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CAHIERS DE TOPOLOGIE ET Volume XLVIII-Ï (2007) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

UNIFIED CHARACTERIZATION OF EXPONENTIAL 
OBJECTS IN TOP, PRTOP AND PARATOP 

by Frédéric MYNARD 

RESUME. Une caractérisation unifiée des objets exponentiels dans les 
catégories des espaces topologiques, prétopologiques et paratopologi-
ques (munies des applications continues) est présentée comme applica
tion d'un théorème concernant les produits de filtres D-compacts. 

1. INTRODUCTION AND TERMINOLOGY 

It is well known that the cateory TOP of topological spaces (and 
continuous maps) fails to be cartesian-closed, or in other words, fails to 
hâve "good" function spaces. Namely, there is in gênerai no topology r 
to put on sets C(X, Z) of continuous fonctions from X to Z to ensure 
that the exponential law 

(î.i) c ( x x y , z ) = c(y,cT(x5z)) 
is satisfied (1) for every triplet of topological spaces (X, Y, Z) (see [10], 
[1]). To remedy this situation, one can allow for more structures on 
C(X, Z) than only topologies, i.e., embed TOP in a larger category 
that is cartesian-closed, or one can restrict the objects to those satisfy-
ing (1.1). More specifically, a topological space X is called exponential 
in TOP if for every topological space Z there exists a topology r on 
C(X, Z) such that (1.1) is satisfied for every topological space Y. Not 
surprisingly, a category used for the former approach would be instru
mental in getting internai characterizations of exponential objects, as 
observed by F. Schwarz. More specifically, it is known from [17] that 
an object X of an epireflective and finally dense subcategory L of a 

1991 Mathematics Subject Classification. Primary 54A20; 18; 
I want to thank S. Dolecki (University of Burgundy) for many valuable 

suggestions. 
^ h e equality in (1.1) stands for a bijection via the transposition map É : C(X x 

Y,Z) - , C{Y,C{X,Z)) defined by */(y)(x) = / ( s , y). 
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topological cartesian-closed category C is exponential in L if and only 
if the reflector L : C —• L commutes with the product in the following 
way: 

(1.2) L(X x Y) < X x LY, 

for every C-object Y. F. Schwarz used this approach (with C = Conv 
the category of convergence spaces and continuous maps) to charac-
terize exponential objects in TOP, while the author used it in [14], 
[15] to characterize among other things exponential objects in the caté
gories PRTOP of pretopological spaces (which were first characterized 
in [12]) and PARATOP of paratopological spaces (and continuous 
maps). The later category was introduced by S. Dolecki [5] and is in
strumental to characterize countably biquotient maps, strongly Préchet 
(also called countably bisequential) spaces and many other notions. 
But despite some similarity in both proofs and results, ail the known 
internai characterizations of exponential objects in PRTOP and TOP 
needed almost entirely separate proofs so far. It is the aim of this pa-
per to présent a long sought unified treatment of exponential objects 
in TOP and in PRTOP. The case of PARATOP is also obtained as 
a by-product. The key is to interpret convergence of a filter in various 
reflections (in Conv) of the underlying convergence structure in terms 
of compactness of that filter in the underlying convergence, for various 
classes of filters and relatively to various families. 

Recall that by a convergence space (X, £) I mean a set endowed with 
a relation f between points of X and filters on X, denoted x G lim^ T or 
T —> x, whenever x and T are in relation, and satisfying lim T C lim G 

whenever T < G] {#}T —> x (2) for every x G X and lim (TA G) = 
lim .F n lim G for every filters T and G- A map / : (X,Ç) —• (Y,r) is 
continuous if / ( l i m ^ ) ClimT /(^). If £ and r are two convergences 
on X, we say that f is finer than r,in symbols £ > r, if Idx : (X, £) —• 
(X,T) is continuous. The category Conv of convergence spaces and 
continuous maps is topological (3) and cartesian-closed [4, Theorem 5] 

2If A<Z2X,A^ = {BcX:3A£A,Ac B}. 
3In other words, for every sink (fi : (Xi,Ç{) -+ X)ieI, there exists a final con

vergence structure on X : the finest convergence on X making each fi continuous. 
Equivalently, for every source (/» : X —> ( ^ 1 , ^ ) ) ^ there exists an initial conver
gence: the coarsest convergence on X making each fi continuous. 
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(4). A convergence is called atomic if it has at most one non-isolated 
point. 

Two families A and B of subsets of X mesh, in symbols A#B, if 
An B ^ ® whenever A G A and B G B. A subset A of X is £-
closed if limf T C A whenever A G ^ # . The family of f-closed sets 
defines a topology TÇ on X called topological modification of £. The 
neighborhood filter of x G -AT for this topology is denoted Àf^(x) and 
the closure operator for this topology is denoted cl^. A convergence is 
a topology if a; G lim^ J\fç(x). By définition, the adhérence of a filter (in 
a convergence space) is: 

(1.3) a d h ^ = I I l im^ . 

In particular, the adhérence of a subset A of X is the adhérence of its 
principal filter {A}^ The vicinity filter V^(x) of x for £ is the infimum 
of the filters converging to x for £. A convergence £ is a pretopology if 
x G limf Vç(x). Notice that a convergence £ is respectively a topology, 
a pretopology, a paratopology, a pseudotopology if a; G lim^ ^7 whenever 
x G H adhç 2?, where B is respectively, the class cljj (Fx) of principal 

filters of £-closed sets, the class Fi of principal filters, the class Fw of 
countably based filters, the class F of ail filters. In other words, the 
map Adhp defined by 

(1.4) l im A d h D ^= H adh^P 

defines the reflector from Conv onto the (sub)category of respectively 
topological, pretopological, paratopological and pseudotopological spac< 
when B) is respectively, the class cljï (Fi) of principal filters of £-closed 
sets, the class Fi of principal filters, the class Fw of countably based fil
ters, the class F of ail filters. A class of filters © (under mild conditions 
on © [5]) defines a reflective subcategory of Conv (and the associated 
reflector) via (1.4). Dually, it also defines (under mild conditions on 

4In other words, for any pair (X,£), (Y,T) of convergence spaces, there exists 
the coarsest convergence [£,T] -called continuous convergence- on the set C(f, T) of 
continuous functions from X to Y making the évaluation map 

« : ( j r , O x ( C « , T ) , K , T ] ) - ( r , T ) 

(jointly) continuous. 
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B) the coreflective subcategory of Conv of M-based convergence spaces, 
and the associated coreflector 5p is 

(1.5) limBrf.F= I I lim^P. 
HD;£><J 

If o : 2X -> 2X and A C 2*, then o»(>t) = {o(A) : A G .4}. If B is a 
class of filters, then o^B) = {V GB : P =o\V)}. If £ and a are two 
convergences on X, we say that f is a-regular if lim^ J7 C lim^ adh^J7) 
for every filter T. To a convergence £, we can associate two (Alexan-
droff) topologies f# and f* defined by (see [7], [6] for détails). 

cl^ A = I I cl^{x} and cl̂ * A = {y : cl^{y} f l A ^ 0 } . 
xeA 

Notice that 
A#cl^B<^cl\.A#B. 

A convergence £ that is £*-regular is called *~regular [2] (5). 
Let B be a class of filters on a convergence space (X, £) and let A be 

a family of subsets of X. A filter T is B- compact at A (for £) if 

(1.6) O GB, 2 W = > adhc 2?#A 

Notice that a subset if of a (topological or more generally conver
gence) space X is respectively compact, countably compact, Lindelôf 
if {K}ï is B-compact at {K} if B is respectively, the class of ail, of 
countably based, of countably deep (6) filters. Compactness of filters 
not only generalizes compactness of sets, but also convergence of filters. 
In particular: 

Theorem 1. Let M be a class of filters. 
(1) x G limAdho^^7 if and only i] T is B-compact at {x} for £. In 

particular, x G limp^J7 if and only i] T is Fi-compact at {x} 
forÇ. 

(2) x G lim^ T if and only i] T is W\-compact at M^(x) for £. 
5cl^ A is often denoted J, A = {y : 3x £ A, y Ç x} where Ç dénotes the 

specialization order (e.g., [8]) of the topology TÇ. Analogously cl^ A is î A = {y : 
3x G A, x C y}. Therefore, a convergence is *-regular in the sensé of [3] if and only 
if it is up-nice in the sensé of R. Heckmann [9]. 

6A filter T is countably deep if f| A € J1 whenever A is a countable subfamily of 
T. 
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To be précise, answering a problem of F. Schwarz [17], the papers [6], 
[14], [15] give characterizations of quasi-exponential objects in L (where 
L ranges over TOP, PRTOP and PARATOP) that is, of objects X 
satisfying (1.2) for every convergence space Y among objects of the 
cartesian-closed hull of L rather than just among L-object. Of course, 
exponential objects in L are the quasi-exponential objects that are 
also L-objects. In particular, calling a convergence space (X, £) finitely 
generated ij £ = B^Ç and bisequential if £ > 5£FW£ (7), we hâve: 

Theorem 2. [14] 
(1) A pseudotopological space is quasi-exponential in PRTOP ij 

and only if it is finitely generated. 
(2) A pseudotopological space is quasi-exponential in PARATOP 

if and only if it is bisequential 

A convergence £ is called core compact if for every filter T with 
x G lim$ T and every F G T there exists Kp G T that is compactoid 
at F and T-core compact if for every filter T with x G lim^ T and every 
V G Nç(x) there exists Fy G T that is compactoid at V. 

Theorem 3. [6] 
(1) A core compact convergence space is quasi-exponential in TOP; 
(2) Every Epitopological (&) convergence space that is quasi-exponem 

in TOP is T-core compact 

However, it is not known whether the two conditions are really dif
férent. In the présent paper, I show that both parts of Theorem 2 and 
the fact that a *-regular convergence space (X, £) satisfies 

(1.7) X x PY > T(X x Y) 

for every convergence space Y if and only if it is T-core compact, ail 
follow from the same simple principle. 

The fact that (1.7) is équivalent to 

X x TV > T(X x Y) 

7It is easy to verify that this définition coincide for topological spaces with the 
usual notion [13]. 

8also called Antoine convergence space. The category of epitopological spaces 
is the cartesian-closed hull of TOP. A convergence space is epitopological if it is 
•-regular, pseudotopological, and if the limit set of each filter is closed. 
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for every convergence space Y under the assumption that X is topo
logical follows from a transfinite induction whose initial step is (1.7). 
However, I do not reproduce this induction [6, Theorem 9.1]. 

2. PRODUCT OF ©-COMPACT FILTERS 

[11, Theorem 2] was applied successfully in [16] to a large variety of 
product problems, including stability under (finite) product of global 
properties like countable and pseudo compactness and Lindelôfness, lo
cal properties like Préchetness or strong Préchetness, and properties of 
maps like perfectness and its variants and quotientness and its vari
ants. It is the common principle behind a surprisingly large number of 
classical theorems. With the following variant of [11, Theorem 2] (for 
M = J = F), I will be able to show that internai descriptions of expo
nential objects in TOP, in PRTOP and in the category PARATOP 
of paratopological spaces, are also conséquences of this same principle. 

A filter T on X is compactly B-meshable at A if for every A€ A and 
every ultrafilter finer than T there exists a filter V in © coarser than 
W, which is compact at A. This is a particular case (for M = J = F) of 
a gênerai notion introduced in [11] of a M-compactly J to © meshable 
filter that dépends on three classes of filters. 

A class © of filters is composable if for any X and Y, the (possibly 
degenerate) filter HV generated by {HD : H eH,D e V}9 belongs 
to ©(y) whenever V eB(X) and H E B(X x Y), with the convention 
that every class of filters contains the degenerate filter. Notice that 

(2.1) H# ( f x Ç ) ^ HT#G <=> H-G#T, 

where H~G = {H~G = {x E X : (x,y) E H and y E G} : H E W,G E 

Theorem 4. Let © be a composable class of filters that includes Fi 
and let (X, £) be a convergence space. The following are équivalent: 

(1) T is compactly B-meshable at A C 2X in (X,Ç); 
(2) for every convergence space Y and B C 2Y, and for every filter 

G which is B-compact at B, the filter J7 x G is B-compact at 
AxB] 

9HD ={yeY: (x,y) G H and x G D}. 
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(3) for every convergence space Y, every filter G on Y which is ©-
compact at {yo} anà every H C 2XxY such that H~{yo} C ,4, 
the filter J7 x G is B-compact at H; 

(4) for every atomic convergence space Y, and for every filter G 
which is B-compact at {yo}, the filter T x G is ¥\-compact at 
A x {y0}. 

Proof. (1 = > 2) 
Let V be a ©-filter such that V#T x G- The filter T>-(G)#F and T 

is compactly ©-meshable at A, so that for every A E A, there exists 
a compact ©-filter CA#V~(G) at A. Now V(CA)#G and V(CA) is a 
©-filter, so that for each B e B, there exists a filter MBH=D[CA) which 
converges to a point y# E B. Moreover V~MB# CA SO that there 
exists UA,BWD~MB that converges to some point of A. Therefore 
adhP n (A x B) ^ 0. Hence, JF x £ is ©-compact at A x B. 

(1 = > 3). Let î> be a ©-filter such that V#(F x G). Since V~G#f, 
for every H e H, there exists a ©-filter £H#'D~G which is compact 
at H~y0 E .4. The ©-filter VCH meshes with G so that there ex
ists WH^VCH SO that y0 E limyWtf. Moreover, î>"W//#£//. Thus 
there exists UH#T>~WH and x# E lim* Un n #~yo- Hence (xH,Vo) E 
adhXxr£>n#. 

(2 ==> 4) and (3 = > 4) are obvious. 
(4 = > 1). 
If T is not compactly ©-meshable at A (on X), then there exists 

AQ E A and an ultrafilter U oi T such that for every ©-filter V < 14, 
there exists an ultrafilter Wx> of V such that lim* Wp n A0 = 0. 

Consider the convergence space (Y,r) whose underlying set is X U 
{y0} in which every point of X is isolated and H converges to y0 if and 
only if there exists a D-filter V < U such that H > W'p A {y0}

T. By 
construction U is ©-compact at {y0} in y. However, T x U is not Fi-
compact at 4 0 x {y0} : In the space X x Y, the set A = {(x, x) : x E X} 
meshes with J7 x Ẑ  because .F#W in X, but adh^xy Afl (40 x {yo}) = 
0. Indeed, if H is a filter on A, then there exists a filter Ho on X such 
that H is generated by {{(x,x) : x e H} : H e Ho}- If (z, yo) E 
limxxy W then yo E limy Wo (and x E lim* W0)- Hence there exists a 
©-filter V <U such that W0= VVp (because Ho cannot be {yo}T), so 
that lim* Ho n A0 = 0. Thus x ¢. A0. O 
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In the case where A=J\fç(x0) and £ is *-regular, we can give an 
alternative form of (3 => 1). 

Proposition 1. Let (X,Ç) be a *-regular convergence space. If for 
every atomic convergence space (Y,T), and for every filter G which is 
B-compact at {y0}, the filter TxG is Frcompact at .A/ÇXT(ZO, 2/o), then 
T is compactly B-meshable at N$(xo)-

Proof. If 4 = Nz(xo), then in the construction carried on in the (4 = > 
1) part of the proof of Theorem 4, A0 can be chosen £-open. Moreover 
TxU is not Frcompact at A/^xr(zo, yo) because (x0> yo) i cl^XT(adh^XT -
Indeed, by the same argument as in (4 =>• 1), adh^xr A C 4g x {y0} U 
IJ (cl̂  x x {x}) and the set AC

Q x {y0} U U (cl* x x {x}) can be shown to 
xex xex 
be (£ x r)-closed : First notice that AC

Q x {y0} is (£ x r)-closed. Assume 
H x M is a filter on (J (clç x x {x}) converging to (x, y) for £ x r. If 

xex 

y^yo then M = {y}T and H is a filter on cl̂  y, which is f-closed, so 
that x E cl€ y. If y = yo then .M = Wv for some £> and H > cl*. AI so 
that clj* ft#M Moreover x E lime W C lim^clj, H by *-regularity of 
£. But lime clj. W C adh^ M C 4g so that (x, y) E AC

Q x {y0}. • 
In case © = Fi and A = {x0}, Theorem 4 applies to the efFect that 

Corollary 1. Let (X,£) be a pseudotopology. The following are équiv
alent: 

(1) (X,£) is finitely generated; 
(2) X x PY > P(X x Y) for every convergence space Y; 
(3) X is quasi-exponential in PRTOP. 

Proof. If (X, 0 is a finitely generated pseudotopology, then T is com
pactly Fi-meshable at {x0} whenever x0 E lim* .77. Therefore, for any 
convergence space Y and every G such that y0 E limpy G, the filter 
.F x G is Fi-compact at {(x0,yo)}, t h a t i s frcîto) e l imxxpv^ x G) 
because £ is Frcompact at {y0}. Hence X x PV > P(X x Y) for 
every convergence space Y. Conversely, if X x PY > P(X x Y) for 
every convergence space Y then whenever x0 E lim* F, we hâve that 
T x G is Fi-compact at {(x0, yo)} for every filter G that is Frcompact 
at {y0} in a convergence space Y. Hence T is compactly Frmeshable 
at {x0}. In particular every ultrafilter of T contains a set converging 
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to Xo. Therefore, a finite union of such converging sets -also converging 
to xo- belongs to T. Hence X is finitely generated. • 

In case © = Fi, A = Af^(x0) and H = -A/çxr(a?o,!/o), Theorem 4 
(1 = » 3) particularizes to (1 = » 2) in the resuit below. Assuming 
that (X,£) is a *-regular convergence space, Proposition 1 leads to 
(2 = » 1) in the resuit below. 

Corollary 2. Le/ pf>0 be a *-regular convergence space. The follow
ing are équivalent: 

(1) (X,Ç) is a T-core-compact; 
(2) X x PY > T(X x Y) for every convergence space Y. 

Proof. The proof of (1 = > 2) is similar to that of Corollary 1 except 
that we need to observe two things. The first one is that (JS/^XT(xo, yo))~ 
Aft(x0). The second is that T is compactly F rmeshable at Afç(x0) if 
and only if for every V E Nç(x0) there exists Kv E T which is com
pact at V. If T is compactly Fi-meshable at A/^rro) then for every 
V E Nç(x0) and every ultrafilter U of T, there exists UVJU G ^ which is 
compact at K. Therefore, there exists finitely many ultrafilters Wi,.., Wn 

n n 
of T such that U ^v% E 5 . Evidently |J [ / ^ is compact at V. The 

other implication is trivial. 
(2 ==> 1) follows from Proposition 1. • 

Corollary 3. Let (X, £) be a topological space. The following are équiv
alent: 

(1) (X, £) is a core-compact; 
(2) X x PY > T(X x Y) for every convergence space Y; 
(3) X x TY > T(X x Y) for every convergence space Y; 
(4) X is exponential in TOP. 

Proof The fact that (2 <=> 3) for a topological space (X, Ç) (in which 
case T-core compact is équivalent to core-compact) is proved by trans-
finite induction in [6, Theorem 9.1]. The inital step of the induction is 
Corollary 2. • 

In case © = Fw and A = {rr0}, Theorem 4 applies to the effect that 

Corollary 4. Let (X, Ç) be a pseudotopology. The following are équiv
alent: 
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(1) (X,Ç) is bisequential; 
(2) X x P^Y > PU(X x Y) for every convergence space Y; 
(3) X x PUY > P(X x Y) for every convergence space Y; 
(4) X is quasi-exponential in PARATOP. 

Proof. It suffice to notice that the condition that T is compactoidly 
Fu-meshable at {x0} whenever x0 G l i m ^ rephrases as £ > SB^SÇ, 
which coincides with bisequentiality for pseudotopologies. • 
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