CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

J. PASEKA A note on nuclei of quantale modules

Cahiers de topologie et géométrie différentielle catégoriques, tome 43, nº 1 (2002), p. 19-34

<http://www.numdam.org/item?id=CTGDC_2002__43_1_19_0>

© Andrée C. Ehresmann et les auteurs, 2002, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A NOTE ON NUCLEI OF QUANTALE MODULES by J. PASEKA

Résumé. Le but de cet article est d'établir des théorèmes utiles de factorisation pour des Q-modules de la même manière que pour des locales. On montre qu'un noyau d'un module associé à un prénoyau d'un module est l'intersection de noyaux de modules d'une forme particulière.

Our motivating source was the paper [12] where the investigation of I-simple involutive quantales $\mathcal{Q}(M)$ and representations $Q \to \mathcal{Q}(M)$ given by a left action is developed. Such involutive quantales could play a similar role as do points in topological spaces or irreducible representations in C*-algebras (see [9]). Since the representations $Q \to \mathcal{Q}(M)$ coincide with quantale modules we will be interested in studying factorization on quantale modules. This note is closely related to the papers [10] and [11] where the interested reader can find unexplained terms and notation concerning the subject. For facts concerning quantales and quantale modules in general we refer to [14] and [15]. For motivating examples concerning quantale modules we recommend the paper [13].

The paper is organized as follows. Section 1 introduces the notion of a left Q-module and the motivation for studying such a structure is given. Section 2 contains the basic theorems for factorization on Qmodules and the structure of the complete lattice of all module nuclei is investigated. It is shown that any module nucleus associated to a module prenucleus is a meet of module nuclei of a special form.

A quantale is a complete lattice Q with an associative binary multiplication satisfying

$$x \cdot \bigvee_{i \in I} x_i = \bigvee_{i \in I} x \cdot x_i$$
 and $(\bigvee_{i \in I} x_i) \cdot x = \bigvee_{i \in I} x_i \cdot x$

for all $x, x_i \in Q, i \in I$ (*I* is a set). 1 denotes the greatest element of Q, 0 is the smallest element of Q. A quantale Q is said to be *unital* if there is an element $e \in Q$ such that $e \cdot a = a = a \cdot e$ for all $a \in Q$. A subquantale Q' of a quantale Q is a subset of Q closed under \forall and \cdot .

By a morphism of quantales will be meant a \vee - and \cdot -preserving mapping $f: Q \to Q'$. If a morphism preserves the top element we say that it is strong.

A non-trivial $(0 \neq 1 \text{ and } 1 \cdot 1 = 1)$ quantale Q is said to be *simple* if any surjective homomorphism $Q \rightarrow Q'$ is either an isomorphism or a constant morphism.

By the quantale Q(M) of endomorphisms of the sup-lattice M will be meant the simple unital quantale of sup-preserving mappings from M to itself, with the supremum given by the pointwise ordering of mappings, with the multiplication corresponding to the composition of mappings, and with the unit given by the identity mapping.

1 Quantale modules

Definition 1.1 [1], [15] Let Q be a quantale. A left module over Q (shortly a left Q-module) is a sup-lattice M, together with a module action $_\bullet_: Q \times M \to M$ satisfying

$$(a \cdot b) \bullet m = a \bullet (b \bullet m) \tag{M1}$$

$$(\forall S) \bullet m = \forall \{s \bullet m : s \in S\}$$
(M2)

$$a \bullet \lor X = \lor \{a \bullet x : x \in X\}$$
(M3)

for all $a, b \in Q$, $m \in M$, $S \subseteq Q$, $X \subseteq M$. So we have two maps $-\twoheadrightarrow_l - : M \times M \to Q$, $-\twoheadrightarrow_r - : Q \times M \to M$ such that, for all $a \in Q$, $m, n \in M$, $a \bullet m \leq n$ iff $a \leq m \twoheadrightarrow_l n$ iff $m \leq a \twoheadrightarrow_r n$. M is called a unital Q-module if Q is a unital quantale with the unit e and $e \bullet m = m$ for all $m \in M$. M is said to be a strong Q-module if $1 \bullet m = 1$ for all $m \in M, m \neq 0$. Let $a \leq b$. Then M separates a from b if there is an element $m \in M$ such that $a \bullet m \neq b \bullet m$.

Let M and N be modules over Q and let $f: M \to N$ be a sup-lattice homomorphism. f is a module homomorphism if $f(a \bullet m) = a \bullet f(m)$ for all $a \in Q, m \in M$.

Note first that if M is a sup-lattice then M is a left $\mathcal{Q}(M)$ -module such that $f \bullet m = f(m)$ for all $f \in \mathcal{Q}(M)$ and all $m \in M$. Secondly, we may dually define the notion of a (strong, separating, unital) right Qmodule. Moreover, all propositions stated for left Q-modules are valid in a dualized form for right Q-modules.

We shall denote by Q-Mod (resp. Mod-Q) the category of left Q-modules (resp. right Q-modules).

Let us make the following elementary observation. Evidently, for a quantale Q, any left Q-module M is a unital left Q[e]-module with Q[e] defined as in [11] by

$$Q[e] = \{ a \lor \varepsilon : a \in Q, \varepsilon \in \{0, e\} \},\$$

e arbitrary such that $e \notin Q$, and the multiplication \bullet_e defined by

$$(a \vee \varepsilon) \bullet_e m = \begin{cases} a \bullet m & \text{if } \varepsilon = 0\\ a \bullet m \vee m & \text{if } \varepsilon = e. \end{cases}$$

So we may always assume that any left quantale module is unital over a unital quantale.

Note that, for any quantale Q, any left Q-module M and all $n \in M$, the antitone maps $- \twoheadrightarrow_l n : M \to Q$ and $- \divideontimes_r n : Q \to M$ form a Galois connection between Q and M since, for all $a \in Q$ and all $M \in M$, $a \leq (a \twoheadrightarrow_r n) \twoheadrightarrow_l n$ and $m \leq (m \multimap_l n) \multimap_r n$. So we have that $m \multimap_l n = ((m \multimap_l n) \multimap_r n) \multimap_l n \text{ and } a \multimap_r n = ((a \multimap_r n) \multimap_l n) \multimap_r n.$

A simple calculation gives us the following two lemmas.

Lemma 1.2 Let Q be a quantale. If M is a (strong) Q-module then we have a (strong) homomorphism $f_M : Q \to Q(M)$, $f_M(a)(x) = a \bullet x$. Conversely, let $f : Q \to Q(M)$ be a (strong) homomorphism of quantales. Then M is a (strong) Q-module with the module action $a \bullet_f x = f(a)(x)$. **Lemma 1.3** Let Q be a quantale, $a \not\leq b$. If M is a Q-module separating a from b then we have a separating homomorphism $f_M : Q \to Q(M)$. Conversely, let $f : Q \to Q(M)$ be a homomorphism separating a from b. Then M is a separating Q-module.

The following theorem (see [6]) is our main motivation for studying quantale modules.

Theorem 1.4 Let Q be a quantale. Then the following conditions are equivalent:

- 1. Q is spatial i.e. Q is a strong subquantale of a product of simple quantales.
- 2. Each element of Q is an intersection of primes.
- 3. Q has enough strong separating left Q-modules.

Proof. (1) \Leftrightarrow (2) by [6]. (1) \Leftrightarrow (3) by lemma 1.2 and by lemma 1.3.

2 Factorization on Q-modules

In the following, we shall assume that Q is an arbitrary, fixed quantale.

Definition 2.1 Let M be a left Q-module, $j: M \to M$ an operator on M satisfying:

- (i) $m \leq j(m)$
- (ii) $m \le n \text{ implies } j(m) \le j(n)$
- (*iii*) $a \bullet j(m) \le j(a \bullet m)$

for all $a \in Q$, $m, n \in M$. We say that j is a module prenucleus on M. We put $M_j = \{m \in M : m = j(m)\}$. Evidently, M_j is a closure system in M, that is, closed under arbitrary meets in M. Note that $\bigvee_j = j \circ \bigvee$. We let $\nu(j)$ be the associated closure operator, so that

$$\nu(j)(n) = \bigwedge \{ m \in M_j : m \ge n \}.$$

We say that $\nu(j)$ is generated by j. If j satisfies

(iv) j(m) = j(j(m))

for all $m \in M$ we shall say that j is a module nucleus on M. We shall denote by N(M) the lattice of all module nuclei on M.

Note that any module prenucleus (nucleus) on a Q-module M is a module prenucleus (nucleus) on a Q[e]-module M and conversely.

Lemma 2.2 Let j be a module nucleus on a left Q-module M. Then M_j is a left Q-module with the join \bigvee_j and the action $\bullet_j : Q \times M_j \to M_j$ defined as follows

$$a \bullet_j m = j(a \bullet m)$$

for all $a \in Q$ and all $m \in M_j$. Furthermore, M_j is unital (strong) if M is.

Proof. Let $a, b \in Q, m \in M_j$. Then $(a \cdot b) \bullet_j m = j((a \cdot b) \bullet m) = j(a \bullet (b \bullet m)) = j(a \bullet j(b \bullet m)) = a \bullet_j (b \bullet_j m)$. Similarly, let $S \subseteq Q$, $m \in M_j$. Then $(\forall S) \bullet_j m = j((\forall S) \bullet m) = j(\forall \{s \bullet m : s \in S\}) = j(\forall \{j(s \bullet m) : s \in S\}) = \forall_j \{s \bullet_j m : s \in S\}$. Now, let $a \in Q, N \subseteq M$. Then $a \bullet_j (\forall_j N) = j(a \bullet_j (\forall N)) = j(a \bullet \forall N) = j(\forall \{a \bullet n : n \in N\}) = j(\forall \{j(a \bullet n) : n \in N\}) = \forall_j \{a \bullet_j n : n \in N\}$. \Box

Similarly as for frames (see [2]) we have

Proposition 2.3 Let j be a module prenucleus on a left Q-module M. Then $\nu(j)$ is the smallest module nucleus greater than j. Moreover, the module homomorphism $\nu(j) : M \to M_j$ is universal among all module homomorphisms $f : M \to N$ for which f(m) = f(j(m)) for all $m \in M$. **Proof.** Evidently, $\nu(j)$ is inflationary, idempotent and order-preserving. We have to show that, for all $a \in Q$ and $m \in M$, $a \bullet \nu(j)(m) \leq \nu(j)(a \bullet m)$. We put $E_{a,m} = \{m' \in M : m \leq m' \leq \nu(j)(m), a \bullet m' \leq \nu(j)(a \bullet m)\}$. Then $m \in E_{a,m}, m' \in E_{a,m}$ implies $j(m') \in E_{a,m} - m \leq m' \leq \nu(j)(m)$ implies $m \leq j(m) \leq j(m') \leq j(\nu(j)(m)) = \nu(j)(m)$ and $a \bullet m' \leq \nu(j)(a \bullet m)$ implies $a \bullet j(m') \leq j(a \bullet m') \leq j(\nu(j)(a \bullet m)) = \nu(j)(a \bullet m)$. Moreover, for any non-void $M' \subseteq E_{a,m}, \forall M' \in E_{a,m}$ by the left distribution law of modules. Hence $m_0 = \bigvee E_{a,m} \in E_{a,m}$. This gives us $j(m_0) \leq m_0 \leq j(m_0)$ i.e. $m \leq m_0 \leq \nu(j)(m) \leq m_0$. So we have $a \bullet \nu(j)(m) \leq a \bullet m_0 \leq \nu(j)(a \bullet m)$.

Let us prove the second part of the lemma. Note that $\nu(j)(j(m)) = \nu(j)(m)$ for all $m \in M$. Let $f: M \to N$ be a module homomorphism such that f(m) = f(j(m)) for all $m \in M$. We have to show that $f(\nu(j)(m)) = f(m)$ for all $m \in M$. We put $F_m = \{m' \in M : m \leq m' \leq \nu(j)(m), f(m') = f(m)\}$. Then $m \in F_m, m' \in F_m$ implies $j(m') \in F_m$ by the condition on f and, for all non-void $F' \subseteq F_m$, $\forall F' \in F_m$ since f is a join-preserving. We put $m_1 = \bigvee F_m$. Then $j(m_1) \leq m_1 \leq j(m_1)$ i.e. $m \leq m_1 \leq \nu(j)(m) \leq \nu(j)(m_1) = m_1$ i.e. $f(m) \leq f(\nu(j)(m)) \leq f(m_1) = f(m)$. We then have a uniquely determined map $\hat{f}: M_j \to N$ defined by $\hat{f}(m) = f(m)$ for all $m \in M_j$ i.e. $\hat{f} \circ j = f$. Evidently, for all $a \in Q, m \in M_j$ and $S \subseteq M_j$, we have $\hat{f}(\bigvee_{M_j} S) = \hat{f}(j(\bigvee S)) = f(\bigvee S) = \bigvee_{s \in S} f(s) = \bigvee_{s \in S} \hat{f}(j(s)) = \bigvee_{s \in S} \hat{f}(m) = a \bullet \hat{f}(m)$ i.e. \hat{f} is a module homomorphism. \Box

Another way of obtaining $\nu(j)$ is to iterate the prenucleus j until it converges by the following procedure:

$$\begin{array}{lll} j^0(m) &=& m, \\ j^{\sigma+1}(m) &=& j(j^{\sigma}(m)) \\ j^{\lambda}(m) &=& \bigvee \{j^{\sigma}(m) : \sigma < \lambda \} \end{array}$$

for all $m \in M$, all ordinals σ and all limit ordinals λ . Then each j^{σ} is a module prenucleus with the same fixpoints as j and, for sufficiently large ordinal σ , j^{σ} has to be idempotent.

Following Macnab (see [8]) for Heyting algebras we have

Theorem 2.4 Let Q be a unital quantale, M a unital left Q-module, $j: M \to M$ an operator on M. The following conditions are equivalent:

- 1. j is a module nucleus on M.
- 2. For all m, n in $M, m \rightarrow j(n) = j(m) \rightarrow j(n)$.

Proof. 1 \Longrightarrow 2. We have, for all $a \in Q$, $a \le m \twoheadrightarrow_l j(n)$ iff $a \bullet m \le j(n)$ iff $j(a \bullet m) \le j(n)$ iff $a \bullet j(m) \le j(n)$ iff $a \le j(m) \twoheadrightarrow_l j(n)$ i.e. the condition 2 holds.

2 ⇒ 1. We have, for all $m \in M$, $j(m) \leq j(m)$ i.e. $e \circ j(m) \leq j(m)$ i.e. $e \leq j(m) - *_l j(m)$ i.e. $e \leq m - *_l j(m)$ i.e. $e \circ m \leq j(m)$ i.e. $m \leq j(m)$ i.e. j is inflationary.

Now, let $m, n \in M$, $m \leq n$. Then $m \leq n \leq j(n)$ i.e. $e \bullet m \leq j(n)$ i.e. $e \leq m \twoheadrightarrow_l j(n) = j(m) \twoheadrightarrow_l j(n)$ i.e. $e \bullet j(m) \leq j(n)$ i.e. $j(m) \leq j(n)$.

Let $a \in Q$, $m \in M$. We have $a \bullet m \leq j(a \bullet m)$ i.e. $a \leq m \twoheadrightarrow_l j(a \bullet m)$ i.e. $a \leq j(m) \twoheadrightarrow_l j(a \bullet m)$ i.e. $a \bullet j(m) \leq j(a \bullet m)$.

Let us show that j is idempotent. Assume $m \in M$. We have $j(m) \leq j(m)$ i.e. $e \bullet j(m) \leq j(m)$ i.e. $e \leq j(m) \twoheadrightarrow_l j(m)$ i.e. $e \leq j(j(m)) \twoheadrightarrow_l j(m)$ i.e. $e \bullet j(j(m)) \leq j(m)$ i.e. $j(j(m)) \leq j(m) \leq j(j(m))$ i.e. j(j(m)) = j(m). So it follows that j is a module nucleus on M. \Box

Proposition 2.5 Let M be a left Q-module, $n \in M$. Then the map $w_n : M \to M$ defined by $w_n(m) = (m \twoheadrightarrow_l n) \twoheadrightarrow_r n$ is a module nucleus. Similarly, the map $W_n : Q \to Q$ defined by $W_n(a) = (a \twoheadrightarrow_r n) \twoheadrightarrow_l n$ is a right module nucleus on Q, seen as a right module over itself. Moreover, for all $a \in Q$ and $m \in M$, we have $a \bullet m \leq n$ iff $W_n(a) \bullet w_n(m) \leq n$.

Proof. Clearly, the Galois connection makes $m \leq w_n(m) = w_n(w_n(m))$ and $m_1 \leq m_2$ implies $w_n(m_1) \leq w_n(m_2)$ for all $m, m_1, m_2 \in M$. Let $a \in Q, m \in M$. Then $y \leq a \bullet m \twoheadrightarrow_l n$ iff $(y \cdot a) \bullet m = y \bullet (a \bullet m) \leq n$ iff $(y \cdot a) \leq m \twoheadrightarrow_l n$ iff $(y \cdot a) \twoheadrightarrow_r n \geq w_n(m)$ iff $(y \cdot a) \bullet w_n(m) \leq n$ iff $y \bullet (a \bullet w_n(m)) \leq n$ iff $y \leq (a \bullet w_n(m)) \twoheadrightarrow_l n$. Hence $a \bullet m \twoheadrightarrow_l n =$ $(a \bullet w_n(m)) \multimap_l n$, and thus $w_n(a \bullet m) = w_n(a \bullet w_n(m))$, i.e. $w_n(a \bullet m) \geq$ $a \bullet w_n(m)$. To prove the second part of the lemma note that Q is a right module over itself. By similar arguments as above, we have that W_n is a right module nucleus.

Finally, we show that $a \bullet m \leq n \iff W_n(a) \bullet w_n(m) \leq n$: $a \bullet m \leq n$ iff $a \leq m \twoheadrightarrow_l n$ iff, by the Galois connection, $a \leq w_n(m) \twoheadrightarrow_l n$ iff $a \bullet w_n(m) \leq n$ iff, by similar steps using \twoheadrightarrow_r , $W_n(a) \bullet w_n(m) \leq n$. \Box

Lemma 2.6 Let Q be a quantale, $j_{\alpha}, \alpha \in \Lambda$ module prenuclei (nuclei) on a left Q-module M. Then the operator $\bigwedge_{\alpha \in \Lambda} j_{\alpha}$ is a module prenucleus (nucleus).

Proof. Evidently, for all $m, n \in M$, $a \in Q$, we have $m \leq \bigwedge_{\alpha \in \Lambda} j_{\alpha}(m) = (\bigwedge_{\alpha \in \Lambda} j_{\alpha})(m), m \leq n$ implies $j_{\alpha}(m) \leq j_{\alpha}(n)$ i.e. $(\bigwedge_{\alpha \in \Lambda} j_{\alpha})(m) \leq (\bigwedge_{\alpha \in \Lambda} j_{\alpha})(n)$ and $a \bullet (\bigwedge_{\alpha \in \Lambda} j_{\alpha})(m) \leq a \bullet j_{\beta}(m) \leq j_{\beta}(a \bullet m)$ for all $\beta \in \Lambda$ i.e. $a \bullet (\bigwedge_{\alpha \in \Lambda} j_{\alpha})(m) \leq (\bigwedge_{\alpha \in \Lambda} j_{\alpha})(a \bullet m)$. Let $j_{\alpha}, \alpha \in \Lambda$ be module nuclei. Then $\bigwedge_{\alpha \in \Lambda} j_{\alpha}(\bigwedge_{\beta \in \Lambda} j_{\beta}(m)) \leq j_{\gamma}(j_{\gamma}(m)) = j_{\gamma}(m)$ for all $\gamma \in \Lambda$ and all $m \in M$ i.e. $\bigwedge_{\alpha \in \Lambda} j_{\alpha}$ is idempotent. \Box

We have then that, for any set Λ , $\Lambda\{j_{\lambda} \in N(M) : \lambda \in \Lambda\}$ (with Λ defined pointwise), exists and it is a module nucleus i.e. N(M) is a complete lattice. Because the meet in N(M) is pointwise so also is the order on it. We shall denote by \sqcup the join in N(M) and by \vee the pointwise join, which in general is only a prenucleus. Let $j_1, j_2 \in N(M)$. Then $j_1 \circ j_2, j_2 \circ j_1 \leq j_1 \sqcup j_2$. Note that $j_1 \circ j_2$ is a module prenucleus. So it follows that if $j_1 \circ j_2$ is idempotent then $j_1 \circ j_2 = j_1 \sqcup j_2$. If $j_1 \circ j_2 \leq j_2 \circ j_1$ then $j_2 \circ j_1$ is idempotent i.e. a module nucleus.

Recall the following notions from [3]. Let Q be a semigroup, $a \in Q$. We then put $Q\langle a \rangle = \{a^k : k \in \mathbb{N}\}$. We say that $Q\langle a \rangle$ is a cyclic subsemigroup of Q generated by the element a. For any $a \in Q$, we have either that $Q\langle a \rangle$ is infinite or that $Q\langle a \rangle$ is finite i.e. there exist $k_1, k_2 \in \mathbb{N}$ minimal such that $a^{k_1+k_2} = a^{k_2}$; here $k_1 = \mathbf{p}(a)$ is the period of a and $k_2 = \mathbf{i}(a)$ the index of a. We say that an element $a \in Q$ is periodic if $Q\langle a \rangle$ is finite. We shall denote by $Q_{\mathbf{P}} = \{a \in Q : a \text{ is periodic}\}$ and $Q_{\mathbf{E}} = \{a \in Q : a \text{ is idempotent}\}$. If $Q = Q_{\mathbf{P}} (Q = Q_{\mathbf{E}})$ we say that Qis periodic (idempotent).

Now we generalise the nuclei w_n of Proposition 2.5.

Lemma 2.7 Let Q be a unital quantale, j a module prenucleus on a unital left Q-module M, $k \in \mathbb{N}$, $n \in M$, $z \leq j(n) \rightarrow n$. Then the operator $\nu_{z,n}^k : M \to M$ defined by the prescription

$$\nu_{z,n}^{k}(m) = \left(z^{k}(m \twoheadrightarrow_{l} n)\right) \twoheadrightarrow_{r} n$$

is a module prenucleus on M greater than j. Especially, the operator $\nu_n^k(j) = \nu_{j(n) \rightarrow i_1 n, n}^k$ is a module prenucleus on M greater than j. Moreover, if $z \in Q_{\mathbf{P}}$ and $k \geq \mathbf{i}(z)$ we have that $\nu_{z,n}^k$ is a module nucleus greater than j.

Proof. We first show that, for all $m \in M$, $j(m) \leq \nu_{z,n}^k(m)$ – we have then $m \leq \nu_{z,n}^k(m)$. It suffices to show that

$$(z^{k}(m \twoheadrightarrow_{l} n)) \bullet j(m) \leq n.$$

We have

$$\begin{pmatrix} z^{k}(m \twoheadrightarrow_{l} n) \end{pmatrix} \bullet j(m) = z^{k} \bullet ((m \twoheadrightarrow_{l} n) \bullet j(m)) \\ \leq z^{k} \bullet j ((m \twoheadrightarrow_{l} n) \bullet m) \\ \leq z^{k} \bullet j(n) \\ \leq n, \end{cases}$$

where the last inequality follows by induction on k:

$$\begin{aligned} -z \bullet j(n) &\leq (j(n) \twoheadrightarrow_l n) \bullet j(n) \leq n, \\ -z^{k+1} \bullet j(n) &= z \bullet (z^k \bullet j(n)) \leq z \bullet n \leq z \bullet j(n) \leq n. \end{aligned}$$

Note that the function $(z^k(- - *_l n)) - *_r n$ is order-preserving. Now, let us show that $a \bullet \nu_{z,n}^k(m) \le \nu_{z,n}^k(a \bullet m)$ for all $a \in Q$ and $m \in M$, that is, we check that $a \bullet [(z^k(m - *_l n)) - *_r n] \le (z^k((a \bullet m) - *_l n)) - *_r n$. Evidently, $(a \bullet m - *_l n) \cdot a \le m - *_l n$. We have

$$\begin{bmatrix} \left(z^{k} ((a \bullet m) - \mathfrak{H}_{l} n) \right) \cdot a \end{bmatrix} \bullet \begin{bmatrix} \left(z^{k} (m - \mathfrak{H}_{l} n) \right) - \mathfrak{H}_{r} n \end{bmatrix} \leq \\ \left(z^{k} (m - \mathfrak{H}_{l} n) \right) \bullet \begin{bmatrix} \left(z^{k} (m - \mathfrak{H}_{l} n) \right) - \mathfrak{H}_{r} n \end{bmatrix} \leq n.$$

So we have shown that $\nu_{z,n}^k$ is a module prenucleus.

Now assume that $z \in Q_{\mathbf{P}}$ and $k \geq \mathbf{i}(z)$. We show that $\nu_{z,n}^{k}(\nu_{z,n}^{k}(m)) \leq \nu_{z,n}^{k}(m)$. This is equivalent to the following inequality (\star)

$$(z^k(m \twoheadrightarrow_l n)) \bullet (z^k((z^k(m \twoheadrightarrow_l n)) \twoheadrightarrow_r n \twoheadrightarrow_l n)) \twoheadrightarrow_r n \leq n.$$

Since $-\gg_l n$ and $-\gg_r n$ form a Galois connection and z is periodic the inequality (\star) follows from the inequality $(\star\star_i)$, $i \in \mathbb{N}$

$$\begin{bmatrix} z^{i\mathbf{p}(z)} \cdot \left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n \right) \end{bmatrix} \bullet$$
$$\bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \leq n.$$

Let us prove $(\star \star_i)$ implies (\star) . We have

$$\begin{pmatrix} z^{k}(m \twoheadrightarrow_{l} n) \end{pmatrix} \bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n = \\ \begin{bmatrix} z^{i\mathbf{p}(z)} \cdot \left(z^{k}(m \twoheadrightarrow_{l} n) \right) \end{bmatrix} \bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n = \\ z^{i\mathbf{p}(z)} \bullet \left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \right) \leq \\ z^{i\mathbf{p}(z)} \bullet \left((\twoheadrightarrow_{l} n) \bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) - \gg_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \right) \leq \\ z^{i\mathbf{p}(z)} \bullet \left(- \gg_{l} n \right) \bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) - \gg_{r} n \twoheadrightarrow_{l} n) \right) - \gg_{r} n \right) \leq \\ z^{i\mathbf{p}(z)} \bullet n \leq n$$

(in fact, we also have (\star) implies $(\star \star_i)$ since we obtain by (\star) and the Galois connection that

$$\left(\left(z^{k}(m \twoheadrightarrow_{l} n)\right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n\right) \bullet \left(z^{k}\left(\left(z^{k}(m \twoheadrightarrow_{l} n)\right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n\right)\right) \twoheadrightarrow_{r} n \leq n.$$

Then

$$\begin{bmatrix} z^{i\mathbf{p}(z)} \cdot \left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n \right) \end{bmatrix} \bullet$$

$$\bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n =$$

$$= z^{i\mathbf{p}(z)} \bullet \left(\left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n \right) \bullet$$

$$\bullet \left(z^{k}(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n) \leq z^{i\mathbf{p}(z)} \bullet n \leq n.)$$

Now, for a large enough i, such that $i\mathbf{p}(z) = i_0 + k$ for some $i_0 \in \mathbf{N}$, the condition $(\star \star_i)$ becomes equivalent to

$$z^{i_{0}} \bullet [z^{k} \left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n \right) \bullet \left(z^{k} \left(\left(z^{k}(m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n \right) \right) \twoheadrightarrow_{r} n] \leq n$$

The last inequality evidently holds since $z^{i_0} \bullet n \leq n$ and

$$z^{k}\left(\left(z^{k}(m \twoheadrightarrow_{l} n)\right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n\right) \bullet \left(z^{k}\left(\left(z^{k}(m \twoheadrightarrow_{l} n)\right) \twoheadrightarrow_{r} n \twoheadrightarrow_{l} n\right)\right) \twoheadrightarrow_{r} n \leq n.$$

We have then that $\nu_{z,n}^k$ is a module nucleus. \Box

Johnstone gives in ([4]) an explicit formula for $\nu(j)$ for frames. The following proposition is a slight modification of it for Q-modules.

Proposition 2.8 Let Q be a unital periodic quantale, j a module prenucleus on a unital left Q-module M. Then the operator $\nu_{\mathbf{p}}(j) : M \to M$ defined by the prescription

$$\nu_{\mathbf{p}}(j)(m) = \bigwedge \{ \left((j(n) \twoheadrightarrow_{l} n)^{\mathbf{i}(j(n) \twoheadrightarrow_{l} n)} (m \twoheadrightarrow_{l} n) \right) \twoheadrightarrow_{r} n : n \in M \}$$

is the associated module nucleus $\nu(j)$.

Proof. Note that $\nu_{\mathbf{p}}(j) = \bigwedge_{n \in M} \{\nu_n^{\mathbf{i}(j(n) \to \mathbf{i}, n)}(j)\}$ i.e. $\nu_{\mathbf{p}}(j)$ is a module nucleus greater than j. Let j(m) = m. We put

$$m' = \left((m \twoheadrightarrow_l m)^{\mathbf{i}(m \twoheadrightarrow_l m)} (m \twoheadrightarrow_l m) \right) \twoheadrightarrow_r m, \ k = \mathbf{i}(m \twoheadrightarrow_l m).$$

We then have $\nu_{\mathbf{p}}(j)(m) \leq m'$ and

$$m' = (e \cdot e) \bullet m' \leq (e \cdot (m \twoheadrightarrow_l m)) \bullet m' \\ \leq ((m \twoheadrightarrow_l m)^k (m \twoheadrightarrow_l m)) \bullet m' \\ \leq m$$

i.e. $\nu_{\mathbf{p}}(j)(m) = j(m)$. Hence, $\nu_{\mathbf{p}}(j)$ has the same fixed points as j i.e. $\nu_{\mathbf{p}}(j)$ is the least module nucleus greater than j.

Corollary 2.9 Let Q be a unital idempotent quantale, j a module prenucleus on a unital left Q-module M. Then the operator $\nu_{\mathbf{e}}(j) : M \to M$ defined by the prescription

$$\nu_{\mathbf{e}}(j)(m) = \bigwedge \{ ((j(n) \twoheadrightarrow_{l} n)(m \twoheadrightarrow_{l} n)) \twoheadrightarrow_{r} n : n \in M \}$$

is the associated module nucleus $\nu(j)$.

Theorem 2.10 Let Q be a unital periodic quantale, M a unital left Q-module. Then, for any set Λ , $\bigsqcup \{j_{\lambda} \in N(M) : \lambda \in \Lambda\} = \bigsqcup^{\uparrow} \{\nu_{\mathbf{p}}(j_{\lambda_{1}} \circ \ldots \circ j_{\lambda_{s}}) : \{\lambda_{1}, \ldots, \lambda_{s}\} \subseteq \Lambda\} = \nu_{\mathbf{p}} (\bigvee \{j_{\lambda} \in N(M) : \lambda \in \Lambda\}).$

Proof. The first equality follows from the proposition 2.8 and from the fact that a directed join of module nuclei is computed pointwise. The second one follows from an easy observation that the pointwise join of module prenuclei is a module prenucleus. \Box

Corollary 2.11 Let Q be a unital idempotent quantale, M a unital left Q-module. Then, for any set Λ , $\sqcup \{j_{\lambda} \in N(M) : \lambda \in \Lambda\} = \sqcup^{\uparrow} \{\nu_{\mathbf{e}}(j_{\lambda_{1}} \circ \dots \circ j_{\lambda_{s}}) : \{\lambda_{1}, \dots, \lambda_{s}\} \subseteq \Lambda\} = \nu_{\mathbf{e}} (\lor \{j_{\lambda} \in N(M) : \lambda \in \Lambda\}).$

Proposition 2.12 Let Q be a unital quantale, j a module prenucleus on a unital left Q-module M. Then the operators $\nu_{\mathbf{P}}(j), \nu_{\mathbf{E}}(j) : M \to M$ defined by the prescriptions

$$\nu_{\mathbf{P}}(j) = \bigwedge \{\nu_{\mathbf{i}(z)}^{z,n}(j) : n \in M, z \in Q_{\mathbf{P}}, z \leq j(n) \twoheadrightarrow_{l} n \}$$

$$\nu_{\mathbf{E}}(j) = \bigwedge \{\nu_{1}^{z,n}(j) : n \in M, z \in Q_{\mathbf{E}}, z \leq j(n) \twoheadrightarrow_{l} n \}$$

coincide with the associated nucleus $\nu(j)$.

Proof. By 2.6 and 2.7 we know that both operators are module nuclei on M greater than j.

Now, let j(m) = m. Then $e \in Q_{\mathbf{E}} \subseteq Q_{\mathbf{P}}$ and $e \leq m \rightarrow l m$. We then have

$$\begin{aligned} j(m) &\leq \nu_{\mathbf{P}}(j)(m) \leq \nu_{\mathbf{E}}(j)(m) \leq (e \cdot (m \twoheadrightarrow_{l} m)) \twoheadrightarrow_{r} m \\ &= e \bullet [(m \twoheadrightarrow_{l} m) \twoheadrightarrow_{r} m] \\ &\leq (m \twoheadrightarrow_{l} m) \bullet [(m \twoheadrightarrow_{l} m) \twoheadrightarrow_{r} m] \\ &\leq m = j(m) \end{aligned}$$

i.e. $\nu_{\mathbf{P}}(j)(m) = \nu_{\mathbf{E}}(j)(m) = j(m).$

Since both $\nu_{\mathbf{E}}(j)$ and $\nu_{\mathbf{E}}(j)$ have the same fixed points as j we have

$$\nu_{\mathbf{E}}(j) = \nu(j) = \nu_{\mathbf{P}}(j). \square$$

Theorem 2.13 Let Q be a unital quantale, M a unital left Q-module. Then, for any set Λ , $\bigsqcup\{j_{\lambda} \in N(M) : \lambda \in \Lambda\} = \bigsqcup^{\uparrow} \{\nu_{\mathbf{P}}(j_{\lambda_{1}} \circ \ldots \circ j_{\lambda_{s}}) : \{\lambda_{1}, \ldots, \lambda_{s}\} \subseteq \Lambda\} = \bigsqcup^{\uparrow} \{\nu_{\mathbf{E}}(j_{\lambda_{1}} \circ \ldots \circ j_{\lambda_{s}}) : \{\lambda_{1}, \ldots, \lambda_{s}\} \subseteq \Lambda\} = \nu_{\mathbf{P}} (\bigvee\{j_{\lambda} \in N(M) : \lambda \in \Lambda\}) = \nu_{\mathbf{E}} (\bigvee\{j_{\lambda} \in N(M) : \lambda \in \Lambda\}).$

Proof. Similar to the proof of theorem 2.10, with $\nu_{\mathbf{p}}$ replaced by $\nu_{\mathbf{P}}$ and $\nu_{\mathbf{E}}$ and using proposition 2.12 instead of proposition 2.8.

Another way how to construct new module nuclei is the method of R-saturated elements introduced for frames by Kříž (see [7]).

Definition 2.14 Let M be a left Q-module, $R \subseteq M \times M$ a relation on M. We shall say that an element $m \in M$ is R-saturated if

$$a \bullet n_1 \leq m \text{ iff } a \bullet n_2 \leq m \text{ and } n_1 \leq m \text{ iff } n_2 \leq m$$

holds for all $a \in Q$, $n_1, n_2 \in M$ such that $(n_1, n_2) \in R$. We shall denote by M_R the set of all R-saturated elements.

Note that M_R coincides with the sup-lattice quotient of M by the relation $R' = R \cup \{(a \bullet m_1, a \bullet m_2) : a \in Q, (m_1, m_2) \in R\}$ [5]. Equivalently the map $j_R : M \to M$ defined by $j_R(m) = \bigwedge \{n \in M_R : m \leq n\}$ is a closure operator on M, $M_{j_R} = M_R$, and the sup-lattice homomorphism $j_R : M \to M_R$ is universal amongst all sup-lattice homomorphisms $f : M \to N$ for which $f(m_1) = f(m_2)$ for all $(m_1, m_2) \in R'$.

Lemma 2.15 Let $a \in Q$, $m \in M$ and m is R-saturated. Then the element $a \twoheadrightarrow_r m = \bigvee \{n \in M : a \bullet n \leq m\}$ is R-saturated.

Proof. Let $n_1, n_2 \in M$, $(n_1, n_2) \in R$, $c \in Q$. Then $c \bullet n_1 \leq a \twoheadrightarrow_r m$ iff $a \bullet (c \bullet n_1) \leq m$ iff $(a \cdot c) \bullet n_1 \leq m$ iff $(a \cdot c) \bullet n_2 \leq m$ iff $a \bullet (c \bullet n_2) \leq m$ iff $c \bullet n_2 \leq a \twoheadrightarrow_r m$. Similarly, $n_1 \leq a \twoheadrightarrow_r m$ iff $n_2 \leq a \twoheadrightarrow_r m$. \Box

Theorem 2.16 Let M be a left Q-module, $R \subseteq M \times M$. Then the closure operator j_R is a module nucleus, and the module homomorphism $j_R : M \to M_R$ is universal amongst all module homomorphisms $f : M \to N$ for which $f(m_1) = f(m_2)$ for all $(m_1, m_2) \in R$.

Proof. Assume $a \in Q$, $m \in M$. Then $a \bullet m \leq j_R(a \bullet m)$ i.e. $m \leq a \twoheadrightarrow_r j_R(a \bullet m)$ i.e. $j_R(m) \leq a \twoheadrightarrow_r j_R(a \bullet m)$ i.e. $a \bullet j_R(m) \leq j_R(a \bullet m)$. Hence, j_R is a module nucleus.

Now, let $f: M \to N$ be a module homomorphism such that $f(m_1) = f(m_2)$ for all $(m_1, m_2) \in R, m \in M$. Then f factors uniquely through j_R and a sup-lattice homomorphism $f': M_R \to N$, because $(m_1, m_2) \in R'$ implies $f(m_1) = f(m_2)$. Let us prove that f' preserves the action. Denoting by \bullet_{j_R} the action on M_R and by \bullet_N the action on N we have $f'(a \bullet_{j_R} j_R(m)) = f'(j_R(a \bullet j_R(m))) = f(a \bullet j_R(m)) = a \bullet_N f(j_R(m)) = a \bullet_N f'(m)$. \Box

Acknowledgement

I want to thank here the anonymous referee for many valuable comments that allow to highly improve the final version of this paper.

References

[1] S. Abramsky, S. Vickers, Quantales, observational logic and process semantics, *Math. Struct. in Comp. Science*, **3** (1993) 161-227.

PASEKA - A NOTE ON NUCLEI OF QUANTALE MODULES

- [2] B. Banaschewski, Another look at the localic Tychonoff theorem, Comm. Math. Univ. Carolinae, 29 No. 4 (1988) 647-656.
- [3] A.H. Clifford and G.B. Preston, *The algebraic theory of semigroups*, (American Mathematical Society, Providence, 1964).
- [4] P. T. Johnstone, Two Notes on Nuclei, Order, 7 (1990) 205-210.
- [5] A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck, Amer. Math. Soc. Memoirs No. 309, (1984).
- [6] D. Kruml, Spatial quantales, *Applied Categorical Structures*, (in print).
- [7] I. Kříž, (in Czech), PhD thesis, Dept. of Mathematics, Charles University, (1988).
- [8] D.S. Macnab, Modal operators on Heyting algebras, Algebra Universalis, 12 (1981) 5-29.
- [9] C. J. Mulvey, J. W. Pelletier, On the quantisation of points, *Journal* of Pure and Applied Algebra, (in print).
- [10] J. Paseka, Simple quantales, Proceedings of the Eight Prague Topological Symposium 1996, (Topology Atlas 1997) 314-328.
- [11] J. Paseka, D. Kruml, Embeddings of quantales into simple quantales, Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, 148 (2000) pp. 209-216.
- [12] J. W. Pelletier, J. Rosický, Simple involutive quantales, Journal of Algebra, 195 (1997) 367-386.
- [13] P. Resende, Quantales, finite observations and strong bisimulation, Theoretical Computer Science, (in print).
- [14] K. I. Rosenthal, Quantales and their applications, (Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, Essex, 1990).

PASEKA - A NOTE ON NUCLEI OF QUANTALE MODULES

[15] K. I. Rosenthal, The theory of quantaloids, (Pitman Research Notes in Mathematics Series 348, Longman Scientific & Technical, Essex, 1996).

Jan Paseka

Department of Mathematics, Faculty of Science, Masaryk University

Janáčkovo nám. 2a, 662 95 Brno, Czechoslovakia

paseka@math.muni.cz