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Résumé. Nous généralisons la théorie des modules réguliers
sur un anneau sans unité au cas des préfaisceaux sur une
“catégorie sans unité” que nous appelons une semi-catégorie.
Nous travaillons dans le contexte de la théorie des catégories
enrichies. L’axiome de régularité sur un préfaisceau revient
a étre canoniquement une colimite de préfaisceaux représen-
tables et la semi-catégorie elle-méme est réguliere quand son
foncteur Hom vérifie cette condition. Nous montrons la rela-
tion avec le lemme de Yoneda et obtenons un exemple de ce
que F.W. Lawvere appelle “I'unité des opposés”. Nous con-
cluons avec un théoreme de Morita pour les semi-catégories
régulieres. Nous donnons différents exemples provenant de
la théorie des matrices, des opérateurs de Hilbert—Schmidt
et des ()-ensembles.
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Introduction

Let R be a commutative ring with unit. Given a R-algebra A with
unit, a right A-module M verifies in particular the axiom m -1 = m
for each element m € M. When the algebra does not have a unit, this
axiom no longer makes sense and must be replaced by an alternative
version, equivalent to this classical axiom in the case where A has a
unit. It is the so-called regularity condition on M, meaning that the
scalar multiplication induces an isomorphism M ®4 A — M.

Regular modules play an essential role in the construction of the
Brauer-Taylor group of the ring R, via the consideration of Azumaya
algebras without unit (see [9]).

In [2], Azumaya categories enriched in a symmetric monoidal closed
category V have been introduced. They allow defining the categorical
Brauer group of V which, when V is the category of modules over the
ring R, reduces to the classical Brauer group of R. This paper throws a
bridge to an analogous theory “without identities”, with the final goal of
reaching a theory of enriched Azumaya graphs and the corresponding
categorical Brauer-Taylor group of the base category V. The devel-
opments of the present paper allow in particular introducing all these
notions, but investigating their properties will be the topic of another
work.

The present paper focuses in fact on a categorical generalization,
over an arbitrary base V, of the theory of regular modules. We intro-
duce for this purpose enriched “categories without units”, which we call
more positively “semi-categories”. All our notions are enriched in a
base category V and by convention, we avoid repeating it all the time.
We study the corresponding notion of “regular” presheaf, generalizing
the notion of regular module. This generalization is categorically very
natural, since it reduces to the fact of being a colimit of representable
presheaves, a fact which is classical for categories and functors. And
precisely when the semi-category turns out to be an actual category,
the regular presheaves on the semi-category coincide with the actual
functorial presheaves on the category.

A special attention is devoted to the regular semi-categories G, that
is, those semi-categories for which the representable presheaves are
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themselves regular. In that case, the category of regular presheaves
on G is an esssential colocalization of the category of all presheaves.
In particular, when V is abelian, the regular presheaves on a regular
semi-category constitute again an abelian category. And when V is
the category of sets, the regular presheaves on a regular semi-category
constitute a Grothendieck topos.

At this stage, it is useful to throw a link with Lawvere’s idea of the
“unity of opposites” (see [7]). Regular presheaves on a regular semi-
category verify the Yoneda lemma precisely when the semi-category is an
actual category. But the regular presheaves constitute a colocalization
of the category of all presheaves, thus the second right adjoint is itself
full and faithful. And this second embedding identifies precisely the
regular presheaves with those presheaves satisfying the Yoneda lemma.

We generalize further, to the context of regular semi-categories, var-
ious basic aspects of the theory of distributors (also called profunc-
tors, or bimodules) and prove that regular distributors between reg-
ular semi-categories organize themselves in a bicategory. Two regu-
lar semi-categories G and H are equivalent in this bicategory precisely
when the corresponding categories Reg(G°?, V) and Reg(H°?, V) of reg-
ular presheaves are equivalent. This is a Morita theorem for regular
semi-categories.

It is a matter of fact that some semi-categories G occur quite nat-
urally as ideals in a bigger, rather natural category C. For example
the compact operators between Hilbert spaces constitute a two-sided
ideal in the category of all bounded operators, the whole situation be-
ing enriched in the base category of Banach spaces. In such cases, some
people will prefer to study G as an ideal of C, instead of an independant
entity. It is a matter of taste, but the importance given to the study
of C*-algebras without unit indicates that such a choice is certainly not
universal.

In the spirit of the previous example, consider now the Hilbert-
Schmidt operators between Hilbert spaces. This is again a situation
enriched in the base category of Banach spaces, but the Hilbert-Schmidt
norm can by no way be extended to more general operators. So in this
case, the semi-category of Hilbert—-Schmidt operators appears as a natu-
ral entity to study for itself: this is an example of a regular semi-category
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enriched in the category of Banach spaces.

It remains nevertheless true that every semi-category can be pre-
sented as a two-sided ideal in the category obtained by adding formally
identitity arrows. This category is generally too “unnatural” to be de-
voted some interest, except as a tool in the proofs.

Another important example of a regular enriched semi-category is a
sheaf F' on a locale §2, viewed as an (2-set A. A locale 2 is in particular
a cartesian closed category and an -set. A is a symmetric semi-category
enriched in Q. Requesting that A is an actual Q-category would force
the sheaf F' to be generated by its global elements. In this specific case,
the Q-category of regular presheaves on A coincides with the locale of
subsheaves of F.

1 A quick introduction to regular modules

This section recalls the basic idea of the theory of regular modules on an
arbitrary ring and underlines crucial differences with the more classical
theory involving a unit.

Let R be a commutative ring with a unit. Let A be an R-algebra,
not necessarily commutative, not necessarily with a unit. A right A-
module M is thus an R-module provided with a scalar multiplication
by the elements of A, with axioms:

(my +my)a = mya + maa [M1]
m(a; + az) = ma; + mas [M2]
m(a1az) = (may)as [M3]

for all elements a,a;,a; € A and m, m;,me € M. The notion of left A-
module is dual and the tensor product M ® 4 N is the R-module defined
in the usual way.

When A has a unit 1, one requires also from a right A-module the
axiom

m-1=m. [M4]

This axiom does not make sense in the absence of a unit. Thus in the
presence of a unit, we are left with two possible notions of module: with
or without axiom [M4].
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It is well-known that a unit can always be added formally to an R-

algebra A. More precisely, given a R-algebra A, define A = A& R with
multiplication (a,7)(b, s) = (ab+ as + br,rs). Then A in an R-algebra
with unit (0,1).
Every right A-module verifying axioms [M1] to [M3] becomes a A-
module verifying axioms [M1] to [M4] when defining m(a, ) = ma+mr.
This defines an equivalence between the corresponding categories, prov-
ing indeed that the study of modules on an algebra without unit reduces
always to the study of modules on the algebra where a unit has been
formally added.

The point concerning regular modules is completely different. Given
a R-algebra A, can we express an axiom on right A-modules which
makes sense even when A does not have a unit, and which reduces to
the classical axiom [M4] when A turns out to have a unit. The answer,
which is classical, is given by the following proposition (see [9]).

Proposition 1.1 Le R be a commutative ring with unit and A, an R-
algebra with unit. The following conditions are equivalent on a A-module

M:
M4 VYmeM m-1=m;

[M5] p: M ®4 A — M; m® a— ma is an isomorphism of right
A-modules.

Proof Given [M4], the inverse o of p is given by o(m) = m® 1. Given
[M5] and m € M, there exist elements m; € M and a; € A such that
m =Y .  ma;, which yields m-1=m. 0O

Definition 1.2 Let R be a commutative ring with unit and A an R-
algebra, with or without unit. A regular right A-module is one verifying
azioms [M1], [M2], [M3], [M5].

For an arbitrary A, the category of regular A-modules can.by no
way be reduced to the category of modules with axioms [M1] to [M4],
for whatever R-algebra A with unit. In general, a category of regular
modules is not even abelian. But when A itself is regular, the category
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of regular A-modules remains abelian (see [3], or corollary 4.5).The cat-
egory of regular modules on the ring 2Z provides an counterexample.

It is well-known that a R-algebra A with unit can be seen as a one-
object category A enriched in the symmetric monoidal closed category of
R-modules. A right A-module is then just an enriched presheaf A% —
Mod,. The aim of this paper is to study a corresponding categorical
context generalizing the case of an A-algebra without a unit and to focus
in this context on the categorical notion of regularity.

2 Semi-categories and their presheaves

This section settles the context of our theory of “enriched categories
without identities”, which we call “semi-categories”. We avoid repeat-
ing aspects which are straightforward transcriptions of the case where
identities exist. On the other hand we insist on some crucial differences.

In the rest of this paper, V will always denote a complete and co-
complete, symmetric monoidal closed category. All our notions will be
enriched in V and, for the sake of brevity, we shall avoid recalling it
every time.

Definition 2.1 A semi-category consists in
1. a set |G| of objects;
2. for all objects A, B € |G|, an object G(A, B) € V;
3. for all objects A, B,C € |G|, a composition law

CAB,C: g(A7 B) ® g(Ba C) — g(Aa 0)1

those data are requested to verify the diagrammatic aziom expressing the
associativity of the composition law (see [5]).

For facility, we have introduced the smallness condition in the def-
inition of a semi-category. Of course large semi-categories are those
obtained by dropping this restricition. Clearly, every category is a (pos-
sibly large) semi-category.
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Definition 2.2 A morphism F: G — H of semi-categories consists in
1. for each object A € |G|, an object F(A) € [H|;
2. for all objects A, B € |G|, a morphism

FA,B: g(AvB) —-—’H(F(A),F(B)),

those data are requested to verify the diagrammatic aziom expressing the
preservation of the composition law (see [5]).

Definition 2.3 A natural transformation a: F = G between mor-
phisms of semi-categories F,G: G =3 H consists in giving, for each
object A € G a morphism ay: I — H(F(A), G(A)) in V; those data are
requested to verify the diagrammatic axiom expressing the naturality of

a (see [5]).

It is useful to recall that, while categories and functors involve an
axiom about units, natural transformations do not. The reader should
be aware that the absence of units in a semi-category prevents the exis-
tence of identity natural transformations, thus the possibility of defining
adjunctions via the usual triangular identities.

Given semi-categories G, H, one defines easily new semi-categories
G®, G® M, G°® ® G and corresponding operations between morphisms
of semi-categories and natural transformations.

An essential difference with the case of categories and functors lies
in the consideration of bimorphisms. A morphism of semi-categories
F: G®H — K does not, in general, induce morphisms F(4, —): H —
K, and F(—,B): G — K, for all A € G, B € H. Indeed, already in
the case V = Set, expressing the action of F(A,—) on arrows requires
a formula of the type F(A, f) = F(ida, f) which involves clearly the
identity morphism on A. This difference with the case of categories
will vanish under the assumption of regularity (see section 3). As an
exercice, we give the following counterexamples.

Counterexample 2.4 G is the multiplicative semi-group [0, 5], vie-
wed as a Set-semi-category with a single object A. C is a category with
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two objects B, C, one non-trivial arrow 10: B — C and the two identity
morphisms. We get a morphism of semi-categories by defining

T:GxC— Set, T(A,B)=1[0,1]=T(A,C), T(u,v)(r)=u-7-v.

T is a two-variables morphism which does not decompose in one-variable
morphisms.

Counterexample 2.5 Let R be a commutative ring with unit. We
choose a commutative R-algebra A without unit, admitting two non-
zero ideals I, J such that I - J = (0). We view I and J as one-object
semi-categories and we consider the morphism of semi-categories

T:I1QJ — YV, Txx*x)=A, T@,j7)(a)=1-a-].
T decomposes in several ways in one-variable morphisms.

Observe nevertheless that given an object A of a semi-category G,
the representable morphism G(A,—): G — V, exists. Its action on
arrows corresponds, by adjunction, to the composition of G. A same
argument applies to the contravariant representable morphism G(—, B).
Finally, by associativity of the composition law, we get a morphism
G: G® ® G — V, with the property that the individual morphisms
G(A,—) and G(—, B) all exist.

In particular, if F;G: G 3 H are morphisms of semi-categories,
the existence of the representable morphisms allow defining the object
Nat(F,G) of natural transformations in the usual way, via an equalizer

Nat(F,G) — [ H(F4,GA) = ]] [6(4,B),H(FA,GB)],
A€g A,Beg

where the right hand morphisms are induced respectively, via adjunc-
tion, by the action of G followed by that of H(F'A, —) and the action of
F followed by that of H(—, GB). This provides the morphisms of semi-
categories from G to H with the structure of a semi-category [G,H].
When H happens to be a category, [G,H] is a category as well.

The previous discussion depends only on the smallness of G and does
not require at all the smallness of H. Therefore:
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Definition 2.6 Given a semi-category G, the category of presheaves on
G is the category [G, V] of morphisms of semi-categories. The functor

Yg: g — [g0p7v], A g(_vA)
is called the Yoneda morphism of G.

We write simply Y when no confusion can occur. It is classical to
verify that Y; is a morphism of semi-categories. It cannot be full and
faithful in general, because this would imply that G is a category, since
so is [G°P, V].

The existence of objects of natural transformations between pre-
sheaves on a semi-category allows generalizing at once to this context
the notion of weighted colimit.

Definition 2.7 Consider a semi-category G, a category C and mor-
phisms of semi-categories H: G® — V, F': G — C. The colimit HxF of
F weighted by H, when it exists, is a pair (L € C,\): H = C(F(-),L)
inducing for every object C € C natural isomorphisms in V

bl

Nat(H(—),c(F(—),C)) > (L, C).

In an arbitrary semi-category, the lack of identities prevents develop-
ing a good notion of isomorphism. For that reason, we limit ourselves
to considering weighted colimits of functors with values in an actual
category C, recapturing so the uniqueness, up to isomorphism, of these
colimits. Of course, the notion of weighted limit can be handled dually.

Let us make a strong point that given the situation GP: G ® G°P —
V, F:G®° ® G — V one can indeed consider the weighted colimit
G°? x F', but there is a priori no reason for that colimit to be calculated
by the usual coend formula [ Aeg F(A, A). Indeed this coend formula
is a coequalizer requiring the consideration of the individual morphisms
F(A,—) and F(—, B), which do not exist in general as the previous
examples show. And even when they do exist, the classical proof of
the isomorphism f 4 F(A, A) = G° % F uses explicitly the existence of
identity arrows in G. Again, this coend formula will be recaptured under
the regularity assumption of section 3.
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Proposition 2.8 Let G be a semi-category, C a tensored cocomplete
category and F : G%® — V and G : G — C two morphisms. There is an
isomorphism FxG = [* F(X) ® G(X).

Proof It suffices to prove that for every C € C, there is an isomorphism

Nat(F,C(G(—),C)> ~c (/X F(X)® G(X),C) .

This condition is verified if and only if for each V' € V there is a bijection
between the morphisms V' — C ( il XF (X) ® G(X), C’> and the natural

transformations F' = [V, C(G(-), C)] .
On the one hand, since C is tensored and the functor V ® — preserves
colimits, we get the isomorphism

[v,c(/x E(X)@G(X),C)} 2 C (/XV®F(X)®G(X),C> .

On the other hand, the natural transformations F' = [V,C(G(—), C)]

are in bijection with the compatible families of morphisms V ® F(A4) ®
G(A) — C. The result immediately follows from the definition of a
coend. O

3 The regularity condition

This section is the core of the paper and shows that the regularity
property of “preserving identities if they existed” reduces to being a
colimit of representable morphisms.

Definition 3.1 Le G be a semi-category and F': G — V a contravari-
ant morphism of semi-categories. The morphism F' is called a regular
presheaf on G when the canonical morphism F'xY; = F is an isomor-
phism.

An analogous definition holds by duality for covariant regular mor-
phisms. Let us establish at once a characterization of regularity in terms
of a “coend” formula as a direct consequence of Proposition 2.8.
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Proposition 3.2 Let G be a semi-category and F: G — V a con-
travariant morphism of semi-categories. The morphism F' is regular
when the canonical comparison morphism

B
/ F(B) ® G(A, B)— F(A)
s an wsomorphism.

O

More generally, the next results allow a classical use of “coend”
formulee in the theory of regular presheaves.

Lemma 3.3 Let G and H be semi-categories. Every regular morphism
F: G®H — V induces canonically regular morphisms F(A,—): H —
V and F(—,B): G — V for all objects A€ G, Be H.

Proof Of course one defines F'(A,—)(B) = F(A, B) and it remains to
construct the action F(A, —)p,c: H(B,C) — [F(4, B), F(4,C)].

] Using composition of H and proposition 3.3, we get a morphism cor-
responding to F'(A, —)p.c:

X,z

G(X,A)QF(X,Z)®H(Z,B)®H(B,C) — F(A,C).

and these last morphisms are given by the action of F. It is routine
to verify that this makes F'(A,—) a morphism of semi-categories. An
analogous argument holds for each F(—, B).

The regularity of F(A,—) means that the canonical morphism
fZ F(A,Z) ® H(Z,B) — F(A,B) is an isomorphism. We shall con-
struct its inverse. F' is regular and thus it is enough to construct a
morphism

X,z

G(X,A) ® F(A,B) ®H(Z, B) — / ’ F(A,Z) ® H(Z, B)

Since F(—, Z) is a morphism of semi-categories, the expected morphism
is given by the action of F/(—, Z) by adjunction. The rest is routine. [
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Corollary 3.4 LetG be a semi-category and F': G®®G — V a regular
morphism. The colimit of F' weighted by G : G ® G°P — V emists and
s given by the usual “coend” formula.

Proof The “coend” formula has been recalled at the end of section 2 and
makes sense since, by lemma 3.3, the morphisms F'(4,—) and F(—, B)
are defined. The weighted colimit G % F' is characterized by the natural
isomorphisms Nat(G, [F,V]) = [G® x F,V] for all V € V.

A morphism f: G°*F — V corresponds to a natural transformation
B given by Bap: G(B,A) — [F(A, B),V]. This induces a compatible
family « of morphisms

Taxy:G(AX)QF(X,Y)®G(Y,A) —V

obtained by applying first the action of F/(—,Y") and next the morphism
corresponding by adjunction to B4y, or equivalently by applying first
the action of F(X,—) and next the morphism corresponding by ad-
junction to Bx 4. By regularity of F', this corresponds to morphisms
64: F(A, A) — V identifying the two parallel morphisms defining the
coend fA F(A, A). This yields a morphism g: fA F(AA) - V.

Conversely, such a morphism g yields corresponding morphisms é4.
One defines then a4 p: G(A,B) ® F(B,A) — V by the action of
F(—,A) followed by 64, or equivalently by the action of F(B,—) fol-
lowed by 65. The natural transformation 3 corresponds to a by adjunc-
tion, from which a morphism f: G®P? x F — V.

The rest is routine. (]

We want to make a strong point that the analogue of corollary 3.4
for ends and weighted limits has a priori no reason to hold: indeed, the
notion of regular presheaf is not auto-dual.

Definition 3.5 A semi-category is regular when the canonical mor-
phism G: GP ® G — V is regular.

Particularizing proposition 3.2 yields at once:
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Proposition 3.6 A semi-category G is regular when the canonical com-
parison morphisms

X,)Y
/ G(4,X) ®G(X,Y) ® G(Y, B)—G(A, B)
are isomorphisms for all A,B € V. ]

One should compare the previous coend formula with the isomor-
phism u: A®4 A — A characterizing a regular R-algebra in section 1.
Applying twice this isomorphism, it follows at once that the three vari-
ables multiplication 7: A®4 A®4 A — A is an isomorphism as well.
Conversely, if the three variables multiplication is an isomorphism, the
inverse of the two variables multiplication is given by 7! followed by the
multiplication of two variables. Thus the notion of a regular R-algebra
in section 1 is indeed a special case of the coend formula in 3.6.

Proposition 3.7 For a semi-category G, the following conditions are
equivalent:

1. the semi-category G 1is regular;

2. the representable morphisms on G are regular.

Proof (1) = (2) follows at once from lemma 3.3. The converse is
an immediate application of the “associativity” of colimits: a coend
indexed by X of coends indexed by Y is at once a coend indexed by
(X,Y) (see 3.2 and 3.6). O

Lemma 3.8 If G and 'H are regular semi-categories, so are G and
GOH.

Proof Routine calculation from the coend formula of corollary 3.4 and
the preservation of coends by tensor product. O

We conclude this section with proving that when a semi-category
turns out to have identities, regular presheaves are actual functors, thus
presheaves in the ordinary sense.
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Proposition 3.9 Let A be a category and F': A® — V a morphism of
semi-categories. The following conditions are equivalent:

1. F s a functor;

2. F is a regular morphism of semi-categories.

Proof (1) = (2) is a classical result. Conversely, the assumption implies
the isomorphism F = [ B4 F(B) ® A(—, B). This coend is computed
pointwise; therefore, considering the identity id4: A — A in the cate-
gory A, F(ids) = [?* F(B) ® A(id4, B). Since each A(id4, B) is the
identity on .A(A, B), it follows that F(id4) = idp(4). O

4 The category of regular presheaves

First let us observe that given a semi-category G, one gets at once a
category G by adding freely identities to G. More precisely, G has the
same objects as G and

= _ | 6(A,B) when A # B
G(4,B) = { G(A, A)IIT when A= B

where I € V is the unit of the tensor product. The composition law
is induced in the obvious way by that of G and the following lemma
follows at once.

Lemma 4.1 Let G be a semi-category and G, the corresponding cate-
gory obtained by adding freely identities. The category [G°P, V] of mor-
phisms of semi-categories is equivalent to the category of contravariant
functors from G to V. O

The basic result of this section is:

Theorem 4.2 Let G be a regular semi-category. Reg(G,V) , the cat-
egory of reqular presheaves on G, is an essential colocalization — thus
also an essential localization — of the category [GP, V] of all morphisms
of semi-categories.
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Proof We must exhibit three functors i: Reg(G®,V) — [G®, V],
J: [G°, V] — Reg(G°?,V) and k: Reg(G*®,V) — [GP, V], with i 4 j H k,
where % is the canonical inclusion.

Given a morphism of semi-categories F': G°* — V), we observe first
that j(F) = FxYg: G® — V is regular. This means that the canonical
morphism (F xYg) xY; — F x Yy is an isomorphism. This follows at
once from the regularity of the representable presheaves (see 3.7), which
means Yg(A) x Yy = Y5 (A) for each A € G.

It is then routine to check that the canonical morphism FxY; — F
has the required universal property to be the counit of a coreflection
between ordinary Set-based categories. To conclude that the coreflection
holds in the context of V-enriched categories, it suffices to verify that
the V-categories Reg(G°, V) and [G°P, V)] are tensored and the inclusion
i preserves tensors: this is obvious, since all those tensors are computed
pointwise.

The right adjoint to the coreflection is given by

k: Reg(G°®, V) — [G**,V], G — k(G) = Nat(Yg(—),G).
The adjointness property reduces indeed to
Nat(F, Nat (Yz(—), G)> = Nat(F « Y5, G)

which is exactly the definition of F'xYg.
Since ¢ is full and faithful, so is & and thus Reg(G°?,V) is also an
essential localization of [G°P, V). O

Corollary 4.3 The category of reqular presheaves on a regular semi-
category s complete and cocomplete.

Proof By 4.1 and 4.2. 0

Corollary 4.4 Let G be a regular semi-category. The following condi-
tions are equivalent for a morphism of semi-categories F': G°° — Y

1. F is regular;

2. F is a colimit of representable morphisms.
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Proof (1) = (2) is by definition of regularity. Conversely, suppose given
the following situation

G:x* >V, x5 g5 Reg(@®, V) — 6,V

with X a semi-category and F' = G*(Ygo H) as a colimit in [G°P,V)]. By
4.3 and 4.2, the colimit G *(Y; o H) exists already in Reg(G°, V) and is
preserved by the inclusion in [G°P, V], proving that F' € Reg(G°P,V). O

Corollary 4.5 When the base category V is abelian, the category
Reg(G°P, V) of regular presheaves on a reqular semi-category is abelian
as well.

Proof The category [G°,V)] is abelian with pointwise structure. It is
well known that every localization of an abelian category is itself abelian.
One concludes by 4.2. O

Corollary 4.6 When the base category is that of sets, the category
Reg(G°P, V) of regqular presheaves on a reqular semi-category is a topos.

Proof The category [G°P, V)] is a topos by 4.1 and every localization of
a topos is a topos, thus one concludes by 4.2. O

5 The Yoneda presheaves

Given a regular semi-category G, the full and faithfulness of the Yoneda
morphism

Yg: g — Reg(gopav) b [gopav]v A g(_VA)

is equivalent to the validity of the Yoneda lemma for all representable
morphisms G(—, A). As already observed, this would imply that G is
an actual category. This proves that the Yoneda lemma does not hold
in general, not even for regular presheaves on regular semi-categories.

The present section intends to show that nevertheless the Yoneda
lemma holds in the spirit of the “unity of opposites” described by
F.W. Lawvere (see [7]).
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Definition 5.1 A morphism P: G — V of semi-categories is a Yon-
eda presheaf when the canonical morphism 0p: P(—) = Nat(Yg(——), P)
s an 1somorphism.

Let us recall that each Nat(Y;(A), P) is defined as an end; the A-
component of the canonical morphism fp is the factorization through
this end of the morphisms P(A) — [G(B, A), P(B)| corresponding,
by adjunction, to the action of P.

Theorem 5.2 Let G be a reqular semi-category. The full and faithful
embedding

k: Reg(G®,V) — [g®,V], F > Nat(Y(-),F)

of theorem 4.2 identifies, up to an equivalence, the category Reg(G°P,V)
of regular presheaves with the full subcategory Yon(G°?,V) — [G°P, V] of
Yoneda presheaves.

Proof We must prove that a presheaf P satisfies the Yoneda lemma
precisely when it is isomorphic to a presheaf of the form Nat(Yg(-), F)
for some regular presheaf F'.

Indeed, if P verifies the Yoneda lemma, by theorem 4.2 we get

P(A) = Nat(ig(—, A), P) = Nat(G(—, 4),5(P)) = k(j(P))(A)

and thus P = k(j(P)) with j(P) regular.
Conversely consider P = j(F') with F' regular.

Nat(G(—, A)) = Nat(G(—,A),i(F))
=~ /B[g(B,A),Nat(g(—,B),F)]

N /B EER) /C [6(c, B), F(C))]

S /B . [6(c.B) 2 9(B, 4), F(O)]

~ /C[/B g(c,B)®g(B,A),F(C)]

~ /C [g(C,A),F(C)] = j(F)(A) = P(4)

from which P satisfies the Yoneda lemma. O
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The previous result is an occurence of what F.W. Lawvere calls the
“unity of opposites” (see [7]) : the functor j: [G%, V] — Reg(G°?, V) of
theorem 4.2 has both a left and a right adjoint, which are full and faith-
ful. The left adjoint ¢ exhibits the full subcategory of those presheaves
which are colimits of representables, while the right adjoint k& deter-
mines exactly the full subcategory of those presheaves which satisfy the
Yoneda lemma. Thus a regular presheaf F' does not, in general, satisfy
the Yoneda lemma; but canonically associated with it, via the “unity of
opposites”, we get a Yoneda presheaf k(F).

At this point we should also exhibit the link with the work of
G.M. Kelly and F.W. Lawvere on essential localizations (see [6]).

Lemma 5.3 A regular semi-category G is an idempotent two-sided ideal
in the corresponding category G obtained by adding freely identities.

Proof The fact of being a left-sided ideal means that the composition
G(A,B)®G(B,C) — G(A,C) factors through G(A, C), which is obvi-
ous (see lemma 4.1). The same argument applies on the right.

In the Set-case, the idempotency of the ideal means that “every
arrow in G is the composite of two arrows in G” | which can be translated
here as the fact that composition induces a strong (or even regular)
epimorphism [[5.; G(4, B) ® G(B,C) - G(A,C). This is the case by
regularity of the representable functors (see 3.7 and 3.6). O

Observe that regularity of G is stronger than idempotency: we have
a coend formula instead of a strong epimorphism from a coproduct. In
the Set-case, this means that every morphism in G can be written as
the composite of two morphisms in G, but moreover two such decom-
positions of a same morphism can be connected by a zig-zag.

In the Set-case, Lawvere and Kelly classify the essential localizations
of a topos [C, Set] of presheaves by the idempotent two-sided ideals of
C. In the situation of lemma 5.3, their construction yields exactly the
essential localization of Yoneda presheaves on G, as attested by the
following lemma, which holds over an arbitrary base V.

Lemma 5.4 Let G be a reqular semi-category and G the corresponding
category, obtained by adding freely identities. Given a morphism P €
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[G, V)] of semi-categories, write P for the corresponding presheaf P €
(G, V] (see 4.1). The following conditions are equivalent:

1. P is a Yoneda presheaf;
2. P is orthogonal to each G(—,A) — G(—, A) in {EOP,V], that 1s,

the induced morphism Nat(G(—, A), P) — Nat(G(—, A),P) isan
isomorphism.

Proof (1) = (2) is attested by the following isomorphisms, which hold
by lemma 4.1, the assumption on P and the Yoneda lemma for G:

Nat(G(—, A),P) = Nat(G(—,A),P)
P(A) = P(A) = Nat(G(—, 4), P).

II

IR

Conversely,

Nat(G (-, A), P)

IR
Zz =2
5 %
Qg
[
ES
R
1R
~
5
Il
~
5

which proves the result. g

6 A Morita theorem for regular semi-
categories

As already noticed, the lack of identities in a semi-category, even with

the regularity requirement, prevents the existence of identity natural

transformations between morphisms, and therefore the development of

a good theory of adjoint morphisms. This difficulty vanishes in the case

of regular distributors (also called profunctors or bimodules, at least in
the categorical case).

Proposition 6.1 The following data constitute a bicategory RDist:

1. the objects are the reqular semi-categories;
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2. the arrows are the regular distributors p: G—e~H, that is, the reg-
ular presheaves p: H* ® G — V),

3. the 2-cells are the natural transformations;

4. the composition of arrows G £ H & Kis given by (¢ o

©)(C, A) = [P ¢(C, B) ® (B, A) where A€ G and C € K;

5. wvertical composition of 2-cells is pointwise, while horizontal com-
position is induced as usual by that of arrows.

Proof Proposition 3.3 indicates that the coend formula of the statement
makes sense. The regularity of the composite 1 o ¢ means

AC
Woplc )= [ K(C,0) 8 Wod)C A 8 G(4, 4)
which reduces to the relation
B
/ ¥(C', B) & p(B, A)
A,B,C
~ / K(C',C) ® %(C, B) ® p(B, A) ® G(A, A').

This last relation holds by regularity of ¥(—, B) and (B, —).

Next the regularity of ¢(—, A) and 9%(C,—) exactly means that
H: H® ® H — V is the identity distributor H—e-H.

Notice moreover that for a regular distributor ¢: G—e~"H, the iden-
tity natural transformation on ¢: H°? ® G — V exists and is computed
pointwise, since V is an actual category.

The rest is routine. O

Theorem 6.2 (Morita theorem) Let G and ‘H be regular semi-cat-
egories. The following conditions are equivalent:

1. the categories Reg(G,V) and Reg(H?,V) of regular presheaves
are equivalent;
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2. G and H are equivalent in the bicategory RDist of reqular dis-
tributors, that is, there exist regular distributors p: G—e~H and
1: H—e~G such that poyp ="H, Yoy =G.

Proof Let us consider an equivalence 8: Reg(G®,V) — Reg(H°P,V)
with inverse equivalence 7. We recall that equivalences preserve colim-
its. We define

p: HP®G — V, ¢(B, )= (0(3(-,4)))(B)
and analogously for v, starting from 7. Let us also write
evs: Reg(G®, V) — V, Fr— F(A)

for the evaluation functor at A € G; since colimits are computed point-
wise in Reg(G°P, V), they are preserved by evy.

The regularity of ¢ is proved as follows, where A, A' € G and B, B’ €
H; the first isomorphism follows from the regularity of 6(G(—, 4)).

AB
H(B',B) ® 0(G(—, A))(B) ®G(4, A")
S / B) ® G(4, 4)
= G(—, A) x (CUB' 0foYg)
= (e’uB/ o 0)( ( , A’) *Yg)
> (evp 00)(G(—, A)) = p(B', 4).

An analogous argument holds for .

To prove that ¢ and 9 are reciprocal equivalences in RDist, choose
A,A' € G and B € H.

o), 4) = [ 1 B) ) 00(g(~, ) (B
= 0(G(—,A) () *T(H(=,7))(A)
= o(g(—,A))*(eVAI(OTOYH)
>~ (evq o7) (o(g(—,A)) *YH)
= (evw o) (0(6(~, 4) )= G(4, 4)
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An analogous argument holds for ¢ o .
Conversely, assume the existence of ¢ and v as in the statement.
By regularity of ¢, we get a corresponding morphism

1 G — Reg(H®, V), A p(—, A).
We define 6 by
0: Reg(G®,V) — Reg(H*,V), F— Fx*7p.

The presheaf §(F) is at once regular since P takes values in Reg(H°P, ).
Analogous arguments hold for 7, starting from 2.

By theorem 4.2, colimits in categories of regular presheaves are com-
puted pointwise. Using the coend formulee describing these colimits in
Vv,

(Tod)(F)(A) = ((Fxp)»v)(4)
AB
= F(A) ® p(B,A) ® w(A', B)

A
o / F(A) ® (0 9)(4, 4)
~ / " Py a4, 4) = F(4).

An analogous argument holds for @orT. O

The equivalence described in theorem 6.2 is referred to as the Morita
equivalence.

The Morita equivalence classes of regular semi-categories are pro-
vided with a multiplication induced by the tensor product (see 3.8) of
semi-categories. This provides them with the structure of a (possibly
large) abelian monoid. The regular semi-categories whose Morita equiv-
alence class is invertible in this monoid are natural candidates for being
called Azumaya graphs. The Morita equivalence classes of Azumaya
graphs constitute then a (possibly large) abelian group, which is a nat-
ural candidate to be chosen as the Brauer-Taylor group of the base
category V.
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7 Examples

We refer to the literature on regular modules for a wide variety of exam-
ples of “regular rings” (in the sense of section 1). We want nevertheless
to emphasize the following criterion which, to our knowledge, is original
and allows constructing various interesting examples.

Lemma 7.1 Let R be a ming admitting a family (e;);c; of elements such
that

1.VreR {i€l|r-e#0} and{i€l]|e -r#0} are finite;
2.VreR Y . e-T=r=3,,T" €.

In those conditions, the ring R is regular in the sense of section 1.

Proof The mapping 0: R — R®r R, 7+ ) ., ;7 ® e is correctly
defined. Indeed, write J, for the set of indices for which e; - 7 # 0. If
T-€ = 0,

TQe = (Zq-r)@ei:z:ej@(raei):O

j€Jr Jje€Jr

from which the sum defining o(r) is finite. It is now routine to check
that o is inverse to the multiplication. |

Example 7.2 The ring of finite matrices with entries in a commutative
ring with unit is regular in the sense of section 1.

Let R be a commutative ring with unit. We consider the ring M(R)
of matrices (7; ;)i jen With entries in R and such that only a finite number
of these entries are non-zero. It suffices to apply lemma 7.1 to the family
of matrices

1 fi=n=j

en = (aij)ijen, @ij = { 0 otherwise

indexed by the natural numbers n € N. O
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Example 7.3 The ring of continuous functions f: R — R with com-
pact support is regular in the sense of section 1.

It suffices to apply lemma 7.1 to the family of functions

1+ 1

0 fz<i-1
z—(i—1) ifi—-1<z<4
—z+(i+1) fi<z<i+1
0 ifi+l1<z

for all integers i € Z. O

ei(r) =

We focus now on cases of regular semi-categories with several ob-
jects.

Example 7.4 Let K be a field. The K-vector spaces (of bounded di-
mension, if one insists on having a small semi-category) and K -linear
mappings with finite rank constitute a regular semi-category over the
category of K-vector spaces.

To avoid size arguments, we consider the vector spaces of dimension
less than some fixed cardinal a. Let us fix a vector space V with base
(€ )ier and a vector space W with base (€}’ )jc;. We consider the linear
projections

er: VoV, (U=Zki-e}’> — ki, - €
il

and analogously for e}v. Those projections are of course idempotent.
Let us write Fin for the semi-category of the statement. We consider
the coend

o(V,W) = / e Fin(V, A) ® Fin(A, B) ® Fin(B, W)
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and must prove that o(V, W) = Fin(V, W). By definition of the coend,
given the situation

VM- A-SB-LNSW

one has the equality [(boa)®c® (eod)] = [a®(docob)® e| between
equivalence classes in the coend p(V, W).

It is well-known that for a linear mapping f: V — W, the dimension
of the image of f equals the dimension of the coimage of the kernel of
f. When this dimension is finite, only finitely many f oe! and 5 of

are non zero and the equality f =Y., i, €] Vofoel holds tr1v1ally
Observe further that in the coend ¢(V, W)

[V @@l =[(e) ce] ) Rf® (e 06} )] = [e] ®e) o foel ®e)],
proving that if e/ o foel =0, then [ef ® f®¢}] =0.
This allows defining a linear mapping
ovw: Fin(V,W) — o(V,W), fr Y [/ @ f®el]
iel,jeJ

which is easily seen to be the inverse of the canonical morphism
o(V,W) — Fin(V, W) induced by composition. O

Example 7.5 The Hilbert spaces (of bounded Hilbert dimension, if one
insists on having a small semi-category) and Hilbert—Schmidt operators
between them constitute a regular semi-category over the category of
Banach spaces and linear contractions.

We fix two Hilbert spaces V and W with respective Hilbert basis
(! )ier and (€¥¥)jes, with I and J of cardinality less than some fixed
cardinal a. An operator f: V — W is Hilbert-Schmidt when

> el FeNN)] < oo.

i,j€N

This definition is independent of the choice of the Hilbert basis and,
taking the square root of this sum as norm of f provides the set of
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Hilbert-Schmidt operators with the structure of a Banach space (it is
even a Hilbert space, but we shall not need this). Let us write HS(V, W)
for this Banach space. Up to routine verifications, this defines the semi-
category of the statement. We refer to [10] or [8] for more details con-
cerning this example.

Let us write €} and ] for the orthogonal projections on the axis
determined by €} and €}’. Notice that |le}’ o foel| = |(ef, f(e}))]
thus f is an Hilbert-Schmidt operator when

IFI12 =" llef o foel||? <oo.

i€l jed

Next observe that the equality f = >, rieJ EJW o foe!l holds. In-
deed, every v € V can be written v = Y .., €/ (v), from which f(v) =
Yiesef (F(0)) = Xicrjes(€) o f o€l )(v). This proves that the given
serie converges pointwise to the operator f, and it remains thus to prove
that the serie converges in HS(V, W). But this follows at once from the
definition of the norm of HS(V, W), the Hilbert-Schmidt condition and
the Cauchy criterion.

Now we can repeat here the argument of example 7.4 about the coend
o(V,W) and the relations existing between its elements. They allow
concluding that the serie )., .. ,[ef ® f ® e} converges in p(V,W).
Indeed, as in example 7.4 and because the various orthogonal projectors
have norm 1,

el ® f @&

|lel cel ® f®ef o]
el ®ef ofoel @]
e @€l ofoel ®e] ||
7| - [|eF o Foel || - [l ]

= ¥ osoc|

IN A

The convergence of the serie follows thus again from the Cauchy criterion
and the Hilbert-Schmidt condition.
As in example 7.4, we conclude that the mapping

oy HS(V,W) — o(V,W), fr > e/ @f®¢e)]

i€l jeJ
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is inverse to the canonical morphism p(V, W) — HS(V, W) induced by
composition. a

Example 7.6 Given a locale §2, viewed as a cartesian closed category,
every -set A is a reqular Q-semi-category. The category of regular
presheaves on A is the locale of subobjects of A.

The category of {2-sets is equivalent to the category of sheaves on ().
An Q-set is a set A provided with an {)-valued equality

[e=8e]: AXxA—
which verifies the following axioms:

[a=bAb=c < [a=(
[a=b] = [b=al.

The Q-valued equality provides A with the structure of a Q-semi-categ-
ory, as attested by the first axiom. The regularity of the Q2-set A reduces
to the property \/, c4la = z]Afx =y]Aly =b] = [a = b] which is
well-known to hold (see [4] or [1], volume 3).

The same references show that the locale of subsheaves of a given
sheaf is isomorphic to the locale of §2-subsets of the corresponding )-set
A, where an ()-subset S of A is a mapping [® € S]: A — Q verifying
the axioms

a=bABES] < [acs]
aes) < la=ad.

These axioms can equivalently be restated as (see the references)
[a=b < peS]=[acdl]
wes] = \ia=alrlzes)

€A

where = indicates the “implication” of the locale §2, that is, the internal
Hom-functor of the cartesian closed category ). The first condition
expresses that [e € S] is a morphism of {2-semi-categories and the second
condition expresses its regularity. a
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