the equivalence holds for all U, V  G Ob 6 , and every 
open set of Spec 6  is of the form V for some V G Ob @

Proof. The implication “=>” follows by (24). Assume that U C V, 
and let p be any prime ideal of &{U). By Proposition 9, this implies 
that p =  px for some x  £ U C V. So there is an affine W  G x  with 
W  < V. By Eq. (27), we find some /  G 0{U) \  p with S( f )  < W  < V. 
Therefore, the /  G &(U) with S( f )  < V  generate &{U). Thus (A3) 
implies that U = S(lu )  ^  V. If (J is objective, the restriction on U can 
be dropped by virtue of Proposition 7.

Now let & be objective, and let V' be an open set of Spec 0 .  Then 
V' =  U {^ I U G V } for some Y  C Ob ^ aff. We show that V : = \ J Y  
satisfies V = V ' . For all U G we  have U ^  V,  hence U C V,  and 
thus V' C V.  Conversely, assume that x  G V.  By (24), there is some 
U G x  with U <  V. Hence U =  S(lu)  is covered by Y .  So Proposition 8 

implies that x  G W  for some W  G Y . Hence x G W  C V'. □

As an immediate consequence, Proposition 10 yields

Corollary. For an objective category &, the map V i—> V is a lattice 
isomorphism between the complete lattice Ob 6  and the set of open sets 
of Spec 6.

Now we are ready to prove

Theorem 2. The category Obj of objective categories is dual to the 
category Sch of schemes.
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Proof. We show first that the map which associates a scheme to an 
objective category (Theorem 1) extends to a functor

Spec: Obj — ► Schop. (33)

Thus let F  : @ be a morphism in Obj. We define

Spec F  : Spec € '  —*• Spec & (34)

as follows. For x' E Spec &,  we set

(Spec F){x') := {U E GaS | x' E FU}. (35)
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We show that x  := (SpecF)(a:/) G Spec^?. Since F  is additive, (PO) 
holds for x. As F  is monotonous by (F3), we get (PI). HU,V  E x ,  then 
x' E FU  n  F V . So there exists some W'  G x' with W'  ^  FU A F V  — 
F(UAV).  By (F4), the F W  with affine W  ^  UAV  cover W '. Therefore, 
Proposition 8 implies that x'  G F W  for some affine W  ^  U AV.  Hence 
W  G x, which proves (P2) for x. To verify (P3), let U E x  and /  G G(U) 
be given. Then FU  ^  U' for some U' G x ' . Hence g := (Ff  )\w satisfies 
S(g) E x' or 5(1 — g) G x ' . Now S(g) ^  S (F f )  — F S( f ) ,  and similarly, 
5(1 — g) ^  FS(  1 — /) . Hence 5 ( /)  E x  or 5(1 — f )  E x. So the map 
(34) is well-defined.

To show that Spec F  is continuous, let V E Ob Û be given. Then 
(24) yields

x' E (Spec F )-1(F) ^  (Spec F)(x') E V

<S> 3 U E Ob ¿?aff: V ^ U  E (SpecF)(x')

■r^3U E Ob ^ aff : U ^ V , x '  e F U .

By Eq. (21), we have V  =  V {^ € Ob ¿?aff | U sC V}.  Therefore, 
(F4) gives F V  = \ / {FU  I V  ^  U E Ob Gaff}, and the corollary of 
Proposition 10 yields F V  — \J{FU  | V  ^  U E Ob So we get

(Spec F ) ~ \V )  = F V  (36)

which shows that the map (34) is continuous.
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Now F  induces a ring homomorphism &{U) —► O'(FU) for any U G 

Ob G. For a short monomorphism %: V —> U, we have a commutative 
diagram

0(U)  —♦ &'{FU)

Pv Pfv

0{V)  —► & (FV)

by (FI). Therefore, Eq. (36) implies that F  induces a morphism 
6  —♦ (Spec F)*G' of sheaves, which yields a morphism of schemes. This 
establishes the functor (33).

Conversely, we construct a functor

Schop — ► Obj. (37)

Let X  be a scheme with structure sheaf Gx- According to Proposition 3 
and its corollary, the presheaf X  defines a pre-objective category @ with 
trivial 2-cocycle. Therefore, we can regard every inclusion U C V  with 
U, V  € Ob ^  as a short morphism i y : U —► V  in Furthermore, 0  
has a unique zero object 0 .

Let f : U  —> U be an endomorphism in 6,  i. e. /  € &x{U). We 
define S( f )  to be the set of points x E U such that the germ f x of /  
at x  is invertible in &x,x- Thus S( f )  is the maximal open subset V  of 
U such that f \ v  is invertible. Hence S( f )  =  shlim f z (see [7], chap. II, 
Exercise 2.16). Furthermore, €  satisfies (03).

Now let U C X  be an affine open set. For any /  G &(U), the set 
S( f )  C U consists of the prime ideals p of 0(U) with /  ^ p. Hence 
£?(S(f)) =  0(U)f ,  and thus U satisfies (Al) of Definition 4. Moreover, 
(A2) and (A3) are easily verified. Hence U G Ob Conversely, 
the open sets in Ob ¿?aff are affine by Proposition 5. To verify (04), let 
V, W  c X b e  open such that for any affine open U C V  and a morphism 

' f  • U —> V,  there is a corresponding morphism iff ■ f  : U —* W.  
Assume that these maps form a cocone over Oag/V —> This means 
that for each affine open U C V, there is a section fu  := (If/)' G &x{U) 
such that for every affine open U' C U, fu< = fu\u'- Since 6 x  is a sheaf, 
there exists a unique section /  G Ox(V)  with f\U  = fu  for all affine
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open U <ZV. So we get a morphism f  : V  —> W  which completes the 
proof of (04).

Next let (<£>, t?) : X '  —*• X  be a morphism of schemes, i. e. <p : X '  —> X  
is continuous, and d : Ox —> <P*Oxr is a morphism of sheaves. Let
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0',0 be the corresponding objective categories. We define a functor
F: & —► as follows. For U G ObO, we set FU := ip~1(U), and 
for a morphism iy • f :  U —► V  in we define F (i^  • / )  := • 
'drr(f). Thus F  respects addition of morphisms, and for a morphism
i y - 9 ’- V - ^ W ,  we have F (i^ g - i^ f )  =  F(tff-g\u-f) = i™  $u{g\u-f) =
i-FU flu(g\u)fiu(f) =  ^ fu^v(9) \ fu  • &u0) =  ipvt iv ig)  ■ ipv^u i f )  =  

F(iy  - ' /)• Since F{i(j) =  ipy, it follows that F  is an additive
functor which satisfies (FI) of Definition 5. For /  € £?x(U), we have 
F S ( f ) =  = 5(t?[/(/)) =  S ( F f ) since (</?, i?) is a morphism of
locally ringed spaces. This proves (F2). As (F3) and (F4) are trivial, 
the functor F  is objective. It is straightforward to check that the functor 
(37) is inverse to (33). □

Remark. The preceding proof shows that for a scheme X ,  an open 
subset U of X  is affine if and only if the object U of the corresponding 
objective category is affine in the sense of Definition 4.

By virtue of Theorem 2, the following result locates the category of 
schemes within the category of pre-objective categories.

Theorem 3. The category Obj of objective categories is a reflective 
full subcategory of the category POb of preobjective categories with a 
greatest object.

Proof. For a pre-objective category 6  with a greatest object X ,  
Theorem 2 implies that the associated scheme Spec G corresponds to 
an objective category @. The objects of 6  are the open sets of Spec 6 .  
By the corollary of Proposition 3, 6  admits a subcategory of short 
monomorphisms i ^ : U —► V  for U ^  V  such that the relations (14) are 
satisfied. For any V  G Ob 6 ', Eq. (24) can be rewritten as

V = ( J { ^  I V ^ u e  Oaff}. (38)
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Every /  G 0{V)  gives rise to a system of f \u  G 0{U)  =  0{U)  for all 
affine U ^  V. By recollement, this yields an endomorphism /  & V  with 
f \ y  =  f \ v for all U. So we get an additive functor H: O —> O which 
maps iy ■ f :  V  —> W  with /  G 0(V)  to /  G ¿?(F) =  Horn^{V ,W )  
according to Proposition 3. By construction, H  satisfies (FI) of Defi­
nition 5. Assume that S ( f ) exists for some /  G 0(V)  with V  G Ob O. 
To verify (F2), we have to show that S { H f ) C HS( f) .  This means 
that U C HS{f )  for every U G Oag with U C S (H f )  = S( f ) .  For such 
U, the restriction f \ fj  = f \u  is invertible. Hence U C S{f),  and thus 
U C HS{f) .  Properties (F3) and (F4) are immediate consequences of 
(38). Thus H: O —*■ O is a morphism in POb.

Now let F : O —> O' be a morphism in POb with O' objective. For 
Y  G Ob O, we define
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F'Y  := \ j { F U  | U G 0 &fi, U C K}. (39)

For any V G Ob O, Proposition 10 gives F'V  =  V l-^ ^  I U £ ^aff, U C 

F} =  | V ^  C/ € ^kff} =  FV. Choose a system of short
monomorphisms iy '■ V  —> F X  for any G Ob O' such that i f u  = Fiy  
holds for U G Ob O. So there is a unique set of short monomorphisms 
iy : V  —» W  in O' which satisfy (14) and iFy =  F(iy)  for U < V  
in O. Every morphism /  G OiY)  restricts to a system of endomor­
phisms f\jj G 0(U)  =  0(U)  with U G Ob^aff and U C Y.  By Theo­
rem 2, O' can be regarded as a scheme such that the short monomor­
phisms iy G O' are to be viewed as inclusions U V. Therefore, the 
F(f\jj)  G O(FU)  admit a recollement f  G O'(F'Y).  For any inclusion 
i: Y  C Z in Ob O, we set F'(i f)  := i%y • f . This gives an additive 
functor F ' : O —► O' with F'H — F  which satisfies (FI).

Assume that /  G 0(Y) .  With V  := {U G O b ^ aff | U C Y-}, we 
have F'S( f )  =  \ / {FU \ U e r , f \ D e  0(U)*}  =  \ / { F S ( f \ D) \ U G V}.  
Since F S ( f \ D) = S (F ( f \D)) = S ( F ' f  \FU), we get

F ’S( f )  = \ / { S ( F ' f \ FU) | U G r }  =  \ /
UZ't

( S ( F ' f ) A F U ) = S ( F ' f ) .
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Thus F' satisfies (F2). Furthermore, Eq. (39) implies that (F3) and 
(F4) for F  carry over to F '. Hence F' is objective and unique. □
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5 Quasi-coherent sheaves

Let X  be a scheme with structure sheaf G \,  and let G be the corre­
sponding objective category. By the remark of section 4, the scheme X  
is affine if and only if the largest object X  of G is affine. For an object 
Y  of 0 ,  we denote the full subcategory of objects Z  ^  Y  by G\y- Thus 
G\y is affine if and only if Y  G Ob O^g.

A presheaf of ¿^-modules is just an object of M od(^), i. e. an 
additive functor M  : Gop —> Ab. In fact, if U £ Ob G, then the ring ho­
momorphism G(U) —> End(M (t/)) makes M (U) into an ^(i/)-module, 
and for V  ^  U in Ob G, the restriction M (iy ) : M (U ) —* M (V)  is G(U)- 
linear if M (V ) is regarded as an ¿?(f7)-module via py : G(U) —* G(V).
Furthermore, any pair of ^-modules M, N  has a tensor product M®&N 
given by (M <%># N)(U) := M(U) ®e(u) N(U) for all U G Ob G and the 
obvious restrictions. In the sequel, we write Honv(M, N) instead of 
HoniMod(<?) (■&/■> N).

P roposition  11. Let X  be a scheme with structure sheaf Ox, and let 
O be the corresponding objective category. Up to isomorphism, there 
is a natural bijection between quasi-coherent sheaves on X  and quasi- 
coherent Oas-modules (see Definition 3).

Proof. Every quasi-coherent sheaf on X  restricts to an ¿^-m odule 
M. For an endomorphism /  : U —► U in Oag, Proposition 5 implies that 
0 (S ( f) )  “  0(U )f . As an ^(f/)-module, 0{U)f  “  0{U)[t}/( 1 -  f t )  is 
the direct limit of the diagram

— ►  o{u) M  o(u) M  o(u) -> ■ • •

Hence lim(M o f z ) S  0(U )f  ®û(u) M(U) “  M {S{f)).
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Conversely, let M  £ M o d (^aff) be quasi-coherent. To show that M  
defines a sheaf of ¿^-modules via (31), we use [5], 0.3.2.2. By [5], I, 
Theorem 1.4.1, the conditions (LI) and (L2) after Definition 3 imply 
that for any U € Ob the restriction of M  to M od (^ ’aff|[/) coincides 
with the associated sheaf of an ¿?(£/)-module. Hence M  defines a sheaf 
of ^x-modules which is quasi-coherent by [5], I, Proposition 2.2.1. □

Proposition 11 shows that the category of quasi-coherent sheaves on 
X  can be identified with the full subcategory Qcoh(^) C Mod(£?aff) of 
quasi-coherent modules. Since direct limits in M o d (^ aff) are exact, 
the full subcategory Qcoh(^) is closed under kernels and colimits (cf. 
[5], I, Corollary 2.2.2). Furthermore, Qcoh(^) is closed with respect to 
the tensor product, and the greatest object X  of Ô (which corresponds 
to the structure sheaf G \)  belongs to Qcoh(^). Hence Qcoh(^) is a 
cocomplete abelian tensor category.

For M  € Qcoh(^) and x  G Spec 6 , the localization

Mx := lim M(U) (40)
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can be regarded as an object of Qcoh(^), given by the skyscraper sheaf

MX(U) :=
f Mx for x e  U 

1 0 for x U.

Moreover, there is a natural morphism M  —> Mx in Qcoh(^).

Now we briefly discuss how to recover an objective category & from 
the abelian category Qcoh(^). Our method is more explicit than the re­
construction of Rosenberg [11] who considered various non-commutative 
generalizations [11, 12], Recall that an object Q of an abelian category 
is said to be quasi-injective [10] if for morphisms f , i : A —* Q  with i 
monic there is an endomorphism e of Q with f  — ei.

Definition 8. Let s i  be an abelian category. We call an object P  of 
s /  a point of £? if P  is quasi-injective, End^(P) is a field, and every 
subobject A ^  0 of P  generates P. By Spec s i  we denote a skeleton of 
the full subcategory of points.
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For a non-commutative generalization in the affine case, see [2].

Proposition 12. Let G be an objective category. There is a natural 
bisection k : Spec @ SpecQ coh(^).

Proof. Let X  denote the corresponding scheme with structure sheaf 
Oxi and let P  be a point of Q coh(^). Choose an affine U 6 Ob G with 
P(U) 0. By Proposition 9, there exists a point x £ U with Px ^  0. 
So we have an exact sequence

0 -  P' -  P  -> Px

in Q coh(^). Since P' is invariant under End^(P) and P' /  P, we have 
P' = 0. Hence P  == Px. Thus P  can be regarded as a module over 
the local ring i?x,x =  lim^~ C?(U). For any /  G @x,x, the submodule 
f P  C P  is fully invariant. Hence f P  = P  or f P  — 0. Therefore, 
the annihilator p :=  Ann(P) C @x,x is prime. If f P  =  P, then /  is 
invertible on P  since every non-zero submodule of P  generates P. So we 
can assume that p =  Rad ¿?x,xi and P  is a vector space over the residue 
field k(x) of ¿?x,x' Since End^(P) is a field, P  must be one-dimensional 
over k(x). Conversely, the skyscraper sheaf with stalk k(x) at x  is a 
point in Q coh(^). So we get a bijection Spec G Spec Q coh(^).

□
Let s i  be an abelian category. For a subset U C Spec s i ,  let ,%j 

denote the full subcategory of s i  consisting of the objects X  such that 
Hom^(y, P) = 0 for all subobjects Y  of X  and P  € U. Thus is 
a Serre subcategory of s i . In particular, we write 2fp := Zf{p} for any 
P  G Spec s i.

Definition 9. Let s i  be an abelian category. For an object X  of s i  and 
P  € Spec s i ,  we call a set F  of morphisms f : Y —* X  P-epic if every 
epimorphism g : X  —> Z  with g f  — 0 for all f  £ F  satisfies Z  € 3Fp. 
We say that X  € Ob s i  is of finite type if for every P  € Spec ¿2/ ,  any 
P-epic set F  of morphisms Y  —* X  has a finite P-epic subset.

For X  G Ob s i  of finite type, we define a subset Ux C Spec s i  by

Ux  := {P  E Spec s i  \X  e  ^ p }. (42)
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If X, Y  € Ob s i  are of finite type, then X  © Y  is of finite type, and

Ux C\Uy =  Ux ®y - (43)

Therefore, with respect to inclusion, the Ux form a partially ordered 
set

Qtf := {Ux | X  € Ob s i  of finite type}. (44)

which is a basis of open sets for a topology on Spec,«/. We endow 
Spec .2/  with this topology. In particular, has a greatest element 
Uo — Spec s i .

Recall that the center Z (&) of a preadditive category & is the ring 
of natural endomorphisms of the identity functor 1: & —> <€. If ^  is 
small, then Z itf)  G CRi. We define

0 j(U ) ■= Z { s i/% )  (45)

for any U € If U C V  holds in then Sfy C which induces 
an additive functor s i /  37v —► s i /  ¿Tjj, and thus a ring homomorphism 
Pu '■ &s/(U). So we get a functor

p :Q °£ ^  CRi. (46)

If p(U) = 0, then s i / — 0, which implies that U = 0 . Hence by 
the corollary of Proposition 3, the functor (46) defines a pre-objective 
category G^  € POb.

The following theorem shows that an objective category and its 
corresponding scheme (cf. [11]) can be recovered from the category 
Qcoh(^).

Theorem 4. Every objective category G is isomorphic to ¿?QCoh(<?) •

Proof. We set s i  := Qcoh(^) and X  := Spec G. For a point P = 
k(x) of s i,  the Serre subcategory £?p consists of the quasi-coherent 
sheaves M  with Mx = 0. Therefore, E  € Ob s i  is of finite type in 
the sense of Definition 9 if and only if E  is of finite type as a quasi- 
coherent sheaf (see [5], 0.5.2). By [5], Chap. 0, Proposition 5.2.2, such
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an E  has a closed support, i. e. Ue C Spec^/ corresponds to an open 
set /c-1(Ue) C X .  This shows that the map k of Proposition 12 is 
continuous.

Conversely, by Proposition 10, every open set in X  is of the form 
U for some U € Ob Û. Let X u  be the corresponding quasi-coherent 
ideal of which annihilates X  \  U. Then there is a short exact 
sequence 0 —► X y  —► X  —> E  —*• 0 in Q coh(^) with E  of finite type 
and Ue — k(U). This shows that k is a homeomorphism. Furthermore, 
sé / £7\j ~  Q coh(^|[/), whence 0^{U)  =  Û(U). This proves that 6 ^  = 
Û. □
N ote: The preceding proof shows that is not only a basis, but the 
totality of all open sets of S p ec^ .

Acknow ledgem ent. We owe thanks to Marta Bunge who pointed 
out that the definition of the category P O b ought to be placed at 
the beginning of section 4 to correct the logical order and improve the 
readability of the paper.
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