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PRODUCTS IN THE CATEGORY OF
APARTNESS SPACES

by Douglas BRIDGES, Hajime ISHIHARA, Peter SCHUSTER

and Luminita Vi01630103

CA HIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL VI-2 (2005)

Resume. Les auteurs ddfinissent une structure de separation sur le

produit de deux espaces de separation (’apartness spaces’) et analy-
sent le role de la decomposabilite locale dans la th6orie. Tout le tra-
vail est constructif - c’est-A-dire utilise une logique intuitionniste
plut6t que classique.

1 Introduction

The axiomatic constructive theory of apartness spaces, originally introduced
for point-set apartness in [3], was lifted to the set-set apartness context in [7]
and [9]. Among the notable omissions from the latter paper was a notion of
product apartness structure, corresponding in the set-set case to the point-
set case covered in [3]. We rectify that omission in the present paper. We
show that in the presence of a condition known as local decorrtposability, a
condition that automatically holds under classical logic when the inequality
relation is the denial of equality, both the point-set and the set-set notions
of product space are categorical. Note that in this paper we discuss only
products of two (and hence, by a simple extension, of finitely many) apartness
spaces; we do not deal with products of infinite families.

Our work is entirely constructive, in that we use only intuitionistic logic.
We expect that most of it can be formalised, with some effort, in a construc-
tive (and predicative) set theory such as is found in [1]. For a classical-logic-
based analogue of apartness spaces see [6].
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2 Point-set apartness
We work throughout with a set X equipped with a binary relation # of
inequality, or point-point apaTtness, that satisfies the properties

A subset S’ of X has two natural complementary subsets:

. the logical complement

O the complement

Initially, we are interested in the additional structure imposed on X by a
relation apart (x, S) between points x E X and subsets S’ of X . For conve-
nience we introduce the apartness complement

of S; and, when A is also a subset of X, we write A - S in place of A n -S.
We call X a point-set apartness space if the following axioms (intro-

duced in [3]) are satisfied.

A1 x # y -&#x3E; apart(x, {y})

A2 apart(x, A) -&#x3E; x E A

A3 apart (x, A U B) apart(x, A) A apart(x, B)

A4 (apart (x, A) A -A C ~B) -&#x3E; apart(x, B)

A5 apart (x, A) -&#x3E; Vy E X (x f y V apart(y, A))

We note, for future reference, that it can be deduced from axioms A5 and
A2 that -A c- A; with this and the remaining axioms, if we also require
the inequality on X to be nontrivial, in the sense that there exist x and y
in X with x # y, then we can show that X = -0 (see [3], Section 2). Note
also that if apart (x, {y}), then x # y.

The morphisms in the category of point-set apartness spaces X and Y
are those functions f : X - Y that are continuous in the sense that
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The canonical example of a point-set apartness space is a metric space
(X, p) , on which the inequality and apartness are respectively defined by

and

Functions between metric point-set apartness spaces are continuous, in the
sense defined above, if and only if they are continuous in the usual C-J sense.

The metric-space example generalises to uniform spaces, but we defer
further discussion of those until we deal with set-set apartness later. Another

example of a point-set apartness is given by a T, topological space (X, r)
with a nontrivial inequality #; in this case, the apartness is defined by

and we must postulate A5 since it need not hold in general (see [3]).
Let Xi and X2 be point-set apartness spaces, let X be their Cartesian

product X, x X2, and, for example, let x denote the element (Xl, X2) of X.
The inequality relation on X is defined by

We define the product point-set apartness structure on X as follows:

where -Uk is the apartness complement of Uk in the point-set apartness
space Xk . We call X, equipped with this apartness structure, the product
of the point-set apartness spaces Xl and X2.

Such product spaces are discussed in [3], where it is first verified that the
product apartness structure really satisfies Al-A5. The proofs of a number
of natural results on product point-set apartness spaces in [3] required the
spaces Xi, X2 (equivalently, the product space X) to be completely regular,
according to a definition that we do not need here. We first state the main
properties of product point-set apartness spaces, replacing complete regular-
ity by the much weaker property of local decomposability; those results for
which this replacement is made are proved in full.
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A point-set apartness space X is said to be locally decomposable if

Local decomposability always holds classically: if x E -S, then as X =
-S’ U - - S and -S = -N - S, we can take T = ~ - S. Every metric
space (X, p) is locally decomposable: for if x E X - S, then, choosing r &#x3E; 0

such that B (x, r) C -S, we can take T =~B (x, r/2) to obtain x E -T and
X = T U -S’. It also holds for a uniform space as defined in [7].

Lemma 1 Let X - X, x X2 be the product of two point-set apartness
spaces, and let Ai C Xi. Then -AI x X2 = - (AI x X2) and Xl x -A2 =
- (Xl x A2) .

Proof. Since -A1 x X2 = -A1 x -0 and

the definition of the product apartness shows that -A1 x X2 C -(A1 x X2).
Conversely, given (Xl, X2) in - (AI x X2) , use the definition of the product
apartness to find subsets Ui of Xi such that

If E E -U1, then

so for all q E A1 we have (ç, X2) i (n, X2) and therefore ç i n]. Hence

x1 E -Ul C~A1. It now follows from axiom A4 that apart (xl, A1) . Thus
- (AI x X2) c -A, x X2.

The other part of the lemma is proved similarly.

Proposition 2 Let X = Xl X X2 be the product of two inhabited point-set
apartness spaces. Then X is locally decomposable if and only if each Xk is
locally decomposable.

Proof. Suppose first that X is locally decomposable. Let xi E -Ul C Xl,
and pick X2 E X2. Then
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Hence, by definition of the apartness on X, x E - (Ul x X2) . So, by the local
decomposability of X, there exists T C X such that

Let

and consider any E E Xi. Either (E, x2 ) E - ( U1 x X2 ) and therefore (by
Lemma 1) E E - Ul , or else (E, x2 ) E T and so E E VI. It remains to show
that x l E - Yl . To this end, since x E -T, we can find Wi C Xi such that
x E -W1 x -W2 C~T. For any E E -W1 and v E V, we have (E, x2) E~T
and (v, x2 ) E T; whence E# v . Thus -w1C~V1. Since x 1 e -Wi, it follows
from axiom A4 that x, E -Vl, as required. A similar proof shows that X2 is
locally decomposable.

Now suppose, conversely, that each Xk is locally decomposable. Consider
x E X and S C X such that x E - S. Choose Ul C X, and U2 C X2 such
that x E -Ul x -U2 C -S. Since Xk E -Uk, there exists Vk C Xk such that

Let

Then -V1 X -v2 ENT, so, in particular, x E -T. On the other hand, for
each E E X, either E1 E -Ul and E2 E -U2, in which case E E -S; or else we
have either E1 E Vi or g2 E Y2, when E E T. Thus X = -S U T, and so X is
locally decomposable.

Corresponding to point-set apartness there is the opposite property of
nearness, defined by

Classically, if the inequality is the denial of equality, then near(x, A) holds
if and only if -,apart (x, A) , which is equivalent to the condition

To discuss this constructively, we first observe that if Xi is a point-set apart-
ness space and Ui c Xi (i = 1, 2) , then
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Proposition 3 Let X = X1 x -Y2 be a product of two point-set apartness
spaces, let x be a point of X, and let A be a subset of X. Then the following
conditions are equivalent.

(i) for all U, C Xl and U2 C X2 such that x E -Ul x -U2, there exists
y E (-ui x -U2) n A.

(ii) near (x, A) .

Proof. For the proof that (i) implies (ii), see [3]. Conversely, if U, C Xl,
U2 C X2, and x E -U1 x -U2, then by the preceding observation, x E
- ((U1 x X2 ) U (Xi x U2)). If also near (x, A) , then there exists y in

which, again by our observation above, equals ( - Ul x- U2 ) n A. m

Proposition 4 Let X = Xl x X2 be the product of two point-set apartness
spaces, let x E X, and let A c X. Suppose that the following condition holds.

Then apart (x, A) . Conversely, if the spaces Xl, X2 are locally decomposable
and apart (x, A) , then condition (*) holds.

Proof. First assume (*), and construct VI, V2 with the stated properties.
To prove that apart (x, A) , it suffices to note that

where in the first line we have used the observation preceding Proposition 3.
Now assume, conversely, that the spaces Xl, X2 are locally decomposable

and that apart (x, A) . Choose Ui C Xi such that
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For each i, we use the local decomposability of Xi to find Vi C Xi such that
xi E -v and Xi = - Ui U V,. Then

For if (ÇI,Ç2) E A, then either Çl E -U, and Ç2 E -U2, which is impossible,
or else, as must be the case, 61 E VI or 62 E V2.

Before going any further, we should prove

Lemma 5 Let X1, X2 be point-set apartness spaces. Then the projection
mappings prk : Xl x X2 -&#x3E; Xk are continuous.

Proof. Let apart (pr1 (x), pr1 (S)), where S C X = Xl x X2; then by
Proposition 28 of [3], there exists Ul C X1 such that

Then x E -U, x X2 = -U, x -0. Also, if y E -Ul x -0, then y1 E -Ul,
so for all z E S’, y1 # z1 and therefore y # z. Thus - U1 X-0 c - S,
and therefore apart (x, S) . This proves the continuity of prl; that of pr2 is
established similarly.

We can now demonstrate the categoricity of the product of two point-set
apartness spaces.

Proposition 6 Let X = X, X X2 be the product of two locally decomposable
point-set apartness spaces, and f a mapping of a point-set apartness space
Y into X. Then f is continuous if and only if pri o f is continuous for each
i.

Proof. Assume that pri o f is continuous for each i. Let y E Y and T C Y
satisfy apart ( f (y), f (T)) . By Proposition 4, there exist VI C X, and V2 C
X2 such that f (y) E -Yl x -V2 and

Setting
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we have T C Tl U T2. Moreover, for each i, pri o f (Ti) C Vi and therefore

Our continuity hypothesis now ensures that y E -Tl n -T2 c -T.
The converse follows easily from Lemma 5.

The local decomposability of the spaces X, and X2 is used only once
in the foregoing proof: namely, at the invocation of Proposition 4 in order
to produce the sets V1 and V2. This suggests that instead of defining the
product point-set apartness as we did, we might have defined it by taking
apart (x, A) to mean that condition (*) of Proposition 4 holds. However, the
status of axiom A4 for this notion of ’apart’ remains undecided: we know of
neither a proof that A4 holds nor a Brouwerian example indicating that A4
is not constructively derivable.

3 Set-set apartness
We now introduce a notion of apartness between subsets. We first assume
that there is a set-set pre-apartness relation m between pairs of subsets
of X, such that the following axioms hold.

For the purposes of this paper, we then call X a pre-apartness space, or,
if clarity demands, a set-set pre-apartness space. We then define

If, in addition to B1-B4, the axiom
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holds, then we call m a (set-set) apartness on X, and X a (set-set)
apartness space.

The morphisms in the category of set-set (pre)apartness spaces are those
functions f : X-&#x3E; Y that are strongly continuous, in the sense that

Given a apartness space X, we define

and

to obtain the inequality and the point-set apartness relation associated with
the given set-set one. The point-set relation pa satisfies axioms A1-A4,
where the apartness complement is defined as at (3). If the set-set relation

also satisfies B5, then the point set apartness is locally decomposable and a
fortiori satisfies A5.

An example of a set-set apartness space is afforded by a uniform space
(X, u ) , on which the inequality is defined by

It is shown in [7] that the relation m defined for subsets S, T of X by

is a set-set apartness relation, Denoting by apartu the apartness relation
associated with the topology Tu induced on X by U, we can show that x m S
if and only if apartu (x, S’) .

The definition of the product of two set-set pre-apartnesses is much more
complicated than that for point-set apartnesses. If X = Xl x X2, where X,
and X2 are set-set pre-apartness spaces, then, taking the contrapositive of
the definition used on page 23 of [6], we define the product apartness on

X as follows. Two subsets A, B of X are apart, and we write A m B, if
there exist finitely many subsets Ai (1 i  m) and Bj (1  j n) of X
such that
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and

Proposition 7 Let Xl, X2 be pre-apartness spaces, and X their Cartesian
product, define the relation apart as at (1), and let &#x3E; denote the product
pre-apartness relation on X. Then {x} m S entails apart (x, S) . Moreover,
if both X, and X2 are apartness spaces, then apart (x, S) entails {x} &#x3E; S.

Proof. Assume first that {(X1,X2)} &#x3E;] ,S’. Then there exist subsets Bj
(1  j  n) of X such that ,S C BI U...UBn, and for each j either x, m pr1Bj
or z2 m pr2Bj . Renumbering the sets Bj if necessary, we may assume that
there exists v  n such that x 1 m pr 1 Bj for 1  j  v, and X2 m pr2Bj for
v + 1  j  n . Write

Then x, E -U and X2 E -V. Given x’1 E -U, x2 E -V, and (E,n) E S,
choose j such that (E, n) E Bj . If 1  j  v, then x’ # E; if v + 1  j  n,
then x’2 # n. Hence (x’, x’2) # (E, n). We now see that

-in other words, apart (x, S) .
Now assume that X1, X2 are actually set-set apartness spaces and that

apart (x, S’) . So there exist Ui C Xi with

We can find sets v C Xi such that

Set

For each E in S we have Çi E Vi for some i (for if gj E -Ui for both i, then
E E -U1 x - U2 E N S, a contradiction); whence S C Bl U B2. Moreover, by
our choice of V , we have xi E -V ; whence fxil = pri(A1) m V - pri(Bi).
Thus {x} &#x3E; S.O
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Having shown that our definition of product set-set apartness is compat-
ible with the earlier definition of product point-set apartness, we still need
to verify that, in the light of axioms B1-B5, we have actually defined an
apartness on the Cartesian product X = Xl x X2 of the sets underlying
the apartness spaces Xl and X2. Once again, we keep track of the need, or
otherwise, for axiom B5.

Proposition 8 Let X = X, x X2 be the product of two set-set pre-apartness
spaces. Then the relation m, defined as above for X, satisfies axioms B1-B4.
If X1, X2 are apartness spaces, then m also satisfies axiom B5.

Proof. We verify each of the axioms in turn.

B2 Let A, B C X = X, X X2 and A &#x3E; B. Choose the sets Ai, Bj as in the
definition of m on X. Supposing that (x, y) E A n B, choose i, j such
that x E A2 and y E Bj. Then (x, y) E Ain Bj, so x E prl (Ai) n prl (Bj)
and y E pr2 (Ai) n pr2 (Bj) , which contradicts the properties of Ai and
Bj .

B3 Let R, S, T be subsets of X = X1 x X2 . It is easy to prove that if
R m (S U T), then R m S and R &#x3E; T. Suppose then that R m S and
R m T. There exist subsets R1, ... , Ra and R’1, ... , R) of R, subsets
81, ... Sm of S, and subsets Tl, ... , Tn of T such that

for 1  i  a and 1  j m there exists k such that prk (Ri) m
prk (S,) , and for 1  i  B and 1  j  n there exists k such that
prk(Ri) &#x3E; prk (tri). Let

Then
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Also, if I x m, then, choosing k such that , we see

that

so prk (Pi,j) &#x3E; prk (5t). Likewise, if l  n, then there exists k such that
prk (Pi,j) &#x3E; prk (Ti). Since

it follows that R m (S U T) .

B4 This is trivial.

This completes the proof that X is a pre-apartness space. Now suppose
that X1, X2 are actually apartness spaces. Then, regarded as a point-set
apartness space, each Xi is locally decomposable; whence, by Proposition 2,
the product point-set apartness space X is locally decomposable. It follows
from Proposition 7 that the product point-set apartness on X is precisely
the point-set relation induced by the product set-set apartness on X. Hence
X satisfies B5.

It is almost immediate from the definition of the product set-set pre-
apartness structure on X = X l x X2 that the projection maps pri : X -&#x3E; Xi
are strongly continuous. We end the paper by showing that the product pre-
apartness structure has the characteristic property of a categorical product.

Proposition 9 Let X = X, x X2 be the product of two set-set pre-apartness
spaces, and f a mapping of a set-set pre-apartness space Y into X. Then f
is strongly continuous if and only if pr2 o f is strongly continuous for each i.

Proof. Assume that pri o f is strongly continuous for each i. Let ,S’, T be
subsets of Y such that f (S) m f (T), and choose finitely many subsets Ai
(1  i  m) and Bj (1  j  n) of X such that

, and

O for all i, j either ]
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For all i, j write ,S’i = f-1 (Ai) and Tj = f -1 (Bj). Then S’ c S1 U ... U Sm and
T C T1 U...UTn. Moreover, for all i, j we have either pr1 o f (Si) pa pr 1 o f (Tj) or
pr2of(Si) &#x3E; pr2 o f (Tj); whence Sj pa Tj, by our strong continuity hypothesis.
It follows that S m T and hence that f is strongly continuous.

The converse readily follows from the continuity of the projection maps.

Thus we have shown that under reasonable conditions, such as local de-
composability in the point-set case, both the point-set product apartness
and the set-set product (pre)apartness are categorical. This is another indi-
cation that the notion of apartness may have some constructive merit.

In earlier papers such as [3], we have required that point-set apartness
spaces be nontrivial. This requirement would mean that in the context of
product apartness structures, we would not have nullary products, which are
the terminal objects in the category.

Much has been done in the four years since the theory of apartness spaces
was first broached as a possible way of approaching topology constructively.
In particular, connections between point-set apartness and topology, and be-
tween set-set apartness and uniformity, have been explored in some depth;
see [3, 4 , 7, 8, 9] . Among the interesting phenomena observable with intuition-
istic logic is that if certain natural set-set apartness structures are induced
(as they are under classical logic) by uniform structures, then the weak law
of excluded middle,

-p V P7

holds; see [8] (Proposition 4.2 and Corollary 4.3). Thus, in a certain sense, the
constructive theory of apartness spaces is larger than the theory of uniform
spaces.

Of the major problems that remain in the foundations of apartness-space
theory, the most significant and resistible to constructive attack is that of
compactness. Since the Heine-Borel property fails to hold for the interval

[0,1] in constructive mathematics plus Church’s thesis ([2], Chapter 3), and
since the sequential compactness of [0, 1] is essentially nonconstructive, for
metric and uniform spaces we define compact to mean totally bounded and
complete. Lifting such ideas from the uniform- to the general apartness-
space context appears to be a highly nontrivial exercise, for which we have
as yet only partial solutions (see [5]).
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