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Abstract 

Dans cet article on démontre qu'un espace topologique préordonné (sur 
un espace de Stone) est profini si, et seulement si, il est inter-ferméouvert, 
c'est-à-dire s'il peut être présenté comme intersection de relations de préordre 
fermées-ouvertes sur le même espace. En particulier, ceci donne une nouvelle 
caractérisation des espaces que l'on appelle espaces de Priestley. Ensuite on 
étend ce résultat des espaces préordonnés aux modèles d'un langage de pre
mier ordre satisfaisant à une condition. On présente aussi une condition plus 
forte qui admet une interprétation claire dans le contexte de la théorie des 
modèles. 

0 Introduction 

We prove that profinite is the same as inter-clopen for preorders. Hère and below 
"profinite" means "a limit of finite topologically-discrete" and "inter-clopen" means 
"that it can be presented as an intersection of closed-and-open preorders". 

The same is true for équivalence relations (which can either be deduced from 
results of A. Carboni, G. Janelidze and A. R. Magid in [2] or seen as a spécial case 
of our Theorem 2.4 below), and this is important in the Galois theory of commuta-
tive rings. In the case of Stone spaces they are precisely the effective équivalence 
relations and this effectiveness play an important rôle in categorical Galois theory, 
namely in the characterization of the effective descent morphisms (see e.g. [5] and 
Section 2 of [4]). 
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This is not true for orders, but gives a new characterization of profinite orders, 
since (profinite order) = (profinite preorder) + (order). 

Thèse spécial cases suggest to investigate relational structures in gênerai and 
we conclude that profinite = inter-clopen also in this context under some conditions. 
In fact we show that, under the very reasonable assumption of having the forget-
ful functor topological, the problem reduces to Condition 2.3, which is not only 
sufficient but also necessary. 

Next, although we easily show that Condition 2.3 holds for preorders, it would 
be nice to hâve its équivalent (or "nearly équivalent") syntactical reformulation in 
gênerai. Not having such a reformulation, we propose instead a stronger condi
tion with a reasonably clear model-theoretic meaning. At the end we make it still 
stronger, very simple, and purely syntactical indeed - in order to make obvious that 
it holds in many familiar quasi-varieties of models. 

1 Profinite preorders 

Extending Stone duality, Priestley duality is an équivalence between the dual cate-
gory of distributive lattices (with 0 and 1) and the category VroTin{Ord) of profi
nite ordered topological spaces, also called Priestley spaces. While Stone spaces, 
which are to be identified with order-discrete Priestley spaces, can be characterized 
as compact topological spaces in which every two distinct points can be separated by 
a clopen (=closed-and-open) subset, it is also well-known that the Priestley spaces 
can be characterized as follows: 

An ordered compact topological space X belongs to VroTin^Ovà) if and only 
if for every two points x' ^ x in X there exists a clopen decreasing subset U in X, 
that is a clopen subset such that y <u G U => y G U, with x G U and xf ¢11. 

As shown in [3], this can be repeated for preorders as follows: 

Theorem 1.1. The following conditions on a preordered topological space (X, <) 
are équivalent: 

(a) (X, <) is a limit offinite topologically-discrète preordered spaces; 
(b) X is a Stone space in which for every two points x andx' with x' ^ x, there 

exists a clopen decreasing subset U in X with x G U and x' ¢ U. 

Note also that, whenever an ordered topological space can be presented as a 
limit of finite topologically-discrete preordered spaces, it can also be presented as a 
limit of finite topologically-discrete ordered spaces. 
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We shall write VroTin(J>reord) for the category of such preordered topolog
ical spaces; accordingly, the objects of VroTin(J>reord) might be called either 
profinite preorders or Priestley preorders (as in [3]). 

Theorem 1.2. A preordered topological space (X, <) belongs to VroTin{J>reord) 
if only ifX is a Stone space and the preorder < is inter-clopen, Le. it can be pre
sented as the intersection ofafamily (Ri)iei of preorder relations on X that are 
clopen subsets in X x X. 

Proof "Only if: If (X, <) = limieI(Xi, <i) is profinite (with finite i^'s), just 
take /fc's to be the inverse images of <i under the induced maps X x X -» Xi x Xi. 

"If: First suppose that the original preorder relation < is clopen. Then, for each 
x G X, the set j x = {u G U\u < x) is clopen, since it is the inverse image of < 
under the continuous map X —• X x X sending u to (u, x). Consequently (X, <) 
satisfies condition (b) of Theorem 1.1. 

After this, instead of proving that (X, <) is a limit of finite discrète preorders, it 
suffices to prove that (X, <) is a limit of clopen preorders (on Stone spaces). How-
ever, this is obvious: just take the diagram formed by ail identity maps 
(X,Ri) —> (X ,X x X), where Ri's are clopen preorder relation on X whose 
intersection is the original preorder relation. • 

Our next corollary is in fact an easy conséquence: 

Corollary 1.3. An ordered topological space (X, <) belongs to VroTin{Ord\ le. 
is a Priestley space y if only ifX is compact and the relation < is inter-clopen (as a 
preorder). 

Remark 1.4. (a) It seems that Corollary 1.3 might suggest considering "order-inter-
clopen" order relations, i.e. those order relations that are intersections of clopen 
order relations. In fact not, simply because there are no such relations! More pre-
cisely, the following four conditions on an ordered topological space (X, <) are 
équivalent: 

1. < is an order-inter-clopen subset in X x X; 

2. < is an clopen subset in X x X; 

3. < is an open subset in X x X; 

4. X is discrète as a topological space. 
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(b) On the other hand inter-clopen équivalence relations are important: in the 
case of Stone spaces they are precisely the effective équivalence relations, and they 
are useful in Galois theory of commutative rings [2], which in fact was our original 
motivation for considering inter-clopen preorders. 

2 Profinite and inter-clopen models 

A first order (finitary, one-sorted) language L is determined by its set F (h) of func-
tional symbols and its set P(L) of predicate symbols both equipped with arity maps 
into the set {0,1,2, • • •} of natural numbers. A model (or a structure) for such a 
language L is a pair A = (An, vA) in which A$ is a set and vA a map that asso
ciâtes an n-ary opération on AQ to each F G F (h) and an n-ary relation on An to 
each P G P(L); we then simply write FA and PA instead of VA(F) and VA{P) 
respectively. A homomorphism / : A —> B of models is a map / : AQ —> Pn with 

fFA = FBr and fn(PA) C PB 

for ail natural n, n-ary F in F (h), and n-ary P in P(L); hère fn dénotes the 
map (Ao)n —> (Po)n induced by / . The category of models for L and their ho-
momorphisms will be denoted by Mod(L); we will freely use various well-known 
properties of this category. In particular we will use the fact that the forgetful functor 

Uh : Mod(L) -> Alg{h) 

is a fibration; hère by Al g (h) we dénote the category of models of the language 
obtained from L by removing ail predicate symbols. Recall, however, that for A in 
Al g (h), B in Mod(L), and a morphism / : A —> U^(B) in Al g (h), the cartesian 
lifting/*(A) - » P h a s : 

• /*(A)0 and ail FMA)(F G F(L)) are as in A; 

• Pf*(A) = (fnyl{PB) for ail natural n and each n-ary P in P(L). 

When P is a terminal object in Mod(L), we will write A* instead of /*(A); we 
will also write B* instead of (U\.{B))* for an arbitrary B in Mod(h). Note that 
pA* = (Ao)n for ail natural n and each n-ary P in P(L). 

Throughout this paper: Q will dénote afixedfull subcategory in Al g (h) closed 
under products and subobjects, in particular it could be any quasi-variety; C will 
dénote afull subcategory ofMod(h), satisfying the following conditions: 
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• The forgetful functor Uh : Mod(L) -* Al g (h) induces a functor Uc Q : 
C -+ Q; 

• C is closed in Mod(L) under limits and cartesian liftings with respect to the 
functor UQ,Q. 

Note that this makes the forgetful functor C/C,Q : C -> Q what is called a 
topological functor in categorical topology (see e.g. G. C. L. Briimmer [1]). 

We will also consider: 

• the category Top(C) whose objects are objects A = (A0, i/A)inC equipped 
with a topology on A0, making FA continuous for each F in F (h); 

• the full subcategory Fin(C) in Top(C) with objects ail A = {A0,vA) in 
Top(C) with finite discrète A0 (of course Tin(C) can also be considered as 
the full subcategory in C with objects ail finite models from C); 

the full subcategory P m F m ( C ) in Top(C) defined as the limit completion 
o f ^ m ( C ) i n T q p ( C ) ; 

the full subcategory P r a F m ( Q ) in Top(Q) defined (in a similar way) as the 
limit completion of .Fm(Q) in Top(Q). 

Définition 2.1. For an object A in Top(C), we say that 
(a) A is closed ifPA is a closed subset in PA* for each P in P(L); 
(b) A is open ifPA is an open subset in PA* for each P in P(L); 
(c) A is clopen ifit is closed and open at the same time; 
(d) A is inter-clopen if A* has a set S of clopen subobjects, such that 

S0 = A0 for ail S G 5 , and PA = nSesPs 

for each P in P(L). 

Lemma 2.2. Every object in VroTin[G) is inter-clopen. 

Proof Let A be an object in VroTin{C) and let D : X --> Tin(C) be a diagram, 
whose limit is A with the limit projections px : A —> D(x), x G X. For each 
object x in X, let A[x] be the object in C defined via the cartesian lifting A[x] -> 
D(x) of UC,Q(PX) '• UC,Q(A) -> UC,QD(X). Assuming A[x] to be equipped with 
the topology of A, we just take S of 2.1(d) to be the set of ail such objects A[x] 
(x G X). D 
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Let us now impose 

Condition 2.3. If A is a clopen object in Top(C) with A* in Vro!Fin(C) (or, 
equivalently, with C/C,Q(A) in VroTi^Q)), then A belongs to VroTin(C). 

Theorem 2.4. Under Condition 2.3, the following conditions on an object A in 
Top(C) are équivalent: 

(a) A belongs toVroTin(C); 

(b) A* belongs to VroTi^C) and A is inter-clopen; 

(c) UC,Q{A) belongs to ProJ r in(Q) and A is inter-clopen. 

Proof. (a)=Kc) follows from Lemma 2.2, (b)<̂ > (c) is obvious, and (b)=Ka) follows 
from the fact that an intersection is a spécial case of a "wide pullback": in the 
situation of 2.1(d), A is the limit of the diagram formed by ail S —• A* (S G S) with 
A* and S (S G S) profinite, by the assumption and by Condition 2.3 respectively. 

D 

That is, under the assumption that UC,Q is topological, the problem reduces 
to Condition 2.3. Note that Condition 2.3, which is not only sufficient but also 
necessary, holds not only in the spécial cases considered - preorders and équivalence 
relations - but also in a wide class of familiar quasi-varieties as we show next. 

It is interesting that the concept of topological functor has become relevant, 
and it is exactly the relevant différence between preorders and orders: the forgetful 
functor Vreord —+ Set is topological while the forgetful functor Ord —> Set is 
not. 

3 A non-topological condition that implies Condition 2.3 

Let L, Q and C be as above; in this section instead of requiring Condition 2.3 we 
will deduce it from 

Condition 3.1. (a) Let A —» B be a morphism in Mod(L) that is a regular epi-
morphism and is cartesian with respect to the forgetful functor U\, : Mod(L) —> 
Alg(h); then A G C and Uh(B) G Q imply that P G C. 

(b) The set P(L) is finite. 
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Let A be a clopen object in Top(C) (whose underlying space will also be de-
noted by A) with A* in VroFin(C) (assuming that A* has the same topology as 
A), and let D : X -> Fin{Q) be a functor, for which £/L(A) = UmD. 

Without loss of generality we can assume that X is an ordered set with 

Vx G X\/ y G X3 z G X(z < x and z < y), (1) 

and that the limit projections nx : A -> D(x)(x G X) are surjective maps; in 
particular (1) implies: 

Lemma 3.2. For every finite set U of clopen subsets in A, there exists x G X with 

Vf/ G U(a G C/ and irx(a) = 7rx(a
f) => a! G £/), 

w/iere 7rx : A —• £>(x) w the limit projection corresponding to x. 

Next, for each natural n and each n-ary P in P(L), we présent P^ as a finite 
union 

P^ = (Un x • • • x Uln) U • • • U (Ukl x • • • x Ukn) 

with ail Uij clopen, and take 

UP = ( ¾ K = 1, • • •, * and j = 1, • • •, n} and W = UpGP(L)Wp. (2) 

After that, using Condition 3. l(b), we choose x as in Lemma 3.2, put 

Y = {y G X\y < x}, 

and define E : Y —• ^"in(Q) as the restriction of D on y . As follows from (1), we 
still hâve 

UL{A) = UmE. 

We then use cocartesian liftings to construct the functor F : Y —* .Fm(C), which, 
composed with the forgetful functor Fi^C) —• J"in(Q), gives P . Explicitly, for 
y in F , we define F (y) as the object in C with UL(F(y)) = E(y) and, for each P 
in P(L), 

^V(y) = n { P e | £ 4 ( P ) = E(y) and 7ry détermines a morph. A —• P in C} . 

Lemma 3.3. In the notation above, A = HmF. 
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Proofi In the notation above, let G(y) be the object in Mod(L) with 

Uh(G(y)) = E{y) and PG(y) = (iry)
n(PA), 

for each natural n and each n-ary P in P(L). Then ny becomes a regular epi-
morphism from A to G(y), and at the same time Lemma 3.2, applied to U of (2), 
easily implies that it is a cartesian morphism with respect to the forgetful functor 
[/L : Mod(L) —> Alg(V). Therefore G(y) is in C by Condition 3.1 (a), and the uni-
versal property of F (y) implies that G(y) coincides with F (y). Hence G is a functor 
from Y to Tin(C), and since PA = {(ny)

n)~l(PF(y)) (since iry is cartesian) for 
each natural n and each n-ary P in P(L), we obtain A = UmG = UmF. D 

That is, we obtain: 

Proposition 3.4. Condition 2.3 follows from Condition 3.1. 

Remark 3.5. It is clear that the quasi-variety (in model-theoretic sensé) of pre
ordered sets satisfy Condition 3.1. More generally, let C be a quasi-variety deter-
mined by a set <3> of quasi-atomic formulas, i.e. formulas of the form 

(<pi A - - A ifn) => V (3) 

where <p\, • • •, ipn, <p are atomic formulas, i.e. formulas of the form 

P(ti,--,tn) (4) 

and 
t = u (5) 

where P in P(L) and P is n-ary, and tu • • • ,tn,t and u are terms in the same 
language L. Then C satisfies Condition 3.1 whenever (its set of predicate symbols 
is finite and) for every formula (3) from $, either each of ipi, • • •, ipn is of the form 
(4), or each of </?i, • • •, </?n, </? is of the form (5). 

This observation provides a wide class of examples of familiar quasi-varieties 
satisfying Condition 3.1 of course. The reason for having no restrictions on the 
algebraic atomic formulas hère is that we do not touch the algebraic part of the story 
assuming that the model A in Condition 2.3 and Theorem 2.4 to be "algebraically 
profinite", i.e. having C/L(A) in VroFin(Q). 
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