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PROJECTIVE FRAMES: A GENERAL VIEW

by B. BANASCHEWSKI

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLVI-4 (2005)

RESUME. Cet article étudie la projectivite dans la cat6gorie Frm
des cadres (’frames’) par rapport aux homomorphismes surjectifs
dont 1’adjoint a droite appartient a une sous-cat6gorie ad6quate K de
la catdgorie des semi-treillis avec unitd. Les applications a plusieurs
sous-catégories K familieres re-donnent divers rdsultats connus qui
sont ainsi unifies dans un meme schema naturel.

This note deals with a very general form of projectivity in the cate-
gory of frames, establishing external and internal characterizations for it
which then specialize to several previous results (Banaschewski-Niefield
[3], Escaxd6 [5]), exhibiting them as immediate consequences of some
fundamental facts of considerably wider scope.

Specifically, the setting here is the category M of meet-semilattices
(always taken with unit) in which we consider subcategories K contain-
ing the category Frm of frames reflectively, subject to a very simple
natural condition. The projectivity in question is then taken relative to
the onto frame homomorphisms h : L - M for which the right adjoint
h* : M--&#x3E; L (h(a) b iff a  h*(b)) belongs to K, referred to as K-flat
projectivity.

In addition, we describe a class of subcategories of M, consisting
of meet-semilattices with suitably prescribed joins together with their
homomorphisms preserving these joins, for which we show that Frm is
a subcategory of the kind in question. This then provides a suggestive
class of concrete cases to which our general characterization of K-flat
projectives apply; the previous results referred to above then fit into
this particular context.

For general background concerning frames we refer to Johnstone [8]
or Vickers [12].
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The condition postulated for the subcategory K of M besides the
assumption that Frm is reflective in K is as follows:

(C) For any cp : A -&#x3E; L in K where L is a frame and A arbitrary,
the corestriction of cp to any subframe of L containing the image of cp
also belongs to K.

We refer to this by saying that K is corestrictive over Frm.
The following collects some of the basic properties of K needed in

the sequel. Here, nA : A-&#x3E; FA is the universal map in K to frames and,
correspondingly, I-L FL-&#x3E; L for any frame L the frame homomorphism
such that ELnL = idL. Further,  stands for the usual argumentwise
partial order of maps between partially ordered sets, which is evidently
preserved by the composition of maps in K.

Lemma 1 (1) Each FA is generated by the image of nA.
(2) idFL  f/L£L for any frame L.
(3) For any frame L, if h : L - FL is right inverse to EL : FL -&#x3E; L

then hEL idFL. 

Proof. (1) Let L C FA be the subframe generated by Im(nA),
cp : : A-&#x3E; L the corresponding corestriction of qA : A -&#x3E; FA, and
i : L - FA the identical subframe embedding. Then by (C) we have a
frame homomorphism h : FA-&#x3E; L such that hqA = cp, hence ih?7A = TIA,
and therefore ih = idFA by the properties of qA. It follows that i is

onto, showing L = FA.
(2) To begin with, note that by (1) each b E FL is the join of all

nL(a)  b because qL is a meet-semilattice homomorphism. Now, for
any such a E L,

(since 6LqL = idL) and consequently b  ’qLEL(b), as desired, by the
initial observation.

(3) If eLh = idL then h  ’qL6Lh = ’qL by (2) and hence

which implies the desired result by (1) since hEL is a frame homomor-
phism. 0
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Remark 1 Note that the above (1) is actually equivalent to (C). For
any cp : A - L such that Im(cp) C M for some subframe M of L, the
frame homomorphisms h : FA -&#x3E; L for which hqA = cp maps into M by
(1) and the composite of its corestriction to M with ’qA belongs to K -
but this is just the corestriction of cp to M.

Remark 2 Since ELTIL = idL, (2) implies f/L is right adjoint to EL- In
a similar vein, if ELh = idL for some h : L - FL then h is left adjoint
to EL by (3) and consequently unique.

The reflectiveness of Frm in K determines a binary relation on each
frame L as follows:

x a iff a  £L(b) implies nL(x) b, for all b E FL.

Now we have our first result concerning K-flat projectivity.

Proposition 1 The following are equivalent for any frame L.
(1) L is K-flat projective.
(2) EL has a right inverse.
(3) L is a retract of some FA, A E K.
(4) For each a E L, a = V{x e L x a a} ; further x a a A b whenever

x  a and x  b, and e  e for the unit e E L.

Proof. (1) =&#x3E; (2). By Remark 2, (eL)* = ’qL which belongs to K
by its definition, and EL is onto since EL77L = idL. Hence, if L is K-flat
projective we have h : L -&#x3E; FL such that £Lh = idLe

(2) =&#x3E; (3). Trivial
(3) =&#x3E;(1). Since a retract of a projective in whatever sense is projec-

tive in that sense it is enough to show that each FA is K-flat projective.
Consider, then the diagram

with frame homomorphisms h and f , h onto and K-flat and f arbitrary.
Then h* fnA E K and hence we have a frame homomorphism g : FA -&#x3E;
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L such that gnA = h*fnA. It follows that hgnA = fnA (h is onto!) and
therefore hg = f by the properties of 77A -

(2) =&#x3E; (4). We begin by showing that x a a iff nL(x) h(a) for
the given h : L-&#x3E; FL such that ELh = idL. Here (=&#x3E;) is immediate
since a = sL(h(a)) and (=) follows from Lemma 1(3): if a  eL(b) then
h(a) hEL(b)  b, andql(x) :5 h(a) then implies nL(x)  b.

Now, by Lemma 1(1), h (a) = V{nL(x) I nL(x) h(a)} and hence,
acting,EL and applying what was just shown, we obtain

Further, if x  a and x  b then nL(x) h(a) A h(b) = h(a A b) so that
x a a A b. Finally, e  e since nL(e) = e = h(e).

(4) =&#x3E; (2). Let h : L-&#x3E; FL be the set map defined by

Then eLk = idL by the first part of (4) while

since x EL (b) implies 77L (x) :5 b, and hence hEL idFL. It follows that
h is left adjoint to EL, and as such it preserves arbitrary joins. Further,
for any a, c E L,

x  a and z  c implies x A z a and xAz4c by the definition of 
and hence x A z  a A c by the second part of (4). Finally, h(e) = e
since e  e by hypothesis and 77L(e) = e. In all, this shows h is a frame
homomorphism, right inverse to EL- M

Remark 3 The first part of this proposition, the equivalence of (1),
(2), and (3), is obviously rather formal and may be viewed as a variant
of the general principle "projective = retract of some free object". In

fact, it actually is a special case of a completely general result. For any
categories F and K with functors S : F - K and T : K -&#x3E; F where
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T is left adjoint to S, if 91 is the class of all h : L -&#x3E; M in F for
which Sh : SL--&#x3E; SM is right invertible in K then the relevant parts
of the above proof evidently adapt to R-projectivity in F. On the other
hand, for the specific K considered here, with F = Frm, R-projectivity
and K-flat projectivity are the same: trivially (=&#x3E;), and since any
FA is actually R-projective by the above proof of (3) =&#x3E; (1). Needless
to say, the rather deeper equivalence of (2) and (4) is quite a different
matter.

There is a further characterization of K-flat projectivity involving
the comonad in Frm determined by the reflection functor F. For this,
some additional properties of K are needed, as follows.

Lemma 2 (1) F preserves the partial order of maps.

Proof. (1) If cp, Y : A -&#x3E; B such that cp  Y then

the first and last step by naturality, and hence Fcp  FY by Lemma
i(i).

the second step by naturality. ~

Now, the comonad determined by F (viewed as an endofunctor of
Frm) is (F, E, Fq), and its coalgebras are the pairs (L, h) where the
structure map h : L --&#x3E; FL satisfies the familiar conditions

(Mac Lane [9]). Given that it is entirely determined by the extension K
of Frm, we call this comonad the K-comonad. The desired result then
is
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Proposition 2 A frame L is K-flat projective iff it has a coalgebra
structure for the K-comonad.

Proof. Given the properties of K and the equivalence (1) - (2)
in Proposition 1, this follows from general results concerning so-called
Kock-Z6berlein monods (Eseard6 [5]). For the reader’s convenience, we
include the short alternative proof of this which naturally arises in the
present context.

It is clear we only have to show that the above identity (U) au-
tomatically implies the second condition (A). Now, by Lemma 1(2),
h nLELh = 77L so that (Fh)h  (F77L)h by Lemma 2(1). For the
reverse inequality, we have

by, respectively, (2) =&#x3E; (4) in Proposition 1, Lemma 2(2), the naturality
of qL, and the fact that 77L(x) :5 h(a) whenever x  a, as noted in the

proof of (2) =&#x3E; (4) of Proposition 1. 0

Now consider the following way of specifying subcategories of M.
For each A E M, let SA by a collection of subsets of A such that
la A t | t E S} belongs to SA for each a E A and S E SA, and for
each cp : A -&#x3E; B in M, cp [S] E SB whenever S E SA. Further, let S be
the subcategory of M consisting of all A such that V S exists for each
S E SA and

the maps being the meet-semilattice homomorphisms which preserve all
V S, SESA.

Among many obvious examples we have the following familiar, par-
ticularly significant cases: for each A E M, SA consists of

(1) no S, and S = M,
(2) 0, and S is the category of bounded meet-semilattices,
(3) all finite subsets, and S = D, the category of bounded distributive

lattices,
(4) all (at most) countable subsets, and S = oFrm, the category of

o-frames,
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(5) all updirected subsets, and S = PrFrm, the category of pre-
frames, and

(6) all subsets, and S = Frm.
We note that any category S of this kind trivially contains Frm and

is evidently corestrictive over the latter: if a meet-semilattice homomor-

phism cp : A -&#x3E; L preserves any specified joins in A and maps A into a
subframe M of L then its corestriction also preserves these joins simply
because, for any subset S of A, the join of cp[S] in L and in M are the
same. But we have more:

Proposition 3 For any S, Frm is reflective in S.

Proof. We give an explicit description of the frame reflection in S.
For any A E S, let ÐA be the frame of all downsets of A, that is,

the U C A such that a E U whenever a b and b E U (which includes
U = 0), and (5A the closure system in OA consisting of all U for which

S C U and S E SA implies 

Note that the principal downsets | a ={x E A |xa} belong to GA,
giving rise to a map QA : A-&#x3E; 6A taking a to I a. We claim that, for
any A E S,

(i) 6A is a frame, and
(ii) QA : A - 6A is the universal map in S to frames.
For (i), consider the operator ko on ÐA such that

Obviously, (5 A = Fix(ko), and by general principles 6 A will be a frame
if ko is a Prenucleus on DA, meaning that ko(U) E OA and

whenever

for all U,W E 3JA (Banaschewski [2]). Now, ko(U) will clearly be a
downset provided this holds for its second part, but if a  V S for
some S C U in SA then a = V{a A tit E S} by the definition of S,
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and since the set involved in this join belongs to SA and is contained
in U, a belongs to the set in question. Regarding the last condition,
if a E ko(U) n W belongs to U then trivially a E ko(U n W) since it
belongs to U n W . On the other hand, if a = V S where S C U and
S E SA then a E W implies S C W so that S C U n W and again
a E k0(Un W). Since the other two conditions obviously hold it follows
that ko is a prenucleus, as desired.

Concerning (ii), it first has to be shown that QA : A--&#x3E; 6A belongs
to S. Clearly, it is a meet-semilattice homomorphism: A in 6A is n
and I a n I b =1 (a A b), while I e is the unit of GA. Further, for any
S E SA, S C V{|t |t E S} (join in E5A) and hence a E V{|t |t E S}
for a = V S. On the other hand, t  a for each t E S and therefore

showing that oA(VS)= V oA [S].
Finally, regarding the universality property of QA, let cp : A -&#x3E; L be

any map in S where L is a frame. Then cp, as a meet-semilattice homo-

morphism, determines the frame homomorphism h : DA --&#x3E; L such that
h[U] = V cp[U]; we claim its restriction to 6A is also a frame homomor-
phism, which will follow if we show that hko = h for the prenucleus ko
defining GA (Banaschewski [2]). Now, for any U E DA,

the next to the last step specifically because 
for the S involved.

In all, this provides a frame homomorphism £5A - L taking I a
to cp(a), obviously unique since the frame f5A is generated by the I a,
a E A, and this proves the proposition. 0

In the examples listed above, 6A consists of the following U E DA :
(1) all U,
(2) all U containing 0,



309

(3) the ideals of A,
(4) the a-ideals of A,
(5) the Scott-closed U, and
(6) the 1 a.
Back to the case of general S, we note that the adjunction map

EL : GL -&#x3E; L, for any frame L, is the join map:

On the other hand, for any A E S, x E A, and U E 6A,

and consequently the relation  now has the following concrete form:

xa iff a  V U implies x E U, for all

Note that probably the earliest instance of this relation was consid-
ered by Raney [11] for E5A = DA, amounting to the case of our example
(1). A subsequent case of great importance was the familiar way below
relation  connected with continuous lattices which may be described
as  for example (3) (Gierz et al. [6]). Of course, in the case of (6)  is

just .
Regarding previous results concerning projective frames,

Banaschewski [1] dealt with the case of example (1) where S = M,
proving the equivalence (1) - (4) of Proposition 1, and the subject was
then revisited by Banaschewski-Niefield [3], offering a more direct proof
based on the use of the downset functor Ð, and adding the equivalences
(4) = (3) and (1) - (2) of Proposition 1. Further, it was noted in [3]
that the same kind of arguments provide a natural counterpart of this
in the case of example (3) where S = D and the functor 0 is replaced
by the ideal lattice functor. Here, (1) - (4) says that the D-flat projec-
tives are exactly the stably continuous frames, a result originally due to
Johnstone [7].

In a similar vein, Escaxd6 [5] considered the case of example (5), S =
PrFrm and £5A the frame of Scott closed downsets of A, establishing
what amounts to Proposition 2 together with the equivalence (1) - (4)
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of Proposition 1. Further, it is noted in [5] that analogous arguments
prove the same result for example (3). It may be worth pointing out
that the Proposition 2 part of this did not occur in the previous work
mentioned, but it is related to the result of Day [4] that the stably
continuous frames correspond to the algebras of the filter monad in the
category of To spaces. For a somewhat different but related version of
the equivalence (1) - (4) of Proposition 1, see Section 1 of Paseka [10]
which includes, among other things, the cases (1), (3), (4), and (6) of
6A.

We close with a general comment on method. It is obvious that
the concrete nature of the reflection functor and the associated reflec-
tion maps, determined by the category extension K of Frm considered
above, is irrelevant for our purposes: the arguments used here depend
only on the formal properties of the entities involved and do not require
any kind of explicit description for them. This seems to be at variance
with the final remark of Escard6 [5] which claims that knowing such
a description is crucial for obtaining the desired results. On the other
hand, though, there is one aspect of the situation considered here which
really does seem crucial for the proofs involved: the fact that K is a
subcategory of M and hence all maps under consideration are meet-
semilattice homomorphisms. It may well be that the real problem with
the category of complete join semilattices alluded to in [5] is not the
lack of explicit constructions but rather the nature of its maps.
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