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WEIL PROLONGATIONS OF BANACH MANIFOLDS IN
AN ANALYTIC MODEL OF SDG

by Eduardo J. DUBUC and Jorge G. ZILBER

CA HIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL VI-2 (2005)

R6sum6. La th6orie des points proches des vari6t6s diff6rentielles
r6elles d’Andre Weil g6n6ralise la notion fondamentale de jet
d’Ehresmann, et comme celui-ci, comprend tout le calcul differentiel
des d6riv6es d’ordre sup6rieur. Dans cet article nous gdn6ralisons
et d6veloppons cette th6orie pour le cas des vari6t6s banachiques
complexes. Etant donnes une algebre de Weil W et un ouvert B
d’un espace de Banach, I’analyticit6 et la dimension infinie nous
imposent des modifications dans la définition de B[W], le pro-

longement d’espèce W de B , pour que ce dernier ait les propri6t6s
souhait6es (Definition 2.8). Pour une fonction holoinorphe f , nous
d6montrons une formule explicite en termes des d6riv6es d’ordre
sup6rieur pour la fonction f [W] J induite entre les prolongements
d’espèce W . Dans une seconde partie, nous consid6rons un modble
analytique de la GDS muni d’un plongement j de la cat6gorie des
ouverts d’espaces de Banach, et nous montrons que le calcul dif-
f6rentiel usuel dans cette cat6gorie correspond au calcul differentiel
intrins6que du topos. Explicitement, nous d6montrons les formules
jB[W] = (jB)Du’ et j(f[W]) = j(f)DW , ou Dyv est l’obj et in-
finit6simal du topos determine par I’alg6bre de Weil W .

Introduction.

Weil prolongations were introduced for paracompact real Coo manifolds
as a generalization of Ehresmann’s Jet-bundles, and they play a central
role in SDG (Synthetic Differential Geometry).

In section 1 we recall some notions and constructions we need in the

paper, and in this way we fix notation and terminology.
In section 2 we define and develop Weil prolongations for open sets of

complex Banach spaces. We do so in a way that automatically yields the
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version of Weil prolongations for any Banach manifold. Given a real Coo
manifolds ivi , and a Well aigebra vv , ciassicaiiy the Well prolongation
M [W] is defined as the set of morphisms M [W] = {w : Coo(M) -&#x3E; Wl -
This definition as such is not adequate for complex Banach manifold-
s. We introduce a definition that has the desired properties and that
coincides with the classical one in the real finite dimensional case (def-
inition 2.8). Then, we give an explicit construction of the Weil bundle
B[W] for an open subset of a Banach space B (proposition 2.10), and
given an holomorphic function f : Bl -7 B2 between open subsets of
complex Banach spaces, we give an explicit formula in terms of higher
derivatives for the induced map f [W] : B1[W] -7 B2 [W] between the
respective Weil bundles (formula 2.11 and proposition 2.12).

In section 3 we show that the embedding j : ,Ci -3 T of the cate-
gory of open subsets of complex Banach spaces into the analytic model
of SDG developed in [6], [7], is compatible with the differential calcu-
lus. That is, we show that under this embedding the usual differential
calculus in the category B corresponds with the intrinsic differential
calculus of the topos T . Explicitly, this is subsumed in the formu-
las jB[W] = (jB)DW , and j(f[W]) = j(f)DW , where Dw is the in-
finitesimal object of the topos that corresponds to the Weil algebra W
(theorems 3.19 and 3.20).

1. Recall of some definitions and notation.

Analytic rings were introduced in [5] for the purpose of constructing
models of SDG well adapted to the study of analytic spaces. An analytic
ring A has an underlying c-algebra that by abuse we also denote A ,
and the reader can think an analytic ring just as this c-algebra, however,
for details see [5].

We consider analytic rings in the Topos Sh ( X ) of sheaves on a
topological space X, see [5][12]. The sheaf Cx of germs of continu-
ous complex valued functions is a local analytic ring in Sh (X). An
A -ringed space is (by definition) a pair (X, Ox), where Ox is an an-

alytic ring in Sh (X) furnished with a local morphism Ox - Cx (it
follows that Ox is a local analytic ring). Given any point p E X , the
fiber is a local analytic ring 7r : Ox,p - Cx,p -&#x3E; C . If o- is a
section defined in (a neighborhood of) p , we shall denote by [a]p the
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corresponding element in the ring OX,p, and by d(p) its value, that is,
the complex number d(p) = 7r([(7]p).

Consider in On,p (ring of germs of holomorphic functions on n vari-
ables) the inductive limit topology for the topology of uniform conver-
gence on compact subsets on the rings On(U), p E U C en . It can be
proved that in this topology a sequence [fklp converges to a limit [f]P 
if there is a neighborhood where (for sufficiently large k ) all fk and
f are defined and the convergence is uniform. We shall refer to this

topology as "the topology of uniform convergence". We shall need the
following result of Cartan ([2] 194, or [3] 28. Lemma 6):

1.1. Lemma. All ideals of the ring On,p are closed for the topology of
uniform convergence.

In the finite dimensional case the coordinate projections play an im-
portant (and seldom explicitly indicated) role. Here all the continuous
linear forms have to be taken into account. The following result from
[7] reflects this fact and it is an important tool that we shall need in
this paper.

1.2. Lemma. Let B be an open subset of a complex Banach space
C . Let U be an open subset of en, let q E U , and let Jq C On,q
be an ideal. Let f and g be holomorphic functions, U - B , such
that f (q) = g(q) = p E B . Suppose that for all linear continuous
forms a E C’ , it holds that [a o f - a o g]q E J9. Then, for all germs
[r]p E OB,p, it also holds [r o f - r o g]q E Jq - D

We recall now the construction of the topos T introduced in [6].
We consider the category 1i of affine analytic schemes [6]. An ob-

ject E in 1i is an A-ringed space E = (E, OE) (by abuse we de-
note also by the letter E the underlying topological space of the A -

ringed space) which is given by two coherent sheaves of ideals R, S in
OD , where D is an open subset of en, ReS. The ideal S deter-
mines the set E of points, and the ideal R the structure sheaf. Thus,
E = {p E D |h(p) = 0 V [h]p E Spl, and OE = (OD/ R)|E (restriction
of OD/R to E ). The arrows in H are the morphism of A-ringed
spaces. We will denote by T the Topos of sheaves on 1t for the (sub
canonical) Grothendieck topology given by the open coverings. There
is a full (Yoneda) embedding 1t -7 T.
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Consider any open set B of a Banach space C, then the ring O(B)
of complex valued holomorphic functions is all analytic ring, ana given
any point p E B , the ring OB,p = Oc,p of germs at p of holomorphic
functions is a local analytic ring. The pair (B, On ), where OB is the
sheaf of germs of complex valued holomorphic functions is a A -ringed
space. From [7] we have:

1.3. Proposition. The correspondence B -&#x3E; (B, OB) defines a full
embedding B -&#x3E; A from the category B of open sets of Banach spaces
and holomorphic functions into the category A of A-ringed spaces. 0

We warn the reader that this embedding, unlike that in the finite
dimensional case, does not preserve finite products (see [7]).

Next we recall, also from [7], the definition of the embedding of the
category of open subsets of Banach spaces into the topos t .

1.4. Definition. Given an arrows t = (t, T) : (E, OE) -&#x3E; (B, OB),
we say that (t, T) has local extensions if for each x E E , there is an
open U 3 x in (Cn and an extension ( f , f*): (U, Ou) - (B, OB),
t = flunE, and T = p o f * , where p is the quotient map. We denote:

jB(E) = f(t, T) : (E, OE) -&#x3E; (B, OB) (t, T) has local extensions}.

Given an arrow g : F -&#x3E; E in 1t, if t has local extensions, so does
t o g , and given an arrow f : B1 -&#x3E; B2 in B, if t has local extensions,
so does ( f , f*) o t . From [7] we have:

1.5. Theorem. The correspondence B F-&#x3E; jB defines a finite product
preserving embedding B - t from the category L3 of open sets of
Banach spaces and holomorphic functions into the topos T. 0

This embedding does preserve products (not an easy fact unlike in
the finite dimensional case), it is faithful but not full. However, the
global sections functor, when restricted to objects of the form j B ,
B E B, is faithful. Thus, the arrows in the topos y : jB1 -&#x3E; jB2 cor-

respond to certain functions f = T(y) : B1 -&#x3E; B2 , which are not neces-
sarily holomorphic, but they are G -holomorphic. These functions have
been studied in [8], where a complete characterization is given.
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2. Weil prolongations of Banach manifolds.

Weil prolongations have been introduced in [11] for paracompact re-
al Coo manifolds as a generalization of Ehresmann’s Jet-bundles [9],
and they play a central role in synthetic differential geometry. Here we
develop this concept for open sets of complex Banach spaces (this au-
tomatically will yield the version of Weil prolongations for any Banach
manifold). Recall the following definition:

2.6. Definition. A complex Weil algebra is a c-algebra W equipped
with a morphisms W 7r ) C such that:

1) it is local with maximal ideal I = tt-1(0).
2) it is finite dimensional as a C -vector space. W = C 0 I ,

I = em. The integer m + 1 is the linear dimension of W .
3) 1 is a nilpotent ideal. The least integer r such that Ir+1 = 0 is

the order (or height) of W .

For details about Weil algebras see [1], [5]. Given any Weil alge-
bra W with maximal ideal I , the dimension d of the vector space
III’ is the geometric dimension of W , and W = C[E1, E2, ... Ed],
where the satisfy a finite set H of polynomial equations,
h(xl, ... Xd) = 0, h E H . Since Er +1 i=0 , it follows that there is a

quotient morphism Od,0 - W = Od,0/ R, [xi]o -&#x3E;Ei, which deter-
mines a (unique) structure of local analytic ring in W [5]. The kernel
R = ((h(xl, ... Xd) )hEH) of this morphism has associated a set MeNd
(where N indicates the set of non negative integers) of d-multiindexes
as described in the following remark [1]:

2.7. Remark. Let W be any complex Weil algebra as in definition 2.6.
Then there is a set M (of cardinality m ) of d -multiindexes such that
the list of derivatives DO:, for a E M determines W in the sense that
w = OD,OIR, R = f [f]0 E Od,0 I 1(0) = 0, DO 1(0) = 0 Va E M).O

We introduce now a definition of Weil prolongation for Banach man-
ifolds. However, here we consider explicitly only open subsets of Banach
spaces (notice that it is a local definition).

2.8. Definition. Given a complex banach space C , an open subset

B C C , and a Weil algebra W , we define the prolongation of B by
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W , denoted B[W], as follows:

where o is a morphism of analytic rings such that there is an open
0 E V C Cd and an holomorphic function g : V - B , such that
g(0) = p and = p o g* , where p is the quotient Od,0 - W (we say
that g is a local extension).

Weil prolongations M[W] were first defined for M a finite dimen-
sional paracompact Coo -manifolds as the set of morphisms M[W] =
{w: Coo(-&#x3E;) W}. In this case this definition coincides with the
one given above (see [4], Proposition 1.11). Here, the analytic condition
requires a local definition with germs at a point p , and the infinite di-
mensional condition requires to take as an assumption the existence of
local extensions.

The Weil prolongation B[W] is clearly functorial (by composing) in
the variable W . It is also functorial in the variable B . More explicitly:

2.9. Proposition. Let Bl and B2 be open subsets of com-

plex Banach spaces, and let f be an holomorphic function
f : Bi - B2. Consider (p, w) E B1[W] and f * : OB2’/(P) -&#x3E; OB1’P.

and this defines a map
n

The projection (p, w) -&#x3E; p is a map B [W] -&#x3E; B under which B[W]
is the jet-bundle whose points contain the information for the value at
0 of an holomorphic function and a prescribed set of its derivatives.
In fact, we shall see that the points of B[W] are in bijection with the
product of B and m copies of C indexed by the set M of multiindexes
in remark 2.7. In particular, B[W] can be considered to be an open
subset of a Banach space.

2.10. Proposition. Let B be an open subset of a complex Banach
space C . Then B[W] = B x fl C , where the product is taken over
a E M . More explicitly, the map w : B[W] -&#x3E; B x fl C defined by
w(p, 0) = (p, (Dag(0))aEM) , (where g : V - B is any local extension
as in definition 2.8) is a bijection.
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Proof. Consider the quotient p : Od,0 - (Od,0/R) = W . First we show
that w is well defined, then that it is a bijection.

Let h be any other local extension. By definition we have that

this means that 

, and, by the Hann-Banach theorem it
follows that j 

Injectivity:
Suppose that Consider local extensions g

Surjectivity:
Given any be the function defined by

Clearly, g is holomorphic, g(0) = p E B and
for a E M . Take an open subset

Clearly (

Next we shall determine an explicit description of the map f [W] un-
der the bijection w , showing at the same time that it is an holomorphic
map of open subsets of Banach spaces.

Let Bl and B2 be open subsets of complex Banach spaces C1 and
C2 respectively, and let f be an holomorphic function, f : B1 -&#x3E; B2.
Consider for each 3 C M the set:

Let
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We say that the set AB is finite. In fact, for

For each p E Bl there exists a ball B(p, S) and a sequence
of continuous homogeneous polynomials Pr of degree r such that

uniformly on B(p, S) . Then, there exist-
s a unique multilinear symmetric continuous mapping 0, such that

We define:

(where for each a E M , the dots indicate a vector of ua coordinates
all equal to ua/a!).

We have that for all (3 6 M, w(f)f3 is separately holomorphic,
thus it is holomorphic, see [10], and since w( f )o also is holomorphic, it
follows that w(f ) is holomorphic.

2.12. Proposition. Under the bijection úJ, the arrow f[W] is given
by the holomoqphic function w(f) . That is, w o f[W] = w( f) o w , the
following diagram commutes:

Proof. Let and let (p, w) be the u-
nique point in .
the local extension of

Then, and f o g is a local extension of

, there is an open subset
such that 0 E Y , g(Y) C B1, and
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We have

uniformly on a ball
open subset of Y such that

Then, by Leibinitz’s formula, [10], this is equal to

Since 0, is multilinear, this is equal to

It follows that in the development of f (g(z)) around 0, given
B E M the coefficient of zB is obtained by considering all li such
that that is, all p G AB. So, this coefhcient is

, and it is is equal to Then:

It follows that and
Since this holds for all

it follows that
that is,

We end this section describing how Weil algebras determine in-
finitesimal objects in the topos. A Weil algebra W can be inter-
preted as an affine (infinitesimal) analytic scheme Dw C(Cd, Od) ,
Dw= ({0}, W) . In 1t (or in the topos T ) Dw is defined by

where

H is the set of polynomial equations that define W . We have:
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2.13. Proposition. The assignment W H Dw determines a ficll em-
bedding Wop -&#x3E; H from the dual of the cotegory W of Weil algebras

into the category 1í of affine analytic schemes. D

The condition in the definition of B[W] says exactly that the pair
(p, w) viewed as an arrow (0, W) - (B, OB) has local extensions.
Thus:

2.14. Remark. By definition, B[W] is the set of arrows

B[W] = [Dw, jB] in T, and under this identification, for any

holomorphic function f , f [W] = (jf)* (composing with j , f ). 0

Thus, a map Dw -7 j B in T is a jet of an holomorphic germ (with
a shape determined by W ) , and composition in t corresponds with
composition of jets and functions.

3. Compatibility of Weil prolongations with exponentials in
the topos.

In this section we show that the embedding j is compatible with the
calculus of all higher derivatives. That is, it is compatible with the con-
struction of the jet bundle B[W] - B determined by any Weil algebra
W . Abusing notation, we can write the equations jB[W]= (jB) DW ,
and j(f[W]) = j(f)Dw .

Through all this section we shall consider a Weil algebra W with
associated ideal R C Od,0, set M of d -multiindexes and set H of
polynomial equations, as in definition 2.6 and remark 2.7.

Given a local analytic ring A - On,x/Jx, where x E Cn, and
Jx C On,x is any ideal, consider the coproduct (as analytic rings)
A O W = On+d (x 0) /(Jz, R) , where (Jx, R) C (9n+d, (x, 0) is the ide-
al generated by the germs at (x, 0) of the functions of Jr and the
functions of R considered as functions of n + d variables. We have:

3.15. Proposition. Given any [f](x,o) E On+d,(x,0):

Proof. We consider f = f (u, z) where U C (Cn and z E Cd.
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-&#x3E; ) We have ) where
E Jx, [gj]o E R and [yi](x,0), [dj](x,0) E On+d, (x, 0) . This holds in
an open neighborhood of (x, 0). Since D’ indicates derivation with

respect to z, it follows that

Here, for each u , we have that [dj(u, -) gj]0 E R . It follows that

Da(8j(u, z) gj (z))(u, 0) = 0 . Thus, [(Da f)( -, 0)]x E Jx. Similarly,
f (u, 0) = Eyi(u, 0) hz(u) (recall that since [gj]0 E R, then gj (0) = 0) .
Thus [f (-, 0)]z E J. .

4= ) Consider the development of f around (x, 0) , f (u, z) =
, where I Given any B # 0 , if

B E M , then [(DBf)(-, 0)]z E Jx , thus, [bB]x E Jx. If 3 0 M , then,
given any a E M , since B# a , it follows that Da (zB) (0) = 0, thus,
[z/3]o E R. It follows that in all cases [bB(u) zB](x,0) E (Jx, R). Thus, in
the development of f , [f(-, 0)](x,0) and all [bB(u) zB](x,0) E (J., R).
Since this series converges uniformly on a neighborhood of (x, 0), it
follows by lemma 1.1 that [f] (x,0) E (Jx, R) . 0

Given any analytic ring A in any topos, a Weil c-algebra W (as in
definition 2.6) determines an analytic ring structure in Am+1 that we
shall denote A[W] .

In particular, consider an object E E 1t given by two coherent
sheaves of ideals I , J in an open subset of Cn , J C I , E = Z(I) and
OE,x = On,x/Jx for x E E. We define the object (E, OE[W]) to be
the A- ringed space with fibers

where the symbols Ei satisfy the same set H of polynomial equations
that define W . We have:

3.16. Remark. Let 7r., : On,x -7 OE,x be the quotient map. There is
a morphism of analytic rings 6., : On+d,(x,O) -&#x3E; OE,x [W] defined by
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which identifies OE,x[W] with the quotient On+d,(x,0)/(Jx, R) (this
follows by 3.15 and shows that (Ex{0}, OE[E]) E H).

3.17. Remark. By constructions of coproducts of analytic rings and
products in 1t, we have that E x Dw = (E x 101, OEx{0}) where,

It follows that

3.18. Proposition. Let E be an object in 1t , let U be an open subset
of Cn such that E C U , let V be an open subset of Cd such that
0 E V, let B be an open subset of a complex Banach space C , and let
g , h be holomorphic functions, g , h : U x V -&#x3E; B . Then:

Proof. To simplify the proof it is convenient to adopt the convention
that DO is the identity operator. Thus, if a = 0 = (0, 0, ... , 0) ,

be the quotient maps, and let x E E.

and for all

Thus, by 3.15, it follows that for and all
this means that

the value at
x of any germ in Jx is 0. Thus,

It follows by the Hahn- Banach theorem that
By lemma 1.2, it fol-

lows that for all
This means

Thus

For a = 0 and each
for all
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When r E C’ , this means that [Da((rog) - (roh))( -, 0)]z E Jx . Thus,
by 3.15, [rog-roh](x,o) E (Jr, R) for all r E C’ . Using lemma 1. 2 for
( Jx, R) , it follows that [r o g - r o h](x,0) E (Jx, R) for all [rp] E OB,p,
where p is the point p - g(x, 0) = h(x, 0) = qo . This means that

dx([r o g](x, 0)) = 6z ( [r o h] (x, o)) . It follows that 8x o g* = dx o h* for all
x E E . This finishes the proof. D

3.19. Theorem. Let B be an open subset of a Complex Banach space
C . Then, there is an isomorphism ú) : (j B)Dw = j(B x fl C) in

T , where the product is taken over a E M . Moreover, und er the

identification B[W] = [Dw, jB], this isomorphism on global sections
is the bijection ú) defined in proposition 2.10.

Proof. Since the functor j preserves products, it is equivalent to
show that for each E E H there is a natural (in E ) bijection:
[E, (jB)Dw] = [E, jB x IT (jC) . The second statement will be evi-
dent by the definition of this bijection.

a) Let E be an arrow, E: E - ( j B)Dw .
That is, 6 is an arrow E x Dw - jB in t, which is given by a

morphism of A-ringed spaces, E : (E x {0}, OEx{0}) -&#x3E; (B, OB) which
has local extensions.

For each x E E there is an open subset U of Cn such that
x E U , an open subset V of Cd such that 0 E V and an holo-

morphic function g : U x V - B such that (g, g*)|E’xDw = E|E’xDw ,
where E’ = U n E . In this way, we have an open covering of E ,
and, for each E’ in the covering, morphisms (g ( -, 0), g ( -, 0 )*)|E’
((DOg)( -, 0), (Dag)(-, 0)*)|E’,Va E M .

Given another open E" in the covering, with holomorphic func-
tion h , (h, h*)|E"xDw = E|E"XDw’ &#x3E; we have (g, g*)|(E’nE")xDw =
(h, h*)I(E/nE")xDw. By 3.18 (on the object (E’ n E" ), it follows

and da E M ,

So, these data is compatible in the intersections. Therefore it deter-
mines unique morphisms of A -ringed spaces w : (E, OE) -&#x3E; (B, OB)
and !3o. : (E, OE) -&#x3E; (C, Oc) such that, for each E’ in the cov-

ering, it holds that and Ba|E’=
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By a similar argument it follows that 0 and !3a do not depend on
the covering. Clearly these morphisms have local extensions. Thus, they
actually define arrows in the topos, o : E - jB , and !3a : E - jC ,
which determine an arrow (
This defines a function I We have to

prove now that it is a bijection.

b) (Injectivity). Suppose that we have two arrows E1 and E2
E -7 (jB)DW in T which determine the same (w, (Ba)aEM). They
correspond to arrows E x Dw -&#x3E;jB, that is, morphism of A -ringed
spaces E x DW -&#x3E; (B, OB) with local extensions. For each x E E,
let g and h be local extensions of E1 and E2 around (x, 0) re-

spectively. We can assume that they are defined in a same open

(9, g*)/E’xDw = E1|E’xDw , ( h, h*)/EIXDw = E2|E’xDw , where E’ =
U n E . Since Çl and Ç2 determine the same (w, (Ba)aEM), it

all Q E M . It follows by 3.18 that (g, g*)|E’xDw = (h, h*)|E’xDw, thus,
E1|EIxDw = E2|E’xDw. Since the open sets E’ x Dw cover E x Dj,j, , it
follows that E1 = E2

c) (Surjectivity). Let (w, (Ba)aEM) : E - jB x II ( jC) in t. That
is, w: (E, OE) -&#x3E; ( B, OB), Ba: (E, AE) -&#x3E; ( C, Oc) are morphisms
of A -ringed spaces with local extensions. For each x E E , let go , go.,
be a local extension of 0, Ba respectively, go : U -&#x3E; B , go: : U - C ,
U an open subset of Cn , z E U . Let g : U x cCd -7 C be the
function defined by Clearly g is

holomorphic and g(x, 0) E B . It follows that there exists an open
subset T of Cn , x E T , an open subset V of Cd, 0 E V, and
g (T x V) c B . Consider g : T x Y -&#x3E; B , and the morphism of A -ringed
spaces (g, g* )| E’x Dw: E’ x DW-&#x3E; ( B, OB) where E’ = T n E . Notice
that 9 (u, 0) = go(u) , and for each a E M, (Dcg) (u, 0) = go:(u). That
is, 9{-, 0) = go and (Dag)(- 0) = 9a.

We have an open covering of E x Dyy and, for each E’ x Dyl, in this
covering, a morphism (g, g*)E’ x Dw: E’x DW -&#x3E; ( B, OB). Exactly in
the same way as before in this proof, it is straightforward to check that
these morphisms are compatible in the intersections (use 3.18). Thus,
they determine a morphism of A -ringed spaces E: E x Dw -&#x3E; (B, OB)
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unique such that for each E’ , the restriction E /E’XDw= (g g*)/E’xDw.
It is clear that E has local extensions and thus it defines an arrow

E : E x Dw -&#x3E;jB in t, that is, E: E -&#x3E; (jB) Dw. It is immediate
also to check that the construction defined in a) above when applied to
E yields (w, (Ba)aEM).

Finally, it is straightforward to check the naturality in E of this
correspondence. D

Let Bl and B2 be open subsets of complex Banach spaces C1 and
C2 respectively, and let f be an holomorphic function, f : Bi - B2 -
Consider the holomorphic function w (f ) defined by equation 2.11, then:

3.20. Theorem. Under the bijection w of theorem 3.19, the arrow
is given by the function w(f). Explicitly,
that is, the following diagram commutes:

Proof. Equivalently, we shall prove the equation W o (jf)D- o w-1 =
j(w(f)). Applying the global sections functor r this equation be-
comes the equation cv o f[W] o w-1 = w(f) of proposition 2.12 (recall
remark 2.14). Thus T(w o (jf)D- o w-1) = T(j(w(f))). Then, by
proposition 1.1 of [8] (see the comments after theorem 1.5) we have
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