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DISTRIBUTIONS AND HEAT EQUATION IN SDG

by Anders KOCK and Gonzalo REYES

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIOUES

Volume XLVII-1 (2006)

RESUME. Cet article expose une th6orie synth6tique des distribu-
tions (qui ne sont pas necessairement a support compact). On com-
pare cette th6orie avec la th6orie classique de Schwartz. Cette com-
paraison s’effectue par un plongement plein de la cat6gorie des es-
paces vectoriels convenables (et leurs applications lisses) dans cer-
tains gros topos, modeles de la géométrie synth6tique diff6rentielle.

Introduction

The simplest notion allowing a theory of function spaces to be formulated is
that of cartesian closed categories.

In a cartesian closed category, containing in a suitable sense the ring
R of real numbers, a notion of "distribution of compact support" on any
object M can be defined, because the object of R-linear functionals on the
ring RM can be formulated, cf. e.g. [23], [20]. Thus, a "synthetic" theory of
"distributions-of-compact support", and models for it, do exist (we exploited
this fact in [14]).

The content of the present note is to provide a similar theory, as well as
models, for distributions which are not necessarily of compact support. This
amounts to describing synthetically the notion of "test function" of compact
support. The R-linear dual of the vector space of test functions then is then
a synthetic version of the space of distributions.

When we say "model", we mean more precisely a cartesian closed cate-
gory, containing as full subcategories both the category of smooth manifolds,
and also some suitable category of topological vector spaces, in such a way
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that the synthetic contructs alluded to agree with the classical functional an-
alytic ones.

The category of "suitable" topological vector spaces will be taken to be
the category of Convenient Vector Spaces, in the sense of [5], [15]. With the
smooth (not necessarily linear) maps, this category Con- is already cartesian
closed, cf. loc.cit. We exhibited in 1986-1987 ([11], [13]) a full embedding
of this category into a certain topos (the "Cahiers Topos" of Dubuc [3]). It

is this embedding that we here shall prove is a model for a synthetic theory
of distributions. The point about the Cahiers Topos is that it is also a well-
adapted model for Synthetic Differential Geometry (meaning in essence that
R acquires sufficiently many nilpotent elements).

The functional-analytic spadework that we provide also gives, - with
much less effort than what is needed for the Cahiers Topos -, a simpler
model, namely Grothendieck’s "Smooth Topos". However, a main purpose
of distribution theory is to account for partial differential equations, and
therefore a synthetic theory of differentiation should preferably be available
in the model, as well, which it is in the Cahiers Topos, but not in the Smooth
Topos (at least such theory has not yet been developed, and is anyway bound
to be less simple).

As a pilot project for our theory, we shall finish by showing that the
Cahiers topos does admit a fundamental (distributional) solution of the heat
equation on the unlimited line. (Here clearly distributions of compact sup-
port will not suffice.)

Solutions of the heat equation model evolution through time of a heat
distribution. A heat distribution is an extensive quantity and does not neces-
sarily have a density function, which is an intensive quantity (cf. [17], [24]).
The most important of all distributions, the point- or Dirac- distributions, do
not. For the heat equation, it is well known that the evolution through time
of any distribution leads ’instantaneously’ (i.e., after any positive lapse of
time t &#x3E; 0) to distributions that do have smooth density functions. Indeed,
the evolution through time of the Dirac distribution 5(0) is given by the map
("heat kernel", "fundamental solution")
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defined by cases by the classical formula

here D’(R) denotes a suitable space of distributions (in the sense of [26],
[27]); notice that in the first clause we are identifying distributions with their
density functions (when such density functions exist).

The fundamental mathematical object given in (2) presents a challenge
to the synthetic kind of reasoning in differential geometry, where a basic
tenet is "everything is smooth"; therefore, definition by cases, as in (2), has
a dubious status. This challenge was one of the motivations for the present
study.

One may see another lack of smoothness in (2), namely "6(0) is not

smooth"; but this "lack of smoothness" is completely spurious, when one
firmly stays in the space of distributions and their intrinsic "diffeology", in
particular avoids viewing distributions as generalized functions. We describe
in Section 2 the distribution theory that is adequate for the purpose. In fact,
as will be seen in Section 5 and 6, this theory is forced on us by synthetic
considerations in the Smooth Topos, respectively in the Cahiers topos.

We want to thank Henrik Stetkaer for useful conversations on the topic of
distributions.

1 Diffeological spaces
and convenient vector spaces

A diffeological space is a set X equipped with a collection of smooth plots,
a plot p being a map from (the underlying set of) an open set U of some Rn
into X, p : V --+ X; the collection should satisfy certain stability properties:
a smooth plot precomposed with an ordinary smooth map U’ -&#x3E; U is again a
smooth plot; and the property of being a smooth plot is a local property (lo-
cal on the domain). These properties are conceptualized by considering the
following site m f : its objects are open subsets of R’, the maps are smooth
maps between such sets; a covering is a jointly surjective family of local
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diffeomorphisms. (This site is a site of definition of the "Smooth Topos"
of Grothendieck et al., [1] p. 318; and is one of the first examples of what
they call a "Gros Topos".) Any set X gives rise to a presheaf c(X) on this
site, namely c(X)(U) := Homsets(U,X). A diffeological structure on the set
X is a subsheaf P of the presheaf c(X), the elements of P(U) are called the
smooth U-plots on X. A set theoretic map f : X - X’ between diffeological
spaces is called (plot-) smooth if f o p is a smooth plot on X’ whenever p is
a smooth plot on X.

Any smooth manifold M carries a canonical diffeology, namely with
P(U) being the set of smooth maps U -&#x3E; M. We have full inclusions of cat-
egories : smooth manifolds into diffeological spaces into the smooth topos,
(= the topos of sheaves on the site mj),

The category of diffeological spaces Di f f is cartesian closed (in fact, it
is a concrete quasi-topos). Thus, if X and Y are diffeological spaces, Yx
has for its underlying set the set of smooth maps X --&#x3E; Y; and a map U -&#x3E; 

Yx is declared to be a smooth plot if its transpose U X X -&#x3E; Y is smooth.
The inclusion of Diff into the smooth topos preserves the cartesian closed
structure.

For any smooth manifold M, we have in particular a diffeology on
C°° (M) = Rm, namely a map g : U --&#x3E; C°° (M) is declared to be a smooth

plot iff its transpose U x M - R is smooth.

Topological vector spaces X carry a canonical diffeology: a plot f :
U -+ X is declared to be smooth if for every continuous linear functional

O : X -&#x3E; R, ø o f : U -&#x3E; R is smooth in the standard sense of multivariable
calculus. Note that the diffeology on a topological vector space X only de-
pends on the dual space X’. If we call the continuous linear functionals

0 : X -&#x3E; R the scalars on X, we may express the definition of smoothness
of a plot as scalarwise smooth. - Continuous linear functionals X -&#x3E; R are,
almost tautologically, (plot-)smooth; on the other hand, (plot-)smooth linear
functionals X -&#x3E; R need not be continuous.

A convenient vector space (cf. [5]) is a (Hausdorff) locally convex topo-
logical vector space X such that plot smooth linear functionals are contin-
uous, and which have a completeness property. The completeness prop-
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erty may be stated in several ways, cf. [5], [15]; for the purposes here, the
most natural formulation is: for any smooth curve f : U --&#x3E; X (where U is
an open interval), there exists a smooth curve f’ : U -7 X which is deriva-
tive of f in the scalarwise sense that for any continuous linear O : X -&#x3E; Iae,
O o f’ =(Oof)’. 

More generally, if U C R n is open, and f : U -7 X is a smooth plot, then
partial derivatives f a of f exist, in the scalarwise sense; and they are smooth.
Here a is a multi-index; and to say that f a is an iterated partial derivative
of f, in the scalarwise sense, is to say: for each 0 E X, 0 o f has an a’th
iterated derivative, and (o of) a = O 0 fa.

The category of convenient vector spaces which we deal with here is
Con- (cf. [5]), whose objects are the convenient vector spaces and whose
morphisms are all smooth maps in between them, not just the smooth linear
ones. The category Con- is a full subcategory of the category Diff of diffe-
ological spaces, and is cartesian closed; the inclusion functor preserves the
cartesian closed structure.

(In [ 15], the notion of Convenient Vector Space is taken in a slightly
wider sense: it is not required that (plot-) smooth linear functionals are con-
tinuous. The resulting category of "convenient" vector spaces and smooth
maps in [15] is therefore larger, but equivalent to the one of [5]. Every con-
venient vector space in the "wide" sense is smoothly (but not necessarily
topologically) isomorphic to one in the "narrow" sense of [5].)

Let i : X - Y be a (plot-) smooth linear map between convenient vector
spaces. Then i preserves differentiation of smooth plots U -7 X, in an obvi-
ous sense. For instance, if f : U - X is a smooth curve, i.e. U C R an open
interval, then for any to E U,

For, it suffices to test this with the elements y E Y’. If yf E Y’, then y o i E X’
since i is smooth and linear, and the result then follows by definition of being
a scalarwise derivative in X.
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2 The basic vector spaces of distribution theory;
test plots

Let M be a smooth (paracompact) manifold M. Distribution theory starts
out with the vector space C°° (M) of smooth real valued functions on M, and
the linear subspace D(M) C C°°(M) consisting of functions with compact
support (D(M) is the "space of test functions"). The topology relevant for
distribution theory is described (in terms of convergence of sequences) in
[27], p. 79 and 108, respectively. Note that topology on 9(M) is finer
than the one induced from the (Frechet-) topology on C°°(M). The sheaf

semantics which we shall consider in Section 5 and 6 will justify the choice
of this topology.

We shall describe the diffeological structure, arising from the topology
on D(M).

Lemma 2.1 Let U C Rn be open, and let f : U - D(M) be smooth. Then it
is continuous.

Proof. This is not completely evident. "Smooth" means "scalarwise

smooth", and this of course implies scalarwise continuity; now, scalarwise
continuity means continuity w.r.to the weak topology, but the continuity as-
sertion in the Lemma concerns the fine (inductive limit) topology. We don’t
know at present whether these two topologies agree. However, since D(M)
is a Montel space ([7] p. 197), these topologies agree on bounded subsets,
([7] p. 196), which suffices here since U is locally compact.

We cover M by an increasing sequence Kb of compact subsets, each con-
tained in the interior of the next, and with M = UKb; the notions that we now
describe are independent of the choice of these Kb. For M = Rn, we would
typically take Kb = {x E Rn llxl  b}, b E N.

Consider a map f : U x M -&#x3E; R, where U is an open subset of some Rn.
We say that it is of uniformly bounded support if there exists b so that

for all and all x with.

We say that f is locally of uniformly bounded support ("l.u.b.s.") if U can be
covered by open subsets Vi such that for each i, the restriction of f to UI X M
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is of uniformly bounded support. (We may use the phrase "f is l.u.b.s.,
locally in the variable u E U") - Alternatively, we say that f : U x M ---+ R
is of uniformly bounded support at u E U if there is an open neighbourhood
U’ around u such that the restriction of f to U’ x M is of uniformly bounded
support; and f is l.u.b.s. if it is of uniformly bounded support at u, for each
u. (For yet another description of the notion, see Lemma 5.2 below.)

Let U C ?" be open. For f : U - D(M), we denote by f : U x M -&#x3E; R
its transpose, f(u,m) := f(u)(m). Similarly, for (suitable) f : U x M - IIB,
we denote its transpose U -&#x3E; D(M) by f.
Lemma 2.2 Let f : U x M - R be smooth, and pointwise of bounded sup-
port (so that f factors through D(M)). Then tf a. e.:

1) f is locally of uniformly bounded support
2) f : U -&#x3E; D(M) is continuous.

Proof. We first prove that 1) implies 2). Since the question is local in U,
we may assume that f is of uniformly bounded support, i.e. there exists a
compact K C M so that f(t,x) = 0 for x / K and all t . The same K applies
then to all the iterated partial derivatives fa of f in the M-directions (a de-
noting some multi-index). So f and all the fa factor through -9K, the subset
of C°°(M) of functions vanishing outside K. Now to say that f : U -&#x3E; -9K is
continuous is equivalent, by definition of the topology on -6?K, to saying that
for each a, (laY’ is continuous as a map into IRK, the space of continuous
maps K - IIB, with the topology of uniform convergence. This topology is
the categorical exponent ( = compact open topology) (cf. [6] Ch. 7 Thm.
11), which implies that (fa Y : U -&#x3E; IRK is continuous iff fa : U x K -&#x3E; R is
continuous, iff fa : U x M - R is continuous. But fa is indeed continuous,
by the smoothness assumption on f. So f : U - D(M) is continuous.

To prove that 2) implies 1), we show that if not 1), then not 2). Let

f : U x M -&#x3E; R be a function which is smooth and of pointwise bounded
support, but not l.u.b.s. Then there is a to E U and a sequence tk - to, as
well as a sequence xk E M B Kk with ck = f (tk, xk) £ 0. Let N be a number so
that the support of f (to, -) is contained in KN. We consider the (non-linear)
functional T : D(M) -&#x3E;R given by
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Note that for g of compact support, this sum is finite, since the x"’s "tend
to infinity". Also, the functional D(M) -&#x3E; R is continuous. In fact, the
topology on D(M) is the inductive limit of the topology D(Kk), and the
restriction of T to this subspace equals a finite algebraic combination of the
Dirac distributions. Now it is easy to see that T takes f (to, -) to 0, by the
choice of N, whereas T applied to f (tk, -) for k &#x3E; N yields a sum of non-
negative terms, one of which has value 1, namely the one with index k, which
is ck -2 f (tk, xk)2 = 1. So T o 1 is not continuous, hence f is not continuous.

This proves the Lemma.

We can now characterize the diffeology on g(M) arising from the fine
toplogy on D(M):

Theorem 2.3 A map f : U --&#x3E; D(M) is a smooth if and only if f : U x M --+ R
is smooth and locally of uniformly bounded support.

Proof. For =&#x3E;, assume that f : U -+ D(M) is (scalarwise) smooth. Then so is
the composite U -&#x3E; D(M) C C°°(M). By the Theorem of Lawvere-Schanuel-
Zane (combined with Boman’s Theorem, in case U is not 1-dimensional),
we conclude that f : U x M -&#x3E; R is smooth. It is also, pointwise in U, of
bounded support. From Lemma 2.1, we infer that f is continuous. From
the implication 2 =&#x3E; 1 in Lemma 2.2 it follows that f is locally of uniformly
bounded support.

Conversely, assume 1), i.e. assume f is smooth and l.u.b.s. Then we also
have that dafldta is smooth (iterated partial derivative in the U-directions,
a a multi-index) and l.u.b.s., and so its transpose is a continuous maps U --&#x3E; 
D(M), by Lemma 2.2 (1 =&#x3E; 2) and it serves as scalarwise iterated partial
derivative (cf. the argument in [15] p. 20-21).

The vector space of distributions D’(M) is, in diffeological terms, the
linear subspace of the diffeological space R-9(m) consisting of the smooth
linear maps D(M) --&#x3E; R. They are the same as the continuous linear maps,
since D(M) is a convenient vector space. (So the vector space of distribu-
tions 9’(M), as an abstract vector space, is the same in the diffeological and
the topological context.) A map U -&#x3E; -9’(M) is smooth iff it is smooth as a
map into R-9(m). This defines a diffeology on D’(M). With this diffeology,
-9’(M), too, is convenient (this is a general fact, cf. [5] Proposition 5.3.5).
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3 Functions as distributions

Any sufficiently nice function f : Rn --&#x3E; R gives rise to a distribution i ( f ) E
D’(Rn) in the standard way "by integration over Rn"

This also applies if Rn is replaced by another smooth manifold M equipped
with a suitable measure. For simplicity of notation, we write M for R’ in the
following. All smooth functions f : M -7 R are "sufficiently nice"; so we
get a map (obviously linear)

It is also easy to see that this map is injective.

Theorem 3.1 The map i is smooth.

Proof. Let g : V - C°°(M) be smooth, (V an open subset of some Rn), we
have to see that i o g : V ---&#x3E; D’(M) is smooth, which in turn means that its
transpose

is smooth. So consider a smooth plot U - V x -0?(M), given by a pair of
smooth maps h : U --&#x3E; V and (D: U -&#x3E; D(M). Here U is again an open subset
of some R k. Let us write P for g o h : U --&#x3E; C°° (M) . It is transpose of a map
F : U x M --&#x3E; R. Also, let us write C for the transpose of O; thus 4S is a map

which is locally (in U) of uniformly bounded support, by Theorem 2.3. We
have to see that (i og)’ 0 h,O&#x3E; is smooth (in the usual sense). By unravelling
the transpositions, one can easily check that

The conclusion of the Theorem is thus the assertion that the composite map
U -&#x3E; R given by 
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is smooth (in the standard sense of finite dimensional calculus). To prove
smoothness at to E U, we may find a neigbourhood U’ of to and a b such that

and,,

because 0 is l.u.b.s. We thus have, for any t E U’, that the expression in (4)
is fK, F (t , s) . O(t, s) ds, but since Kb is compact, differentiation and other
limits in the variable t may be taken inside the integration sign.

Since i : C°° (M) -&#x3E; D’ (M) is smooth and linear, it preserves differentia-
tion. In particular, if f : U -&#x3E; C°°(M) is a smooth curve, and to E U, we have
that (i o f)’(to) = i(f’(to)). However, f’ is explicitly calculated in terms of
the partial derivative of the transpose f : U x M -&#x3E; R, namely as the function
s H af(t,s)jdt l (to,s). This is the reason that ordinary (evolution-) diffe-
rential equations for curves f : U - D’(M) manifest themselves as partial
differential equations, as soon as the values of f are distributions represented
by smooth functions.

4 Smoothness of the heat kernel

We consider the heat equation on the line,

Recall that the classical distribution solution of this equation, having
5(0) as initial distribution, is the map

whose value at t &#x3E; 0 takes a test function 0 to

We need the smoothness of K in the diffeological sense. The diffeology
on R&#x3E;o is induced by the inclusion of it into R.

The following is a special case of [15] Theorem 24.5 and Proposition
24.10 (which in turn is a generalization of Seeley’s Theorem, [28]).
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Theorem 4.1 Let X be a convenient vector space, and let K : R&#x3E;o --&#x3E; X be a
map. Then K is smooth in the diffeological sense iff its restriction to R&#x3E;0 is
smooth, and for all n, limt -&#x3E;0+ K(n) (t) exists (w. r. to the weak topology on X).
In this case, K extends to a smooth map on all of R, (whose n ’th derviative
at 0 then equals limt.-&#x3E;0+ K(n) (t)).

We shall apply this Theorem to the heat kernel K described in (5), so
X is D’ (R). For t &#x3E; 0, the smooth two-variable function K(t, x) satisfies the
heat equation as a partial differential equation a / at K(t ,x) = a2/ax2 K(t ,x).
Since, by Section 3, the inclusion i : Coo (JR) - -62’(R) preserves differentia-
tion ("in the t-direction"), we get, by iteration, that for any test function O,
and any t &#x3E; 0, 

Also, it is well known that for any smooth Y,

where 5 is the Dirac distribution at 0.
To prove that the conditions for smoothness in the above Theorem are

satisfied, we shall prove that

Now the topology on 9’(R) is the weak one and D(R) is reflexive (in the
diffeological sense - this follows from the well known topological reflexiv-
ity, together with Corollary 5.4.7 in [5]). So it suffices to prove that for each
0 E -6? (R), 

But this is immediate from (6) and (7).

5 Distributions in the Smooth Topos
Recall from section I that the Smooth Topos is the topos S = sh (m f ) of
sheaves on the site mf of open subsets of coordinate vector spaces Rn. It

contains the category of diffeological spaces (and hence also Con°°) as a
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full subcategory, and the inclusion preserves exponentials. We let h be the
embedding Di f f C S, but write R instead of h (R).

We want to give a synthetic status to h(D(M)) and to h(D(M)’). Here M
is any paracompact smooth manifold, and for the synthetic description, one
needs to cover M by an increasing sequence of compacts Kb, as in Section 2.
The predicate of "belonging to Kb C AT will have to be part of the language.
In order not to load the exposition too heavily, we shall consider the case of
M = R only, with Kb the closed interval from -b to b (b e N).

Because h preserves exponentials, and R = h (R), RR is h(C°°(R)). (For,
C°°(R) with its standard Frechet topology is the exponential in Conv°°, by
[15], Theorem 3.2.)

The following is a formula with a free variable f that ranges over RR:

Let us write lxl &#x3E; b as shorthand for the formula x  -b V x &#x3E; b (so, in spite
of the notation, we don’t assume an "absolute value" function). Then the
formula (8) gets the more readable appearance:

(verbally: "f is a function R -&#x3E; R of bounded support" (namely support
contained in the interval [-b, b]). Its extension is a subobject D(R) C RR.

Theorem 5.1 (Test functions in the Smooth Topos) The inclusion
goes by h : to the inclusion

Proof. We shall freely use sheaf semantics, cf. e.g. [9], [20], and thus con-
sider "generalized elements" or "elements defined at different stages", the
stages being the objects of the site m f .

Consider an element f EU RR (a generalized element at stage U). This
means a map h (U) --&#x3E; RR in W, and this in turn corresponds, by transposition,
and by fullness of the embedding h, to a smooth map

Now we have that
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if and only if there is a covering Ui of U (i E I) and witnesses bi EUi R&#x3E;0, so
that for each i

Externally, this implies that bi : Vi -&#x3E; R is a smooth function with positive
values, with the property that for all t E Ui, if x has x &#x3E; b1 (t ), then f (t, x) = 0.
The following Lemma then implies that / is of l.u.b.s. on U;, and since the
Ui’s cover K, f is of l.u.b.s. on K.

Lemma 5.2 Let g : U x R - R have the property that there exists a smooth

(or just continuous) b : U - R&#x3E;o so that for all t E U lxl &#x3E; b(t) implies
g(t,x) = 0. Then g is l.u.b.s.

Proof. For each t E U, let cl denote b(t) + l. There is a neighbourhood Vt
around t such that b(y)  ct for all y E VI. The family of Y’s, together with
the constants ct now witness that g is l.u.b.s. For, for all y E V and any x
with Ixl &#x3E; ct, we have lxl &#x3E; ci &#x3E; b(y), so g(y,x) = 0.

Conversely, if f is l.u.b.s., it is easy to see that the element f EK UR
satisfies the formula (reduce to the uniformly bounded case, and write the
condition as existence of a commutative square).

So we conclude that for f EU RR, f EU D(R) iff the external function
f : U x R ----&#x3E; R is l.u.b.s., i.e., by Theorem 2.3, iff f : U --&#x3E; C°°(R) factors by
a (diffeologically!) smooth map through the inclusion D(R) C C°°(R), i.e.
belongs to C°°(U,D(R)) = h(D(R))(C°°(U)). This proves that h(D(R))= 
g(R).

We next consider the synthetic status in S of the space of distributions
D(R)’. 

If R is a commutative ring object in a topos, and it is equipped with
a compatible preorder , we have already described the R-module D(R),
(space of test functions). For any R-module object Y, we may then form its
R-linear dual object Y’ = LinR(Y,R) as a subobject of RY; in particular, we
may form (D(R))’ which is then the internal object of distributions on R, as
alluded to in the Introduction.

Theorem 5.3 (Distributions in the Smooth Topos) The convenient vector
space (-9(R))’ goes by h : Con- --&#x3E; Y to the internal object of distributions
(D(R))’.
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We first make an analysis of h(Y’) for a general convenient vector space
Y. (Here, Y’ denotes the diffeological dual consisting of smooth linear func-
tionals.) Recall that the diffeology on Y’ is inherited from that of COO(Y,JR),
so that (for an open U C R k), the smooth plots U - Y’ are in bijective corre-
spondence with smooth maps U x Y -7 IEg, which are R-linear in the second
variable y E Y. It follows that the elements at stage U are in bijective corre-
spondence with smooth maps U x Y - R, R-linear in the second variable,
or equivalently, with smooth R-linear maps Y -7 C°°(U,R).

On the other hand, an element of Rh(Y) defined at stage U is a mor-
phism h(U) -7 R h(Y) , hence by double transposition it corresponds to a map
h(Y) --&#x3E; R h(U) ; and it belongs to the subobject LinR(h(Y),R) iff its double
transpose is R-linear. Since h is full and faithful, and preserves the carte-
sian closed structure (hence the transpositions), this double transpose corre-
sponds bijectively to a smooth map Y - C°°(U, R) = COO(U), and R-linearity
is equivalent to R-linearity, by the following general

Lemma 5.4 Let X and Y be convenient vector spaces. Then a smooth map

f : Y -7 X is R-linear iff h(f) : h(Y) -&#x3E; h(X) is R-linear.

Proof. The implication =&#x3E; is a consequence of the fact that h preserves

binary cartesian products (and h(R) = R). For the implication 4=, we just
apply the global sections functor F; note that r(Y) is the underlying set of
the vector space Y, and similar for X; and r(R) = R.

The Theorem now follows from Theorem 5.1.

We have in particular:

Proposition 5.5 There is a natural one-to one correspondence between dis-
tributions on IIB, and R-linear maps D(R) - R

Proof. This follows from fullness of the embedding h.

This result should be compared to the Theorem of [23], or Proposi-
tion II.3.6 in [20], where a related assertion is made for distributions-with-
compact-support, i.e. where D(R) is replaced by the whole of RR, (or even
with RM, with M an arbitrary smooth manifold; the generalization of our
theory is straightforward). Distributions with compact support are generally
easier to deal with synthetically (as we did in [14]).
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6 Cahiers ’1’opos
This topos was constructed by Dubuc [3] in order to get what he called a
well-adapted model for Synthetic Differential Geometry (SDG). The site
of definition contains not only a suitable representative category of smooth
manifolds, but also objects which represent the infinitesimal objects (of
"nilpotent elements"), like D, which are crucial in SDG. The category of
infinitesimal objects is taken to be the dual of the category of Weil-algebras
(i.e. finite dimensional commutative real algebras, where the nilpotent ele-
ments form an ideal of codimension 1). This prompts us to replace also the
representative category of smooth manifolds with the dual of a category of
(C°°-) algebras, capitalizing on the fact that smooth maps U - V correspond
bijectively to C°°-algebra maps C-(V) --+ C°°(U).

To conform with our exposition in [13], we take the representative smooth
manifolds just to be the coordinate vector spaces Rk, rather than all open sub-
sets U of such. (We could, by suitable comparison theorem of site theory,
have used the category of just these IfBk for the Smooth Topos also.)

We recall the site of definition D for the Cahiers Topos cø. The under-
lying category is the dual of a certain category of C°°-rings, namely those
that are of of the form C°°(Rl+k)/J where J is a semi-Weil ideal; we explain
this notion. Let M C C-(Rl) be the maximal ideal of functions vanishing
at 0. A Weil ideal I C C-(Rl) is an ideal I containing some power of this
maximal ideal; in particular, I is of finite codimension). A semi- Weil ideal
J C C-(Rl+k) is an ideal which comes about from a Weil ideal I in CO (JR’) as
I*, where I* is the ideal of functions of the form E fi(x,y) . gi (x) with g; E I.

To describe and analyze the embedding h of Con- into cø, we need a
more elaborate account of the relationship between semi-Weil ideals and
convenient vector spaces:

For any ideal J C C°°Rn, and any CVS X, we define a linear subspace
J(X) of C-(R",X) as the set of those f : Rn --&#x3E; X such that for every 0 E X’,
0 0 f E J. (There is also a, usually smaller linear subspace, JS(X) consisting
of linear combinations of functions i(t) g(t), where i : R --&#x3E; R belongs to J
and g : R --&#x3E; X is arbitrary. For J a semi-Weil ideal, J(X) = JS (X).)

Two smooth maps gl , g2 : Rn --&#x3E; X are called congruent mod J ifgl - 92 E
J(X) .

Let I C Rl be a Weil ideal, I D ..4Ir. Let {DR l3 E BI be a family of
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differential operators at 0, of degree  r, forming a basis for (C°°(R)/I)*.
Note that B is a finite set. Let the dual basis for C°°(Rl)/I be represented by
polynomials of degree  r, {P3(s) l3 E B}. Then we can construct a linear
isomorphism

by sending the class of f : IR1 -t Y into the B-tuple D 3 Y(f). Its inverse is

given by sending a B-tuple yB E Y to the map s H EB p3 (s). Yf3.
It follows that for a semi-Weil ideal J = p* (I) C Rl+k, as above,

(The isomorphisms (10) and (11) are not canonical but depend on the choice
of a linear basis p3 (s) for the Weil algebra C°°(Rl)/I.)

The isomorphisms here are the "external" version of the validity of the
general K-L-axiom for convenient vector spaces in the Cahiers topos.

The full embedding h, described in [13], of Con°° into CC is, on objects,
given by sending a convenient vector space X into the presheaf on D given
by 

Note that if X = R, this presheaf is the "undelying set" functor R. - To de-
scribe h ( f ) for f a smooth map between CV S’s, we send the congruence
class of g: Rn 2013&#x3E;X into the congruence class of f o g; this is well defined,
by the fundamental observation in [13] that for smooth maps f : X - Y,
composing with f preserves the property of "being congruent mod J", pro-
vided that J is a semi-Weil ideal, cf. Coroll. 2 in [13]. (This fundamental
observation, in turn, is a generalization of the theory from [11] that the cat-
egory of Weil algebras acts "by Weil prolongation" on the category Con°°;
this prolongation construction is expounded also in [ 15 ] Section 31.)

The embedding h is full. It preserves the exponentials in Con°°, and
furthermore, if X is a convenient vector space, the R-module h(X) in &#x26; 

"satisfies the vector form of Axiom 1" (generalized Kock-Lawvere Axiom),
so that in particular synthetic calculus for curves R -&#x3E; h (X) is available; cf.
the final remark in [11] . From this, one may deduce that the embedding
h preserves differentiation, i.e. for f : R ---+ X a smooth curve, its derivative



18

f’ : R--&#x3E; X goes by h to the synthetically defined derivative of the curve h( f) :
R = h(R) -&#x3E; h(X). This follows by repeating the argument for Theorem I
in [8] (the Theorem there deals with the case where the codomain of f is R,
but it is valid for X as well because h(X) satisfies the vector form of Axiom
1).

We note the following aspect of the embedding h. Let X be a convenient
vector space. Each 0 E X’ is smooth linear X - R and hence defines a map
h( Ø) : h(X) --&#x3E; h(R) = R in cø. This map is R-linear.

Proposition 6.1 The maps h(0) : h(X) --&#x3E; R, as 0 ranges over X’, form a
jointly monic family.

Proof. The assertion can also be formulated: the natural map

is monic (where projo o e : = h(O)). To prove that this (linear) map is monic,
consider an element a of the domain, defined at stage Coo (Rl+k)/ J, where J
is a semi-Weil ideal. So a E C°°(Rl+k,X)/J(X). Let a E C°°(R l+k;X) be a
smooth map representing the class a, a = a +J(X). The element e(a) is the
X’ tuple ao +J, where aO, E C°°(Rl+k)/J is represented by the smooth map
p o a : Rl+k --&#x3E; R. To say that a maps to 0 by e is thus to say that for each
c X, 0 o a E J. But this is precisely the defining property for a itself to
be in J(X), i.e. for a to be the zero as an element of h(X) (at the given stage
C°° (Rl+k)/J). 

We now analyze the object of test functions. We shall prove the analogue
of Theorem 5.1, now for the embedding h : Con- --&#x3E; &#x26;. The object -,? (R) is
defined synthetically by the same formula (8) as in Section 5. Part of the

proof of the Theorem 5.1 there can be "recycled". In fact, letting U be IEBk,
the proof recycles to give information about the elements of D(R) defined at
stage COO (IRk); they are the same as the elements of h (-0?) (R), more precisely,

To get a similar conclusion for elements of D(R) (as synthetically de-
fined by (9)), defined at stage C°°(Rl+k)/J (where J is a semi-Weil ideal),
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we shall prove that such an element can be represented by a B-tuple of el-
ements defined at stage C°° (Rk); we shall prove that such a B-tuple defines
an element of D(R) precisely if each of these B elements is an element in
0 ?(R). This proof is a piece of purely synthetic reasoning:

We consider an R-algebra object R in a topos &#x26;, and assume that R
satisfies the general "Kock-Lawvere" (K-L) axiom (recalled below), and is
equipped with a strict order relation . Because the reasoning is purely
synthetic, we don’t have to think in terms of sheaf semantics, so for instance
we don’t have to be specific at what "stages", the "elements" in question are
defined; we reason as if all elements are global elements. For b &#x3E; 0, we write

lxl &#x3E; b as shorthand for x  -b V x &#x3E; b as before; and we stress again that
we don’t assume any absolute-value function (it does not exist in the Cahiers
topos). We argue in V as if it were the category of sets, making sure to use
only intuitionistically valid reasoning.

A Weil algebra C°° (Rl ) /I, as above, gives rise to an "infinitesimal" sub-
object W C Rl : pick a (finite) set of differential operators D3 (o E B) form-
ing a basis for (C°° (Rl) /I ) *, and take the dual basis for C°° (Rl) /I, whose
elements are represented mod I by polynomials p3 (s) in I variables. Then
W C Rj is the extension of the formulas p3 (s) = 0, s being a variable ranging
over R’ (note that real polynomials in I variables define functions R’ - R in
.

We assume that such W’s are internal atoms, in a sense we partially recall
below; this is so for all interesting models of SDG, including the Cahiers
Topos.

To say that an R-module object Y in &#x26; satisfies the general K-L axiom is
to say that for each such Weil algebra, the map

given by

is an isomorphism.
We assume that R itself satisfies K-L. This immediately implies that Rm,

as an R-module, does so for any M E W. We shall consider RR.
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Now recall that D(R) C RR was the subobject which is the extension of
the formula (9) (with free variable f ranging over RR) 3b &#x3E; O(lxl &#x3E; b =&#x3E;

f(x) = 0).

Proposition 6.2 Let a B-tuple of elements f3 in RR represent an element in
(RR)W. Then it defines an element in the sub"set" (D(R))W ifand only if
each f3 is in D(R).
Proof. Assume first that all f3 are in D(R). For each /3 there exists a witness
b3 &#x3E; 0 witnessing the fact that the formula (9) holds for f3, but since there
are only finitely many /3 ’s, we may assume one common witness b &#x3E; 0. So

for all /3, and for all x with lxl &#x3E; b, f3 (x) = 0. But then for each such x, the
function of s E W given by

is the zero function. The sum here, as a function of s and x, is the element
of (RR)W corresponding to the B-tuple f3, and for Ixl &#x3E; b, it is the zero. So
for each s, the given fixed b witnesses that the sum, as a function of x, is in
D(R).

Conversely, assume that the f3’s are such that the corresponding function
W --+ RR factors through D(R) . So for each s C W, the function

belongs to 9(R). So

We would like to pick for each s E W a b(s) such that

the existence of such a function b follows from (13) by a use of the Axiom
of Choice, so in general is not possible in a topos. But since W is an inter-
nal atom, and s ranges over W, such a function b exists after all. (See the
Appendix for a general formulation and proof of this principle.)
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But now Ixl &#x3E; b(0) ==&#x3E; lxl &#x3E; b(s) for all s E W, because b, as does any
function, preserves infinitesimals, and because strict inequality is unaffected
by infinitesimals. So we have a b, namely b(0), so that

So for Ixl &#x3E; b,

Thus, for fixed x with Ixl &#x3E; b, the function of s here is constantly 0. But

fhnctions W - R can uniquely be described as linear combinations of the

p3 (s)’s (this is a verbal rendering of the K-L axiom for R). So for such x
each f3 (x) is 0. So b witnesses, for each 0, that fR E D(R). This proves the
Proposition.

Combining (11) (with -6? (R) for Y) with (12) and Proposition 6.2, we get

Theorem 6.3 (Test functions in the Cahiers Topos) The inclusion -02(R)
goes by h : Con- ---&#x3E; &#x26; to the inclusion D(R) C RR

We proceed to use this result as a tool to analyze the object of distribu-
tions D (R)’. We could proceed along the lines of the proof of Theorem 5.1,
but a more elegant argument is available. For any convenient vector space
Y, the dual Y’ is a not only a subspace of RY, it is even a retract, namely
the fixpoint set of the smooth linear endomap do on Ry given by f - do f,
the differential of f at 0 E Y. In the Cahiers topos &#x26;, synthetic differential
calculus is available, and there is a similar retraction operator do on RZ, for
any vector space (R-module) Z, and in fact, the object LinR (Z, R) C RZ is
the fixpoint object for this operator (this follows from elementary synthetic
differential calculus, cf. [16] 1.2.3 and 1.2.4). But the embedding h takes the
"external" do to the internal one, and any functor preserves fixpoint objects
for idempotent endomaps. Thus h takes the subobject Y’ C RY to the sub-
object LinR(h(Y),R). If we apply this observation to the case of Y = T (R),
and use the Theorem 6.3 above, we get

Theorem 6.4 (Distributions in the Cahiers Topos) The embedding h :

Con- --&#x3E; &#x26; takes the convenient vector space D(R)’ of distributions on R
into the internal object of distributions D(R)’.
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We get in particular

Proposition 6.5 There is a bijective correspondence between distributions
on IfB, and R-linear maps in &#x26;, D(R) - R.

(The analogous result for distributions of compact support may be found in
[23].)

7 Half line in cø, and the heat equation
By Theorem 4.1, the two C°°-rings C°° (R) /M°°&#x3E;0 and C°° (R&#x3E;0) are isomor-
phic, where s6§§o is the ideal of smooth functions vanishing on the non-
negative half line, and C°°(R&#x3E;0) is the ring of smooth functions R&#x3E;0 -----&#x3E; IEB.

Being a quotient of the ring C°°(R) which represents R E W, it defines a sub-
object ofR, which we denote R&#x3E;0 (also considered in [12]1). -Thus, R&#x3E;0 is
"represented from the outside" by the Coo -ring C°°(R)/M°°&#x3E;0 = C°°(R&#x3E;0).

Proposition 7.1 Let I C C°°(Rl) be a Weil ideal and let f : Rl x Jaek -7 IR be
a smooth function. Then the following are equivalent:

for all:

for all

Proof. "not 1" implies "not 2"; for, if , f’(0, x)  0, we may find a function p
vanishing on R&#x3E;o and with value 1 at f(0 , x) . Then f E I* (recall that any
Weil ideal I consists of functions vanishing at 0). - On the other hand, "1"
implies "2": For, by Taylor expansion,

1 The ring representing R&#x3E;0, was in loc.cit. defined using the ideal M&#x3E;go of functions
vanishing on an open neighbourhood of R&#x3E;0, rather than the ideal M°°&#x3E;0 considered here.
But it can be proved that they represent (from the outside) the same object in the Cahiers
topos.
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where (-)i == a / axi, (-)i,j = a2 / aXiXj etc. This series finishes after finitely
many terms modulo I*; since a product of powers of wi’s belong to the
ideal I. But each of its terms is 0: Indeed, so is the term without deriva-
tives, by hypothesis. But so are the others. For instance. (p o f)i(0,x) = 
p’ ( f (O, x) a f /axi (O, x) is 0, since the derivative of p is zero on non-negative
reals (by definition of m°°R&#x3E;0).

Let J denote I*. Then an element F of R&#x3E;0 defined at stage C°°(Rl+k)/J
is represented by a function f satisfying the conditions of the Proposition.

Proposition 7.2 There is a bijection between the set of smooth maps K :
R&#x3E;0 ---&#x3E; X and the set of maps K : R&#x3E;0 --&#x3E; h (X) in c6.

Proof/Construction. Passing from K to K is just by taking global sections. -
Conversely, given K, we extend it (using Theorem 4.1 ) to a smooth map KI :
R --&#x3E; X, and apply the embedding h to get a map h(K1) : R - h(X) in 1&#x26;’; its
restriction to R&#x3E;0 is the desired K. We have to see that this K does not depend
on the choice of the extension KI. Given some other extension K2, we should

prove that for any generalized element F of R&#x3E;0, h(K1)(F) = h(K2)(F).
Suppose F is an element of stage C°°(Rl+k)/J where J is the semi-Weil
ideal I* considered in the Proposition above. Thus, as a generalized element
of R, it is identified with f +J, where f C C°° (Rl+k), and it satisfies condition
2. of the Proposition, being an element of R&#x3E;0.

We should prove that Kl o f = K2 o f modulo J(X). This means to prove,
for any 0 E Y’ that

modulo J. But subtracting the two entries to be compared yields, by linearity
of 0 the map

and since Kl -K2 vanishes on R&#x3E;0, then so does 0 o (K1 -K2). We may thus
take p = 0 o (K1 - K2) in the condition 2. in the Proposition, and conclude
that 0 o (Kl - K2) o f is in I* = J, as desired.

- Uniqueness is easy, using Proposition 6.1, together with the fullness
result from [22] on manifolds with boundary (see also [9] and [25]).

The Proposition is a "mixed fullness" result; we have that Con°° and Mf
(= smooth manifolds), (even the category of smooth manifolds with bound-
ary), embed fully in The Cahiers Topos; but at present we do not have a
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general result on what can be said about C°° (M, X), for M a manifold with
boundary and X a convenient vector space.

For any topos W with a ring object R with a preorder , we may form
the R-module -D’(Rn) of distributions on Rn, as explained in Section 5 and 6.
If S,R is a model of SDG, then D’ (Rn) automatically satisfies the "vector
form" of the general Kock-Lawvere axiom, so that (synthetic) differentiation
of functions K : R - D’ (Rn) is possible - it is even enough that K be defined
on suitable ("formally 6tale") subobjects of R, like R&#x3E;0. We think of the
domain R or R&#x3E;0 as "time", and denote the differentiation of curves K w.r. to
time by the Newton dot, k. On the other hand, we think of Rn as a space, and
the various partial derivatives a/ax; (i = 1, ... , n), as well as their iterates,
we call spatial derivatives; in case n = 1, they are just denoted ( - )’, ( - ) ",
etc. They live on D’ (Rn ) as well, by the standard way of differentiating
distributions (which immediately translates into the synthetic context, cf.

e.g. [ 14]). The heat equation for (Euclidean) space in n dimensions says
IK = A o K, where A is the Laplace operator; in one dimension it is thus the
equation

We can summarize the constructions into an general existence theorem
about models for SDG:

Theorem 7.3 There exists a well-adapted model for SDG (with a preorder
 on R), in which the heat equation on the (unlimited) line R has a unique
solution k : R"2o --t D’ (R) with initial value k( 0) == S (o) (the Dirac distribu-
tion).

Proof. The well adapted model witnessing the validity of the Theorem is
the Cahiers Topos S. Consider the classical heat kernel, viewed, as we did
in Section 4, as a map R&#x3E;0 --+ -,6d(R). By Section 4, this map is smooth,
hence by Proposition 7.2, it defines a morphism in cø, K: R&#x3E;o --&#x3E; h (D’ (R)).
This K is going to be our k. By Theorem 6.4, its codomain is the desired
D’(R). We prove that this k satisfies the heat equation k = 4 o k. This is a
purely formal argument, given below, from the fact that K does, and the fact
that h takes "analytic" differentiation into the "synthetic" differentiation in
S. Synthetically, we want to prove that for all x E R&#x3E;0 and d E D
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Universal validity of this equation means that a certain diagram, with do-
main R&#x3E;0 x D and codomain -D’(R), commutes. Taking the transpose of
this diagram, we get a diagram with domain R&#x3E;0 and codomain (D’ (R))= 
qJ’ (R) x D’ (R) (by K-L for D’(R)):

When the global sections functor F is applied to this diagram, the left hand
column yields (K, A o K), because r(k) = K; the composite of the other maps
is (K, k) because r takes synthetic differentiation into usual differentiation.
Since K satisfies k = A o K, we conclude that r applied to the exhibited
diagram commutes. Now r is not faithful, but because of the special form
of the domain and codomain of the two maps to be compared, we may still
get the conclusion, by virtue of the following

Proposition 7.4 Given a map a : R&#x3E;0 -&#x3E; h(X), where X is a convenient vec-
tor- space. If r(a) = 0, then a = 0.

Proof. Since the h(O) : h(X) ---&#x3E; R are jointly monic as 0 ranges over X’,
by Proposition 6.1, it suffices to see that each h(O) o a is 0. Since F(h (0) o
a) = 0 o r(a), this reduces the question to the case where X = IIB. A map
a : R&#x3E;0 --&#x3E; R is tantamount to an element in 3 : C°°(R&#x3E;0), and the assumption
I’(a) = 0 is tantamount to d(t) = 0 for all t E R&#x3E;0. But this clearly implies
that 3, and hence a, is 0.

The uniqueness assertion in the Theorem is likewise an easy consequence
of this Proposition.
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Appendix
Recall that an atom A in a cartesian closed category V is an object so that the
exponential functor (-)A has a right adjoint; in particular, it takes epimor-
phisms to epimorphisms. The following says that "axiom of choice" holds
for "A"-tuples sets:

Proposition 7.5 Assume that A is an atom, B an arbitrary object, and R C
A x B. Then

Proof. The hypothesis means that the composite R --&#x3E; A x B n --&#x3E; A is surjec-
tive. By exponentiation, and the assumption that A is an atom, the composite
RA --&#x3E; AA X B A -’-’4 AA is surjective. In particular, 1 A E A A must have a pre-
image (1A, b) . This L obviously does the job.
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