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ALMOST ABELIAN CATEGORIES
By Wolfgang RUMP

CAHIERSDE TtOPOLOGIE ET
GEOMEl’RIE DIFFERENTIEUE CATEGORIQUES

Volume XLII-3 (2001)

Dedicated to K. W. Roggenkamp on the occasion of his 6e birthday

RESUME. Nous introduisons et 6tudions une classe de categories
additives avec des noyaux et conoyaux, categories qui sont plus
générales que les categories ab6liennes, et pour cette raison nous les
appelons presque ab6liennes. L’un des objectifs de ce travail est de
montrer que cette notion unifie et generalise des structures

associ6es aux categories ab6liennes: des theories de torsion (§4),
des foncteurs adjoints et des bimodules (§6), la dualite de Morita et
la th6orie de "tilting" (§7). D’autre part, nous nous proposons de
montrer qu’il y a beaucoup de categories presque ab6liennes: en
algebre topologique (§2.2), en analyse fonctionnelle (§2.3-4), dans
la th6orie des modules filtr6s (§2.5), et dans la th6orie des

représentations des ordres sur les anneaux de Cohen-Macaulay de
dimension inf6rieure ou 6gale a 2 (§2.1 et §2.9).

Introduction

Let A be an additive category., i. e. a category with morphism sets in
the meta-category .A.b of large abelian groups and bilinear composition,
and with finite biproducts [26]. A is said to be preabedian if every
morphism f : A -&#x3E; B in A has a kernel and a cokernel. Then f admits
a decomposition

with c = coim f := cok(ker f ) and d = imf := ker(cok f). (Arrows
"-&#x3E;" always refer to kernels, whereas by "-" we indicate a cokernel.)
For many concrete categories, j is found to be regular, i. e. monic and

epic. If in addition, cokernels are stable under pullback, we call A almost
abelian. (By Proposition 3 this concept is self-dual.) These categories
will be the main object of this article.
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1. Structure theory. The central part in our structure theory for
almost abelian categories will concern their behaviour with respect
to projective and injective objects in .A. Auslander [3] defined a variety
(of annuli) as an additive category V with splitting idempotents. If in

addition, V has weak kernels (§3), a property which is needed in order to
have projective resolutions, we call V a projective variety. Any abelian
category with enough projectives is determined by the projective
variety Proj(A) of its projective objects, and each projective variety
arises in this way ([12], Theorem 1.4). Dually, an abelian category A
with enough injectives is determined by the injectives variety Inj(A) of
its injectives.

Obviously, both descriptions cannot remain valid for almost abelian
categories A. In this case, we shall describe A by a variety V consisting
of projectives and injectives. Precisely, we shall define a pre-PI-variety
as a variety V with a splitting torsion theory (J, T) such that an appro-
priate version of weak kernels and cokernels exists in V. Then J is an
injective, and T a projective variety, and V = P O J, i. e. every object
of V is of the form P 0 I with P E P and I E J. Furthermore, we shall
prove that such a variety V is equivalently given by a (T, 9) - bimodule,
a concept which generalizes bimodules RUS over rings R, S. In fact, an
(R, S)-bimodule U is just a (T, J)-bimodule with T = Proj(R-Mod)
and JoP = Proj(Mod-S). The property of RUS to be faithful over R
and S generalizes to what we call a non-degenerate (T, J)-bimodule, and
the corresponding varieties V will be called PI-varieties.

The almost abelian analogue of an abelian category with enough
projectives and injectives will be called a PI-category. An object A of
such a category is determined (up to isomorphism) by a morphism
P P-&#x3E; A i-&#x3E; I, where P, I belong to classes T C Proj(A) and 9 C Inj(.A),
respectively, which constitute a PI-variety V(A) = P E9 J. Moreover, p
is a P-epimorphism (= J’-fibration [12]), i. e. each P’ -&#x3E; A with P’ E P
factors through p. Dually, i is an J-monomorphism (§5).

Every PI-category A has the property that up to isomorphism, a
morphism f has at most one decomposition f = ip with a P-epimorph-
ism p, and an 3-monomorphism i: .If such a decomposition always exists,
we shall speak of an ample PI-category. Each PI-category .A has a
natural exact full embedding y A into an ample PI-category, and the
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ample PI-categories are in one-to-one correspondence with PI-varieties
(Theorem 4). On the other hand, there is a unique minimal PI-category
for each PI-variety, and thus any PI-category A is located between the
maximal (i. e. ample) PI-category Ã, and the minimal PI-category .B-
associated with V(A).

It will turn out that the two most interesting classes of almost abelian
categories A have an intrinsic PI-structure. Firstly, if for each object
A in A there is a cokernel P - A with P projective, and a kernel
A -&#x3E; I with I injective, then .A is a minimal PI-category with T =
Proj(A) and J = Inj(A). Therefore, A is completely determined by a
(T, J)-bimodule, and we shall speak of a strict PI-category. Such (T, 3)-
bimodules are in fact generalizations of classical cotilting modules. As
a consequence, we get a cotilting theorem (cf. [7], Theorem 2.4) for
finitely generated modules over (left resp. right) coherent rings (§7).
Moreover, the cotilting modules are in one-to-one correspondence with
certain PI-categories. For example, the category of A-lattices with A
an order over a Dedekind domain, and the category of representations
of a finite poset, are determined by a cotilting module (§7, Example 1
and 4).

The second class belongs to PI-varieties V whose (P, 3)-bimodule is
a two-sided "injective cogenerator" (§6), generalizing a familiar con-
cept from Morita duality (see [1], Theorem 24.1). Therefore, these
PI-varieties V will be called Morita varieties. To any almost abelian

category we shall associate (§3) a pair of abelian full subcategories
Ao and A°. If A is a PI-category, then Theorem 5 states that the
underlying PI-variety V(A) = T ED 9 is a Morita variety if and only if

Hence the PI-structure is uniquely determined by the almost abelian
category A, and we shall speak of a Morita category. Numerous con-
crete categories are of this type, for instance, the category C of lo-
cally compact abelian groups (§8). Here the Morita variety corre-
sponds to the (Z, )-bimodule T of reals modulo 1, and the minimal
PI-category C consists of the objects G of C which do not contain the
additive group R of reals as a direct summand. Note that R is the uni-

que projective and injective indecomposable object in C. From any
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given group G in L, it can be split off by a generalization of the Krull-
Schmidt theorem (Lemma 8). As a byproduct, we get a simple proof of
a well-known uniqueness result in L (Proposition 33) proved in [5].

2. Connections with abelian categories. We already men-
tioned that every almost abelian category has a pair of abelian full
subcategories Ao and A° which play a decisive role when A is a Morita
category. In particular, each bimodule RUs defining a Morita duality
between R and S gives rise to a PI-category A with ,A,° = R-Mod and
A° = (Mod-S)-P. We shall see that Ao n A° coincides with the class
of reflexive modules in R-Mod and Mod-S, respectively. This remains
true even if we drop the assumption that RUs is balanced (e.g., if A := C
and U := z T z). Furthermore, we give a necessary and sufficient crite-
rion for such dualities Hom(-, U) which extend to a self-duality of A
(Proposition 34). This generalizes ,90ntrjagin’s duality theorem for C.

We also mentioned that a PI-variety is equivalent to a non-degenerate
(T, J)-bimodule. If D denotes the abelian category corresponding to the
projective variety P, and C the abelian category with Inj(e) m J, we
shall prove that a (T, J)-bimodule is tantamount to a pair of adjoint
functors

with E left adjoint to F (Proposition 23). Hence an adjoint pair E -| F
between abelian categories, being formally independent of T and J, can
be regarded as a "bimodule without varieties P, J". In fact, it is possible
to define the corresponding ample PI-category in terms of E and F,
which leads to a theory of Morita duality between arbitrary abelian
categories [35].

On the other hand, to any almost abelian category we shall asso-
ciate a pair of exact full embeddings (§3) into abelian categories Qi (A)
and Qr (A). Then coincides with the class of reflexive objects of an
adjoint functor pair

such that the unit 71 : 1 -&#x3E; FE is epic, the counit e : EF -&#x3E; 1 is monic,
E(Ker q) = 0, and F(Cok E) = 0. Such adjoint pairs E -l F (between
arbitrary abelian categories) will be called almost equivalence. In this
way, each almost abelian category gives rise to an almost equivalence,
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and vice versa (Theorem 3). Moreover, A is a strict PI-category if and
only if QI (A) has enough projectives which are all in A, and Qr(A) has
enough injectives, lying all in A (Proposition 11, and Corollary 1 of

Proposition 30). Hence, if the abelian categories Ql(A) and Qr(A) are
of the form R-mod and (mod-S)OP with left (right) coherent rings R
and S, respectively, then the "bimodule" E -i F specializes to an (R, S)-
cotilting module. In this sense, the theory of almost abelian categories
can be regarded as a generalized cotilting theory.

Accordingly, our general cotilting theorem (Theorem 2) says that
for any almost abelian category A, there are natural torsion theories
in Ql(A) and Qr(A) such that is equivalent to the torsionfree class
in Ql(A) and the torsion class in Qr(A), whereas the torsion class in
Ql(A) is equivalent to the torsionfree class in Qr(A). Conversely, the
torsion class, and the torsionfree class of any torsion theory in an abelian
category is almost abelian.

In the study of spectral analysis, L. Waelbroeck [39] established a
"calcul symbolique relatif" which was simplified by embedding the ca-
tegory B of Banach spaces into an abelian category q [40]. A different
construction of q has been given by G. No6l [30]. By §3 it is easy to
show that q coincides with Ql(B).

3. Homological algebra. A preabelian category is almost abelian
if and only if short exact sequences are stable in the sense of Richman
and Walker [34]. Therefore, homological algebra and K-theory naturally
apply to almost abelian categories (see [16, 34, 19] and [31]).

1 Almost abelian categories
Throughout this article, all functors are assumed to be additive. Let A
be a preabelian category. A morphism (1) will be called strict if j is
an isomorphism. Hence is abelian if and only if all its morphisms are
strict. More generally, a preabelian category will be called left (right)
semi-abelian if each morphism f in A admits a decomposition f = ip
with a cokernel (epimorphism) p and a monomorphism (kernel) i. Then
p = coim f (resp. i = im f). Thus A is left and right semi-abelian if
and only if for every morphism (1) in A, the associated morphism j is
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regular., i. e. monic and epic. In this case, A will be called semi-abelian.
Now let us consider a commutative square together with the kernels

and cokernels of its horizontal morphisms

If A is abelian, then pullbacks and pushouts (2) can be characterized in
terms of the induced maps g and h. If A is additive, we still have (cf.
[26], VIII.4, proof of Proposition 2):

Lemma 1 If (2) is a pullback (pushout) in a preabelian category, then
g (resp. h) is an isomorphism.

Lemma 2 Let (2) be given in a left (right) semi-abelian category A. If
a and d are kernels (cokern’els), then (2) is a pullback (pushout) if and
only if h is monic (resp. g is epic).

Proof. Suppose a and d are kernels. If (2) is a pullback, then a =

ker(he). In fact, if a’ : A’ -&#x3E; B is any morphism with hea’ = 0, then
f ca’ = 0 implies that ca’ factors through d, whence a’ factors through
a. Therefore, e = coim(he), and h is monic since A is left semi-abelian.
Conversely, let h be monic. Then a = ker(he) = ker( f c), and the
pullback property immediately follows. The remaining assertion is dual.

0
Let us call a preabelian category A left almost abelian if for each pull-

back (2) in A where d is a cokernel, a is again a cokernel (i. e. cokernels
are stable under pullback). Dually, A is called right almost abelian if ker-
nels are stable under pushout. Similarly, we define a left (right) integral
category as a preabelian category such that epi- (mono-)morphisms
are stable under pullback (pushout). A left and right almost abelian (in-
tegral) category will be called almost abelian. (integral). By [26],VIII.4,
Proposition 2, every abelian category is almost abelian and integral.

The following proposition, together with its dual, shows how semi-
abelian categories are related to almost abelian and integral categories:
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Proposition 1 For A preabelian the following are equivalent:

(a) A is left semi-abelian.
(b) Any pullback (2) in A with a cokernel d is a pushout.
(c) If d is a cokernel in a pullback (2), then a is epic.

Proof. (a) =&#x3E; (b): Suppose (2) is a pullback, and d is a cokernel.
Consider the pushout

with e = ker a and the unique morphism r satisfying rp = c and rq = d.
Since ( ab) : A -&#x3E; B 0 C is the kernel of (c d) : B (B C -&#x3E; D, we have
(p q) = coim(c d), and r is a monomorphism since A is left semi-abelian.
By Lemma 1, be = ker d, hence d = cok(be). Therefore, qbe = 0 implies
q = sd for some s : D -&#x3E; E, which yields rsd = d, that is, rs = 1. Since
r is monic, we also obtain sr = 1, whence (2) is a pushout.

(b) =&#x3E; (c): This follows immediately by Lemma 1.
(c) =&#x3E; (a): For a morphism (1) in A, consider the pullback

with e = ker f . Then g is epic, and f h = dich = djeg = 0 implies
eg = ch = 0, whence e = 0. Thus f is monic, and the proof is complete.

0

Corollary 1. Every left (right) almost abelian or left (right) integral
category is left (right) semi-abelian.

Let us define a sequence of morphisms
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in an additive category A to be (short) exact if f = ker g and g = cok f .
A functor F which preserves exact sequences will be called exact. If F

preserves finite limits and colimits it will be called fully exact. In case
F : A - B is a faithful embedding, we also speak of a ( fully) exact
subcategory A. An object P in A will be called projective if for each
cokernel B -&#x3E;&#x3E; C in A, the induced map HomA(P, B) -&#x3E; HomA(P, C) is
surjective. Injective objects are defined dually, and the corresponding
full subcategories will be denoted by Proj(A) (resp. Inj(A)). We
shall say that A has enough projectives (injectives) if for each object
A in A, there is an epimorphism P -&#x3E; A with P projective (resp. a

monomorphism A - I with I injective).
Corollary 2. Let A be a preabelian category. If A has enough projec-
tives (injectives), then A is left (right) semi-abelian.

Proof. Consider a pullback (2) in A with a cokernel d, and let p :
P - B be an epimorphism with P projective. Then cp = dq for some
q : P -&#x3E; C. Hence p factors through a, and thus a is an epimorphism.
By duality, this proves the corollary. 0

The next result is a consequence of [24], Proposition 5.10 and 5.12:

Proposition 2 Let A ( B g-&#x3E; C be morphism in a right (left) semi-
abelian category. If f and g are (co-)kernels, then g f is a (co-)kernel.
If g f is a (co-)kernel, then f (resp. g) is a (co-)kernel.

Proposition 3 A semi-abelian category A is left almost abelian if and
only if it is right almost abelian.

Proof. Suppose A is left almost abelian; and let (2) be a pushout in
A with a kernel a. Consider the pullback

with i = im d. Then w is a cokernel, and the monomorphism d : C -&#x3E; D
has a decomposition d = ir with r regular. Application of f = cok d
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yields 0 = f iw = f (cu + dv) = fcu. By Lemma 1, f c = cok a. Hence,
u factors through a, say, u = au’. Consequently, iw = cu + dv =
cau’ + dv = d(bu’ + v) = ir(bu’ + v), and thus w = r(bu’ + v). By
Proposition 2 it follows that r is a cokernel, whence r is an isomorphism.
Thus d is a kernel, and we have shown that is right almost abelian.
The converse follows by duality. 0

Remark 1. The preceding proof shows that a semi-abelian category is
almost abelian if and only if for any pullback (2) the implication

d cokernel, c kernel =&#x3E; a cokernel

holds. This property is equivalent to axiom (A6) in Raikov’s paper [32].
The next result is due to Kelly ([24], Proposition 5.2):

Proposition 4 Let A be a preabelian, category. Then cokernels are sta-
ble under pushout, and kernels are stable under pullback.

Lemma 3 Let A be a left or right almost abelian category. If a com-
rnutative diagram L

has exact rows, then r is an isomorphism.

Proof. Let f : E - B be a morphism with r f = 0. Then b f = 0
implies that f factors through a, say, f = ag. Hence, cg = rag = r f = 0
yields g = 0. Thus r is a monomorphism, and by duality, r is regular.
Furthermore, it is easily verified that the commutative diagram

is a pullback. Now suppose A is left almost abelian. Then r(a 1) is a

cokernel since dr = b is a cokernel. Hence r is an isomorphism. 0
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Remark 2. The statement of Lemma 3 coincides with axiom (A4) of
Rajkov [32] which is therefore redundant (cf. Remark 1). Consequently,
every almost abelian category is "semiabelian" in the sense of Raikov,
and vice versa.

In the sequel, a simultaneous pullback and pushout will be called an
exact square.

Proposition 5 Let A be a left or right almost abelian category with a
commutative diagram (2). If a and d is a cokernel, and g an isomor-
phism, then (2) is exact.

Proof. Consider the commutative diagram

with k := ker a, where the square (2) is divided into II and III such that
III is a pullback, and r is the unique morphism with pr = a and qr = b.
Then qrk = ker d by the invertibility of g, and thus I and 1+II+III
are exact. Hence I+II is a pullback, i. e. rk = ker p. Moreover, we
infer that II+III is a pushout. Thus if A is right almost abelian, then

(p q) = im (a b) implies that r is epic. Hence II is a pushout, and therefore p
is a cokernel by Proposition 4. If A is left almost abelian, then p is also
a cokernel since III is a pullback. Thus we have shown that the columns
in II+IV are exact. By Lemma 3, we conclude that r is invertible, i. e.

II1+1III is a pullback, hence exact. 0

Let us now turn our attention to integral categories A. Firstly, we
show that the defining property can be weakened if A is semi-abelian:

Proposition 6 For A semi-abelian the following are equivalent:
(a) A is integral.
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(b) Regular morphisms are stable under pullbacks.
(c) Regular morphisms are stable under pushouts.

Proof. If A is right integral, then (c) follows by Lemma 1. Hence by
symmetry, it remains to prove that (c) implies that A is left integral.
Thus assume (c), and let (2) be a pullback with an epimorphism d.
Then (c d) : B EÐ C -&#x3E; D is an epimorphism with a decomposition

where e = coim(c d), and r is regular. Let f : B - F be the cokernal
of a. We shall complete the diagram

by the induced morphism g and the pushout of r and g. By assumption,
s is regular. Therefore, h(c d) = hre = sf(10) implies hd = 0, whence
h = 0. This implies s f = 0, hence f = 0, i. e. a is an epimorphism. 0

Corollary. A semi-abelian category is left integral if and only if it is
right integral.

By Proposition 6, a semi-abelian category is integral if and only
if the regular morphisms in A admit a calculus of left and right frac-
tions ([15], 1.2). Therefore, if Q(A) denotes the category with the same
objects as A and formal fractions fr-1 = s-lg as morphisms, where
f, g, r, s are morphisms in A with r, s regular and s f = gr, then Q(A) is
an abelian category. We call it the quotient category of A. Thus for an
integral category A, we have a faithful, fully exact embedding ([15], 1.3):

A -&#x3E; Q(A) (6)
This leads to another characterization of integral categories (cf. [6], V):

Proposition 7 Let A be a Preabelian category. Then A is integral if
and only if there is a faithful, fully exact functor F : A -&#x3E; B into
an abelian. category 13. In this case, F uniquely extends to a functor
F’ : Q(A) -&#x3E; 13, which is again faithful and fully exact.
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Proof. Let F : A - B be faithful and fully exact with B abelian.
Then F carries monomorphisms to monomorphisms. Conversely, if F f
is monic, then F(Ker f ) = 0 implies Ker f = 0 since F is faithful. It
follows that monomorphisms are stable under pushout since this prop-
erty is valid in B. By duality we infer that A is integral. The remaining
assertions are instantly verified. 0

To check whether a subcategory is almost abelian, we use:
Lemma 4 Let A be a full subcategory of an almost abelian category 13.
If the object class of A is closed with respect to biproducts, kernels, and
cokernels., then A is almost abelian.

Proof. Clearly, A is preabelian. A morphism f in A is a (co-)kernel
in A if and only if f is a (co-)kernel in B. This follows since any kernel
f is a kernel of its cokernel. Hence is almost abelian. D

2 Examples
Before we start with the structure theory of almost abelian categories in
the next section, let us give some instances where such categories occur.

1. Lattices over orders. Let R be a noetherian integral domain
with quotient field K, and A an R-order in a finite dimensional K-
algebra A, that is, an R-finite R-subalgebra with KA = A. Then a

finitely generated A-module E is said to be a A-lattice if E is torsion-
free over R. It is easily verified that the category A-lat of A-lattices is
almost abelian. Furthermore, A-lat is integral with Q(A-lat) = A-mod,
the category of finitely generated A-modules.

For a central idempotent e of A, the category A-lat/eA-lat (inves-
tigated recently by O. Iyama [22]) is almost abelian (§7, Example 3).

2. Categories of topological abelian groups. Let TAb be the
category of topological abelian groups, with continuous group homomor-
phisms as morphisms. Clearly, TAb is preabelian: the biproduct A O B
in TAb is given by the topological direct sum, and the (co-)kernel of a
morphism f is just the (co-)kernel in Ab (the category of small abelian
groups) with the induced (resp. quotient) topology. Hence, f is regular
in TAb if and only if f is bijective. Then a straightforward verification
yields that TAb is almost abelian and integral with Q(TAb) = Ab.
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Now consider the full subcategory HAb of Hausdorff abelian groups.
Here, the cokernel of a morphism f : A -&#x3E; B is B -&#x3E;&#x3E; B / Im f with the
quotient topology, and f is regular if and only if f is injective with Im f
dense in B. Again, HAb is almost abelian since the inclusion functor
HAb -+ TAb reflects pullbacks and those pushouts (2) for which a is
a kernel. However, HAb is no longer integral:

Here R denotes the additive group of real numbers, Z and Q are the
discrete group of integers and rationals, respectively. If v(1) is irrational,
then the square PB is a pullback. Note that by means of this pullback,
the proof of Proposition 6 also yields a pushout (2) for which a, but not
d, is regular. 

In particular, the full subcategory L of locally compact abelian
groups is almost abelian, but not integral. For this category, a pre-
cise description will be given in §8.

3. Categories of topological linear spaces. For a topologi-
cal field K, the category TVS(K) of (Hausdorff) topological K-vector
spaces is almost abelian. In particular, let K be the field R or C with
the natural absolute value. By Lemma 4, various full subcategories
of TVS(K) are almost abelian: e. g. the categories of locally convex
spaces, normed linear spaces, Frechet spaces, Banach spaces (see Exam-
ple 2 of §7), or nuclear spaces (e. g. [36]). 

4. Bilinear maps and dual systerris. For a bimodule RUS over
a pair of rings R, ,S, let Bilin(U) denote the category of bilinear maps
B : M x M’ -&#x3E; U, with a left R-module M, and a right S-module
M’. For x E M and y E M’, we simply write {x,y} instead of B(x,y),
and Q itself is abbreviated by (M, M’). For a second object (N, N’} in
Bilin(U), a morphism (M, M’} -&#x3E; (N, N’) is given by a pair of adjoint
homomorphisms f : M -3 N and f’ : N’ -&#x3E; M’, that is, a pair (f,f’)
with
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for all x E M and y E N’, modulo such pairs ( f, f’) for which the bracket
(7) is zero for all x, y. With the obvious addition and composition of
morphisms, Bilin(U) becomes an almost abelian category. In fact, it is
a PI category (§5, Proposition 19).

The full subcategory DS(U) of bilinear maps M x M’ -&#x3E; U with

vanishing left and right kernel is again almost abelian. In fact, this cate-
gory is equivalent to the full subcategory of objects (P, P’) in Bilin(U)
with P, P’ projective: If K C P and K’ C P’ is the left and right
kernel of (P, P’), respectively, then (P, P’) corresponds to the object
(P/K, P’/K’) in DS(U). Again by Proposition 19, it will follow that
DS(U) is almost abelian. For a morphism ( f, f’) : (M, M’) -&#x3E; (N, N’)
in DS(U), the maps f and f’ determine each other. Therefore, a morph-
ism ( f, f’) can be redefined as an R-linear map f : M -&#x3E; N which admits
an adjoint homomorphism f’ : N’ -3 M’.

In particular, if U = KKx with a field K which is either R or C,
or discrete, then an object in DS(K) is just a dual system ([36], IV.1),
and the morphisms (M, M’) -&#x3E; (N, N’) in DS(K) coincide with the
K-linear maps M -&#x3E; N which are continuous in the weak topology.

5. Torsion theories. For any torsion theory in an abelian category
A, we shall prove in §4 that the torsion class, and the torsion-free class
(as full subcategories), are both almost abelian.

For a partially ordered set Q, consider S2 := Q U {oo} with a  o0

for all a E f2. Then the functor category A Ô is abelian whenever is
abelian. Now let An denote the full subcategory of functors F E AÔ
with monomorphisms F(i) -&#x3E; F(oo) for all i E S2, and nA the full
subcategory of functors F with F(oo) = 0. These categories can be
regarded as two types of representation categories of Q. In case A is
a category of finite dimensional vector spaces, An has been studied by
Nazarova and Roiter [29] (see also Gabriel [14]), and nA by Loupias [25].
It is easy to verify that (nA,.An) is a torsion theory in A1Î. Hence An
and nA are almost abelian. Moreover, An is integral with Q(An)= A.

6. Almost equivalences. See §4, Theorem 3.
7. Tilting theory. Let R be a. ring, and RT a tilting module (see

[8]) with S := (EndRT)-P. Then the tilting theorem ([8], Theorem 1.4;
. cf. [18]) implies that the functors F = HomR(T, -) and G = T Os -
constitute an almost equivalence G -1 F between the module categories
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S-Mod and R-Mod. In particular, the categories 9=’ := Ker F and
T := Im G are almost abelian. Furthermore, it has been observed [8,
18] that (T,9=’) is a torsion theory in R-Mod, and the torsion theories
in R-Mod which arise from a tilting module have been characterized
([9], Theorem 2.3; cf. [2, 37]). These results easily follow from basic
properties of almost abelian categories (cf. Theorem 2 and §7).

8. Morita Duality. In the next section, we shall associate with
each almost abelian category a pair of abelian full subcategories Ao
and Ao. If R, S are rings, and RUS is a left and right injective cogen-
erator, then the above mentioned almost abelian category = DS(U)
has the property that .N.o is equivalent to R-Mod, and A° is equiva-
lent to (Mod-S)°P. Moreover, the intersection Ao n Ao coincides with
the full subcategories of reflexive modules in R-Mod and Mod-S. If
R = S = Z and U := R/Z, then DS(U) contains the category ,G of
locally compact abelian groups as a full subcategory.

9. Reflexive modules. Let A be an R-order as in 1 with R in-
tegrally closed. Then the category, A-r,nod,. of finitely generated left
A-modules which are reflexive over R is, almost abelian and integral
with Q(A-modr) = A-mod. The,kernel of a morphism f : E -&#x3E; F in

A-modr coincides with the kernel in A-mod, whereas cok f in A-mod,
is given by F - FIH Y (FIH)** if the R-torsion part of F/Im f is
H/Im f . In particular, if R is a two-dimensional local Cohen-Macaulay
domain, then A-mod, coincides with the category of maximal Cohen-
Macaulay modules over A. The fact that cokernels need not be surjective
in this category justifies the convention (for R complete) to regard cer-
tain exact sequences E -&#x3E; F -c4 P with c non-surjective as Auslander-
Reiten sequences (see, e.g., [33], 2.1). If R is a Dedekind domain, then
the category A-modr of reflexives is just A-lat.

3 Associated abelian categories
In this section we shall associate two pairs of abelian categories with
each almost abelian category .A.: two full subcategories Ao, Ao, and two
categories Ql(A), Qr(A) in which is fully embedded. The latter pair
leads to a characterization of A in terms of a torsion theory, whereas
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Ao, A° play a role in the relationship between almost abelian categories
and generalized Morita duality (§7).

For any almost abelian category  A, let Ao denote the full subcat-
egory of objects D in A such that each monomorphism D’ - D is a
kernel. Dually, the full subcategory A° consists of the objects C in A
such that each epimorphism C -&#x3E; C’ is a cokernel. Generalizing a well-
known concept for abelian categories, let us define a Serre subcategory
of an additive category as a non-empty full subcategory 8 of A such
that for each exact sequence A -&#x3E; B - C in A, the middle term B lies
in 8 if and only if A and C are in S. By Lemma 4, a Serre subcategory
of an almost abelian category is almost abelian.

Proposition 8 If A is almost abe,lian, then Ao and A ° are abelian Serre
subcategories of A.

We shall call ,A,° the initial and A° the terminal category of A.
a b

Proof. Let A -&#x3E; B -&#x3E;&#x3E; C be an exact sequence in A. Suppose first
that B is in Ao. Then A is in Ao by Proposition 2. In order to show
that C is in Ao, let d : D -&#x3E; C be a monomorphism. Consider the

pullback: L

Then e is monic, hence a kernel by the assumption. Proposition 1

implies that (8) is a pushout, and thus d is a kernel since is almost
abelian.

Next let us show that B is in ,R.o whenever A and C are in Ao. To
this end, let e : E -&#x3E; B be a monomorphism. Then we have a pullback
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with p = cok i, where i is a kernel by Proposition 4, f is monic by
Lemma 1, and the induced morphism g is monic by Lemma 2. Hence f
and g are kernels by the assumption. By taking the pullback of b and
g, the morphism e decomposes into e = uv (see diagram below). Here
j = ker q according to Lemma 1, and the square PO commutes since u
is monic. By Proposition 4, u is a kernel. Moreover, q is a cokernel, and
the square PO is a pushout by the dual of Proposition 5. Consequently,
v is a kernel, whence e = uv is a kernel by Proposition 2.

L

Thus we have shown that Ao is a Serre subcategory of A. Finally,
for every morphism f : A -&#x3E; B in Ao, the induced monomorphism
Coim f -&#x3E; B is a kernel, whence Ao is abelian. The assertion for Ao
follows by duality. 0

. 

Recall that for a morphism f : A -&#x3E; B in an additive category, a
morphism g : K -&#x3E; A is said to be a weak. kernel if f g - 0 and every
h : H - A with f h = 0 factors through g:

Analogously, weak cokernels are defined. Following Auslander [3], we
call an additive category V a variety (of annuli) if idempotents split in
V, i. e. every idempotent endomorphism e : A -&#x3E; A in V has a kernel.

(In this case, there is a biproduct



180

with ip = e.) If in addition, each morphism in V has a weak (co-)kernel,
we call V a projectives (injective) variety. A complex

in a projective variety will be called acyclic if ai+1 is a weak kernel
of 8i for each i &#x3E; 1. By mod(T) we denote the category of acyclic
complexes in T modulo homotopy. Equivalently, the category mod(P)
can be given by the morphisms u = a1 : P1 -&#x3E; P0 in P as objects; then
the morphisms are commutative squares

modulo such squares (11) with g = vh for some h : Po - Qi.
If .A is an abelian category with enough projectives, then Proj (A) is

a projective variety from which A can be recovered by the equivalence
(the Oth homology of the acyclic complex (10)):

Conversely, P. Freyd ([12], Corollary 1.5, Theorem 3.2) has shown that
for each projective variety T, the category mod(P) is abelian, and that
the embedding P e (0 -&#x3E; P) yields an equivalence

By (12) and (13), the objects A of mod(T) can be interpreted as coker-
nels Cok u of morphisms u : P, -&#x3E; Po in P. We shall call them modules
A over P. By duality, we have an abelian category com(g) of comodules
over an injective variety J, i. e. formal kernels of morphisms Io -&#x3E; Il in
J.

By (12) and (13), projective or injective varieties are equivalently de-
scribed by means of abelian categories. In particular, this immediately
gives
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Proposition 9 Let P2 v-&#x3E; P1 u-&#x3E; Po be a sequence of morphism in
a projective variety. Then v is a weak kernel of u if and only if the
sequence is exact in mod(T).

For a projective variety T and n E N, let modn(P) denote the full
subcategory of objects A in mod(P) with projective dimension pd(A)
n. Thus modo(T) is equivalent to P by (13), and the objects in mod1(P)
are given by monomorphisms u : P1 -&#x3E; Po in T. Our next aim will be
to characterize left almost abelian categories A in terms of modi (A) -

A morphism f : A -&#x3E; B in mod1(P) yields a commutative diagram

for given projective resolutions of A and B in mod(P).
Lemma 5 Let T be a projective variety and f a morphism (14) in
modi (9) . If the square SQ is a pushout in P, then f is epic in mod1(P).
If h is an isomorphisrra and g a rrzonomorphism in mod(P), then f is
a kernel in mod, (T).

Proof. Suppose first that SQ is a pushout in T, and let e : B -&#x3E; C
be a morphism in modi (9) with e f = 0. For a projective resolution

w 

Q’1 w-&#x3E; Q’0 -&#x3E;&#x3E; C in mod(P), we get a commutative diagram

such that g’g = wp for some p : P0 -&#x3E; Q’1. Hence w h’ h = g’gu = wpu
implies h’ h = pu, and the pushout SQ yields a morphism q : Qo - Q’l
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with qv = h’ and qg = p. Therefore, wqv = g’v and wqg = g’g and the
uniqueness property of SQ gives wq = g’, i. e. e = 0.

Next suppose that h is an isomorphism, and g is a monomorphism.
Then the snake lemma implies that f is monic, and that the cokernels
of f and g are isomorphic. Hence we obtain a short exact sequence

A I B -&#x3E;&#x3E; C in modI (:1’) which completes our proof. O

Lemma 6 If A is a left semi-abelian category, then for every C in
mod(A) there is an epimorphism

with C’ in modi(A) such that each morphism C - D with D in
mod1(A) factors through (15). (This implies that modi(A) is a re-

,flective full subcategory of m6d(A).)

Proof. Let C be given by a presentation P, u-&#x3E; Po dl C with Po, P,
in A. Then u has a decompositibn u : Pi p-&#x3E; P -4 P0 in .A., where
p = coim u, and q is a monomorphism. (Note that p need not be epic in
mod(A)!) Hence the cokernel of q in mod(A) factors through v, say,
cokq : P0 v-&#x3E;&#x3E; C » C’, and C’ is in mod1(A). Now let Q1 -&#x3E; Qo - D
be a projective presentation of any object D in modi(A). Then a

morphism f : C -&#x3E; D yields a commutative diagram

where h annihilates the kernel of u in A. Therefore, h factors through
p : P1 -&#x3E; P, whence f factors through c : C -&#x3E;&#x3E; C’. 0

Proposition 10 Let A be a left semi-abelian category. Then modi (A)
is almost abelian, and mod2(A) = mod(A). The inclusions A -&#x3E;

mod1(A) Y mod(A) preserve kernels of morphisms. Moreover, a

morphisms in A is a cokernel if and only if it is epic in mod1(A), and a
morphism in mod1(A) is a cokernel if and only if it is epic in mod(A).
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Proof. Since A has kernels, it follows immediately that mod2 (A) =
mod(A). By Proposition 9, the inclusion A -&#x3E; mod(A) preserves ker-
nels. For a morphism f : A -&#x3E; B in modl(.A.), let us show that the ker-
nel K - A in mod(A) lies in modl(.A). Consider the exact sequence
K - A - Im f in mod(A). If K would not be in modl(.A), then
pd(A)  pd(K) = 2 would imply pd(Im f) = 3 which is impossible.
Hence mod1(A) has kernels which are preserved under the embedding
into mod(A). By Lemma 6, a cokernel of f : A -&#x3E; B in mod1(A) is
given by B -&#x3E;&#x3E; C - C’, where B -&#x3E;&#x3E; C is the cokernel in mod(A), and
C - C’ is given by (15). In particular, we infer that f is a cokernel in
mod1(A) if and only if f is epic in mod(.A). The proof of Lemma 6
also shows that a morphism in .A is a cokernel if and only if it is epic in
modi (.A).

Next let us show that modl(.A) is semi-abelian. For a morphism

f : A - B in modi(A), consider a decomposition f : A p-&#x3E;&#x3E; C i-&#x3E; B
in mod(A). Then i factors through the epimorphism c : C - C’
of (15), whence c is an isomorphism, i. e. p = coim f in modl(.A).
Thus for mod, (A) to be semi-abelian, it :remains to be shown that each

monomorphism f : A -&#x3E; B in modi (.A) decomposes into A 5 D -&#x3E; B
with r regular and d a kernel in modl(.A.). For projective resolutions
of A and B, the induced square (14) decomposes into a commutative
diagram

with a pushout PO in A and g = sp. Since the square SQ in (14) is a
pullback in mod(A) and hence in A, the morphism (p q) : fo (6 Qi -
P is the coimage of (g v) : P0 O Q1 -&#x3E; Qo in A. Therefore, s is a

monomorphism. Consequently, if D = Cokq in mod(.A), Lemma 5

yields the desired decomposition f : A 5 D d-&#x3E; B with a regular r and
a kernel d in mod¡(A).

Finally, by Proposition 3, our proof will be complete if we show that
mod1(A) is left almost abelian. Consider a pullback (2) in modi(A).
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By the above, this is also a pullback in mod(A). If d is a cokernel in

modi(A), then it is epic in mod(A). Hence a is epic in mod(A) and
thus a cokernel in modi(A). 0

Corollary. If .A is left semi-abelian, and f is a morphism (14) in
modl(A), then f is regular if and only if the square SQ is exact in A.

Proof. If SQ is a pullback in A, then it is a pullback in mod(A),
whence f is monic. If SQ is a pushout in .A., then f is epic in mod, (A)
by Lemma 5. Conversely, let f be regular in modl(.A). Then SQ
is a pullback and decomposes as in (16), where the right-hand square
induces the image of f in mod1(A) which has to be trivial. Therefore,
s is an isomorphism, and thus SQ is a pushout in A. 0

Now we are ready to prove a relationship between one-sided almost
abelian and two-sided integral categories;

Theorem 1 A left serrai-abelian category A is left almost abelian if and
only if the almost abelian category modl(.A) is integral.

Proof. Suppose first that is left almost abelian. Let T be the class
of objects M in mod(A) such that every morphism M -&#x3E; N with N
in mod1(A) is zero. We show first that T is closed with respect to

subobjects. Thus let i : N -&#x3E; M be a monomorphism in mod(A) with
MET. For a projective presentation P1 u-&#x3E; 0 M and an epimorph-
ism f : Qo - N with Qo E A, choose q : Q0 -&#x3E; Po with eq = i f , and
consider in A the pullback of q and u:

Then Q 2+ Qo I N is a projective presentation of N in mod(A). By
Proposition 10, the assumption M E T says that u is a cokernel in A.
Hence, v is a cokernel in A, and thus N E T.

Now consider a pullback (2) in mod1(A) with an epimorphism d.
Then Proposition 10 implies that (2) is a pullback in mod(A). There-
fore, we get a monomorphism i : Cok a -&#x3E; Cok d for the cokernels in
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mod(A). Since Cok d E T, we infer that Coka E T, i. e. a is epic in

mod1(A). By the corollary of Proposition 6, mod1(A) is integral.
Conversely, let (17) be a pullback in A with e = cok u and f = cok v

in mod(.A). Then Proposition 10 implies that PB is a pullback in
modi(A), and u or v is a cokernel in A if and only if it is epic in
mod1(A). This completes our proof. 0

By the preceding results, every left almost abelian category can
be fully embedded into an integral almost abelian category mod1(A).
By the corollary of Proposition 10, a regular morphism in mod¡(A) be-
tween objects of A must be an isomorphism. Therefore, the embedding
A 9 mod¡(A) induces a full embedding

By duality, every right almost abelian category is fully embedded into
the category coml(.A) of comodules of injective dimension  1. This

gives a full embedding 

The abelian categories Ql(A) and Qr(A) will be called the left (resp.
right) abelian cover of .A. They have a simple description if A has

strictly enough projectives (resp. injectives), i. e. if for each object A in
A, there is a cokernel P -&#x3E;&#x3E; A with P projective (resp. a kernel A - I
with I injective):

Proposition 11 Let A be a preabelian with strictly enough projectives.
Then A is left almost abelian, and Q1(A) is equivalent to mod (Proj (A)).

Proof. By Corollary 2 of Proposition 1, A is left semi-abelian. In

order to show that is left almost abelian, let (2) be a pullback with
a cokernel d, and let p : P -&#x3E;&#x3E; B be a cokernel with P projective. Then
cp factors through d, and thus p factors through a. By Proposition 2,
this implies that a is a cokernel, whence is left almost abelian.

Since has strictly enough projectives, it follows that Proj(A ) is a
projective variety. Now consider the functor

S : mod(Proj(.A.)) -&#x3E; mod(.A) R -&#x3E; modl(.A),
where R is the reflector (15) of the .embedding mod1(A) 9 mod(A)
according to Lemma 6. Then S is fully faithful and yields an equiva-
lence between mod(Proj(,A)) and the full subcategory C of modi (A)
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consisting of those objects M which have a presentation A1 -&#x3E; A0 -&#x3E;&#x3E; M
with A1 in A and Ao in Proj(A). Therefore, it remains to be shown
that the faithful embedding

modl(A) Y Q(mod1(A)) = Ql(A)
induces an equivalence between C and QI (A) . Let A1 -&#x3E; Ao -&#x3E;&#x3E; M be
a projective resolution of any object M in mod1(A). For a cokernel

P -&#x3E;&#x3E; Ao in A, with P in Proj (A), the pullback

in .A is exact by Proposition 1. By Proposition 10, it is also a pullback
in mod(.A), and v is a monomorphism in mod(,A.). Therefore, the
corollary of Proposition 10 implies that the induced morphism Cok v -
M is regular. Hence as an object in Ql(A), M is isomorphic to some
C E C. Moreover, for C, D E C, it. follows that a morphism C -&#x3E; D in
Ql(A) is given by morphisms C - C’ -&#x3E; D in 6 with C - C’ regular
in modl(.A). Thus to complete the proof, let us show that a regular
morphism r : M - N in C is an isomorphism. Consider the induced

morphism between projective presentations of M and N:

Here A, B are in A, and P, Q in Proj(A). Since ( f j) : P 0 B -&#x3E;&#x3E; Q is
a cokernel in A, we have a section (s t) : Q -&#x3E; P ED B, i. e. f s + jt = 1.
Then rpsj = qfsj = q(1 - jt)j = 0 implies psj = 0, and thus ps = uq
for some u : N -&#x3E; M. Now ruq = rps = q f s = q yields ru = 1, whence
r is an isomorphism. 0

Corollary. If A is a left semi-abelidn’category, then Proj(mod1(A)) =
A. Moreover, Ql(mod1(A)) is equivalent to mod(A).

Proof. By Proposition 10, the cokernels in modi(A) are epic in
mod(.A). Hence C Proj(modi(A)). Conversely, let P be projec-
tive in mod1(A), and let A1 -&#x3E; A0 p-&#x3E;&#x3E; P be a presentation with Ao, Al
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in A. Then p is a cokernel in mod1(A). Hence Ao = A1 O P, and
thus P is isomorphic to an object in A. Furthermore, this shows that
mod1(A) has strictly enough projectives. Therefore, Proposition 11
proves the remaining assertion. 0

We conclude this section with a universal characterization of Ql(A):

Proposition 12 Let A be a left almost abelian. category. Then the em-
bedding A 9 Ql(A) is exact and preserves monomorphism. Every
exact functor F : A -&#x3E; 13 into an abelian category B which preserves
monomorphisms has a unique extensions to an exact functor Qz (A) -&#x3E; B.

Proof. By Proposition 10, the inclusion -4 Qi(A) preserves ker-
nels, hence monomorphisms. A short, exact sequence A a-&#x3E; B - C in A
is tantamount to an exact square

in A. By the corollary of Proposition 10, the induced morphism Cok a -&#x3E;
C in mod1(A) is regular, hence an isomorphism in Ql(A). Therefore,
A -&#x3E; B - C is exact in Ql(A). Now let F : A -&#x3E; 13 be a functor with
the properties given in the proposition. Every object M in modi(A)
has a presentation A1 u-&#x3E; A0 -&#x3E;&#x3E; M with A0, Al in A. Hence if we define
F’(M) as the cokernel of F(u) in B, we obtain an extended functor
F’ : modi(A) - B which makes regular morphisms invertible. In

order to show that F’ is exact, let M’ -&#x3E; M -&#x3E;&#x3E; M" be a short exact

sequence in mod1(A), and A1 -&#x3E; A0 -4 M a projective presentation of
M. Since the pullback

in mod(A) is exact, it follows that Cok a h3£ M". Hence A is isomorphic
to an object in A, and we obtain a .projective presentation A1 -&#x3E; A -
M’ . Applying F’ gives a short exact sequence F’ (M’) -&#x3E; F’(M) -
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F’(M") in B. Therefore, F’ yields a unique exact extension Ql(A) -&#x3E; B
of F. O

Corollary 1 Let A be left almost abelzan, and A1 u-&#x3E; A0 v-&#x3E;&#x3E; M a presen-
tation of an object M in Ql(A) with Ao, A1 in A. Then M is isomorphic
to an object in A if and only if u is a kernel in A.

Proof. If M is in A, then u splits. Conversely, if u is a kernel in A,
then the cokernel of u in A is isomorphic to M by the exactness of the
embedding A -&#x3E; QI (A). 0

Corollary 2 If A is left almost abelian, and u : A -&#x3E; B a monomorph-
ism in Ql(A) with B in .R., then A is isomorphic to an object in A.

Proof. Let Al :... A0 p-&#x3E;&#x3E; A be a presentation of A in Ql(A) with
Ao, A, in A. Then i = ker(up), and the assertion follows by Corol-
lary 1. D

For a class C of objects in an additive category A, let add C denote
the class of direct summands of finite biproducts 01 0 ... (B Cn with
Cl, ... , Cn E C. If A is almost abelian, we define a subquotient of an
object C as an object A for which there exists a kernel B -&#x3E; C and a
cokernel B -&#x3E;&#x3E; A. By Proposition 4, a subquotient A of C can also be
represented in the form A -&#x3E; D - C. For an object class C in A, the full
subcategory of subquotients of objects in add C will be denoted by ab e.
Thus ab C is closed with respect to biproducts and subquotients. In

particular, if A is abelian, then ab e is an exact abelian full subcategory
of A.

Corollary 3 Let A be a left almost abelian category with an exact full
embedding A 9 B into an abelian category B such that A is closed with
respect to subobjects in B, and B = ab A. Then A y B extends to an
equivalence Ql(A) ~-&#x3E; 13.

Proof. If f : A - B is a monomorphism in A, then its kernel in
B belongs to A. Hence f is monic in 13. By the proposition, A Y B
extends to an exact functor E : Ql(A) --t 13. Firstly, let M be an

object in Ql(A) with E(M) = 0. For a presentation A, u-&#x3E; A0 -&#x3E;&#x3E; M in
mod1(A) with A0, A1 in A, this implies that E(u) is an isomorphism.
Since E is full and exact on A, we infer that u is an isomorphism, and
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thus M = 0. Now let f : M -&#x3E; N be a morphism in Ql(A) with
E( f ) = 0. Then E(Im f ) = Im E( f ) = 0 implies Im f = 0. Thus we
have shown that E is faithful.

Since each object M’ of fl3 admits a presentation A1 -&#x3E; A0 -&#x3E;&#x3E; M’
with Ao, A, in A, the cokernel A0 -&#x3E;&#x3E; M of u in Ql(A) yields an object
M with E(M) = M’. Thus E is dense.

In order to show that E is full, let M, N be objects in Ql(A), and
g : E(M) -&#x3E; E(N) a morphism in 13. Consider presentations A1 -&#x3E;

A0 p-&#x3E; M and Bi I B0 q-&#x3E;&#x3E; N in Ql(A) with Ao, AI, Bo, BI in A. The
pullback

yields a presentation A’1 w-&#x3E; A’0 pr-&#x3E;&#x3E; M with A’ , A’ in A, and a commu-0 1

tative diagram 

with exact rows in QI(A). In fact, E(qsw) = E(q)sw = gE(prw) = 0
implies qszv = 0, whence szv factors through v, which yields an induced
morphism f . Now E(f)E(pr) = E(q)s = gE(pr) implies E(f) = g,
whence E is an equivalence. 0

4 Torsion theories and almost equivalences
Let A be an additive category. For a class C of objects in A, we define
a C-epimorphism as a morphism f : A -&#x3E; B in A such that each g :
C -&#x3E; B with C e C factors through f . Dually, f will be called a C-
monomorphism. if each g : A -&#x3E; C with C E C factors through f . A
e-epimorphism C - A with C e C will be called a C-cover [12], and a C-
monomorphism A -&#x3E; C with C E C a C-hull. Let us call C a pre-torsion
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(-free) class in A if C is closed with respect to isomorphisms (i. e. every
object isomorphic to some C E C belongs to C), and each object in A has
a monic C-cover (resp. an epic C-hull). In what follows, we frequently
identify an object class C with its corresponding full subcategory.
Remarks. 1. Every pre-torsion(-free) class C is closed with respect to
biproducts. In fact, if A, B E C, and c : C -&#x3E; A e B a monic C-cover,
then 1 : A --+r A EÐ B and (0) : B -&#x3E; A EÐ B factor through c, i. e. c

admits a section, whence c is an isomorphism.
2. If C is a pre-torsion(-free) class in a semi-abelian category A, and

if C -&#x3E;&#x3E; A is a cokernel (resp. A -&#x3E; C a kernel) in A with C E C, then
A E C. This follows since a cokernel C -&#x3E;&#x3E; A factors through a (monic)
C-cover D -&#x3E; A, whence D - A is a cokernel by Proposition 2, and
thus A h3£ D E C. In particular, if A is abelian, every pre-torsion(-free)
class is closed with respect to quotient (resp. sub-) objects.

3. A monic C-cover (as well as an epic C-hull) is always unique up
to isomorphism: If c : C - A and d : D -&#x3E; A are monic C-covers, then
by definition, there are morphisms f : C -&#x3E; D and g : D -&#x3E; C with
c = df and d = cg. Then cg f = c implies g f = 1, and dually, fg = 1.

A pair (T, 9") of object classes in A is said to be a torsion theory if
T and ? are closed with respect to isomorphisms, and for each object
A in A there exists a short exact sequence T u-&#x3E; A v-&#x3E;&#x3E; F with a T-cover
u, and an y-hull v. Then the pre-torsion class T and the pre-torsionfree
class F determine each other, and we shall ’speak of a torsion class T,
and a torsionfree class 9=’ in this case.

If A is abelian, this definition is equivalent with the original one given
by Dickson [10] (cf. also [27]). If in addition, T is closed with respect
to subobjects, then the torsion theory (7, T) is said to be hereditary.

Lemma 7 For a pre-torsionfree class T in an abelian category A, the
following are equivalent:

(a) 9=’ is a torsionfree class.

(b) T is closed with respect to extensions in A.
(c) For each 9=’-hull f : A -&#x3E;&#x3E; F in A, the kernel Ker f has an £F-hull

Ker f - 0.
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Proof. (a) =&#x3E; (b): If F belongs to a torsion theory (T, 9") in A, then
T consists of the objects T in A with 9=’-hull T -&#x3E; 0. Therefore, if

F i-&#x3E; A -&#x3E;&#x3E; F’ is a short exact sequence in A with F, F’ E 9’, then every
morphism t : T -&#x3E; A with T E T factors through i, whence t = 0. This
implies A E 3=’.

(b) =&#x3E; (c): Let K - A f-&#x3E;&#x3E; F be a short exact sequence in A with an
F-hull f , and let g : K - Fo be an 9=’-hull of K. Consider the pushout

in A. Then BE9=’ implies that h factors through f , and thus g = 0.
(c) =&#x3E; (a): Lest 7 be the class of objects T in A with 9=’-hull T - 0.

Then every object A in A with 9=’-hull f : A - F yields an exact
sequence Ker f - A -&#x3E;&#x3E; F with a T-cover Ker f - A. 0

Theorem 2 Let A be an abelian category with a pre-torsionfree class 9".
Then the full subcategory F is left almost abelian with ab F equivalent to
Ql(F). If9=’ defines a (hereditary) torsion theory in A, then F is (integral
and) almost abelian. Conversely;- every left almost abelian category C
is equivalent to a pre-torsionfree class in Ql(C), and C is (integral and)
almost abelian if and only if C defines a (hereditary) torsion theory in
Ql(c).

Proof. By the above remarks 1 and 2, every pre-torsionfree class
y in an abelian category is closed with respect to biproducts and
subobjects. For any morphism f : F, -&#x3E; F2 in F, the kernel in A
is a kernel in 9=’, and if c : F2 -&#x3E;&#x3E; C is a cokernel of f in A, then
the 9=’-hull C -&#x3E;&#x3E; F(C) of C yields a cokernel F2 c-&#x3E;&#x3E; C - F(C) of
f in 9=’. In particular, f is a cokernel in y if and only if f is epic
in A. As an immediate consequence, we infer that F is left almost
abelian. Since T - A is exact, Corollary 3 of Proposition 12 implies
that ab F = Ql(F). 

’

Now let (7, T) be a torsion theory in A . In order to show that F
is right almost abelian, consider a pushout (2) in y with a kernel a.
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Then the short exact sequence A a-&#x3E; B -&#x3E;&#x3E; Cok a in 9=’ is also exact in
A. By Lemma 7, 9=’ is closed with respect to extensions in A. Hence

(2) is a pushout in A, and thus d is a kernel in 9=’. This implies that
y is almost abelian. Next we assume that (T, F) is hereditary. Any
pullback (2) in 9=’ is also a pullback in A, and a morphism in F is epic if
and only if its cokernel in A belongs to T. Since the induced morphism
Cok a - Cok d is monic in A, it follows that 9=’ is left integral. By the
corollary of Proposition 6, T is integral.

Conversely, let C be a left almost abelian category. For any object M
in mod1(C), consider a presentation C1 -&#x3E; C0 -&#x3E;&#x3E; M with Co, Cl E C.
Then u has a decomposition u : C1 r-&#x3E;&#x3E; C v-&#x3E;&#x3E; Co in 6 with v = im u.
This yields a commutative diagram

in mod(C) with exact rows, and an exact right-hand square. Hence
we obtain an exact sequence

in mod1(C), hence in Ql(C). Now let 9=’ be the class of objects M in

Ql(C) which admit a presentation Ci u C0 -&#x3E;&#x3E; M in mod1(C) where
u is a kernel in C. Then for every M in modl(C), (20) provides an
9=’-hull M -&#x3E;&#x3E; Cokv in Ql(e), and by Corollary 1 of Proposition 12, C is
equivalent to 9=’. Furthermore, Lemma 7 shows that the pre-torsionfree
class F determines a torsion theory in QI(C) if C is right semi-abelian.

Finally, let the almost abelian category C be integral, and let i :

M -&#x3E; N be a monomorphism in mod1(C). There is a commutative

diagram
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in mod(C) with exact rows and Co, Cl, Do, D1 E C. By Proposition 10,
the square PB is a pullback in C, and u, v are monic in C.- Moreover, u
(resp. v) is regular in C if and only if M (resp. N) is a torsion object
in the torsion theory of Ql(C) given by C. Hence C defines a hereditary
torsion theory in Ql(C). D

As an immediate consequence we note:

Corollary. For a category A the following are equivalent:

(a) A is almost abelian.
(b) A is equivalent to the torsion class of a torsion theory for an

abelian category.

(c) A is equivalent to the torsionfree class of a torsion theory for an
abelian category.

For an almost abelian category A, the torsion class corresponding to
A, in Ql(A) will be denoted by 9Z(A). The objects of this full subcategory
of Ql(A) can be given by regular morphisms r : A1 -&#x3E; Ao in A. These
objects constitute a full subcategory C of modi(A), with commutative
squares modulo homotopy as morphisms. Then 3Z(A) is a category of
fractions [15] of C such that exact squares (i. e. morphisms in C which
are regular in modi(A)) are made invertible. Since this description of
fll(A) is entirely self-dual, we obtain a pair of full embeddings:

Thus we infer that there is a torsion theory (R(A), F) of Ql(A), and a
torsion theory (’, 3Z (A)) of Qr(A), such that the categories T and F are
both equivalent to A. Let us call 9Z(A), the regudar category, of A.

Proposition 13 The regular category R(A) of an almost abelian cate-
gory A is almost abelian. A is abelian if and only if 3Z(A) = 0, and A
is integral if and only if R(R(A)) = 0.

Proof. Since R(A) is the torsionfree class of a torsion theory for
Qr(A), Theorem 2 implies that 9Z(A) is almost abelian.

If A is abelian, then every monomorphism in A is a kernel. Hence
A is equivalent to Ql(A), and R(A) = 0. Conversely, 9Z(A) = 0 implies
that is equivalent to the abelian category QI(A). If A, is integral,
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then Theorem 2 implies that 9Z(A) is closed with respect to subobjects
in Ql(A), whence R(A) is abelian. If A is not integral, then there is a
monomorphism a : A -&#x3E; B in Ql(A) with B E R(A) but A E R(A).
Hence if c : B -&#x3E;&#x3E; C is the cokernel of a in Ql(A), then C E 9Z(A), and
there exists an exact sequence T -&#x3E; A -&#x3E;&#x3E; F in Ql(A) with T E R(A)
and F E A, such that k : T -&#x3E; A -&#x3E; B is the kernel of c in R(A). Now
if R(A) would be abelian, then c would coincide with the cokernel of k
in Ql(A), whence A Ef T E R(A), a contradiction. D

For a functor F : A -&#x3E; B between additive categories, define the
kernel Ker F as the full subcategory of objects A in A with F(A) = 0,
and the image Im F as the full subcategory of objects B in B which are
isomorphic to some F(A) with A E A.

Next we consider a pair E H F of adjoint functors

between abelian categories C and D. Let Ðref denote the full subcate-
gory of refiexive objects in D, i. e. those objects D for which the unit
morphism qD : D - FE(D) is an isomorphism. Dually, Cref denotes the
full subcategory of reflexive objects in C. Then the restrictions of E and
F yield an equivalence between +?,ref and eref. We shall say that E -1 F
is a left (right) almost equivalence if for each object D in D, the unit
morphism qD is epic with E (Ker nD) = 0 (resp. for each object C in C,
the counit morphism Ec : EF(C) -&#x3E; C is monic with F(CokeC) = 0).
A left and right almost equivalence (21) will be called an almost equi-
valence E -l F. Now we have the following representation theorem for
almost abelian categories:

Theorem 3 Let (21) be a left almost equivalence between abelian ca-
tegories, with E left adjoint to F. Then the category D,.ef of reflexive
objects in D is almost abelian and coincides with Im F. Conversely, for
each almost abelian category A, there exists an almost equivalence (21)
with D = Ql(A) and C = Qr(A), such that A = Im F = ImE and
R(A) = Ker E = Ker F.

Proof. Suppose first that (21) is a left almost equivalence. Then

the composition F ’7F * FEF FE-&#x3E; F is the identity, whence 1JF is an
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isomorphism. Therefore, D,ef = Im F. Since nD is epic for every D,
it follows that Im F is a pre-torsionfree class in D. By the adjunction
E -1 F, each morphism Ker nD -&#x3E; F(C) corresponds to a morphism
E(Ker nD) -&#x3E; C which is zero by assumption. Therefore, Lemma 7
implies that (Ker E, Im F) is a torsion theory in D, whence Dref is
almost abelian by Theorem 2.

To prove the converse, let A be an almost abelian category. Then
the inclusion J : A -&#x3E; Qr(A) admits a right adjoint T : Qr(A) -&#x3E; A,
and the inclusion J’ : A 9 Ql(A) has a left adjoint T’. By Theorem 2
it follows immediately that the functors E := .IT’ and F := J’T yield
an almost equivalence

with the desired properties. 0

5 PI-categories
If an abelian category has enough projectives or injectives, we know
that the whole category is determined by Proj(.A) or Inj(A), and an
object in A is given by a morphism in Proj(A) or Inj(A), respectively.
For an almost abelian category A, a similar representation is possible
if the variety Proj(A) or Inj(A) is replaced by a variety V consisting
of projectives and injectives. Then an object in .A will be given by a
morphism P -&#x3E; I in V with P projective and I injective.

Let us define a PI-system in an additive category as a pair (T, 9)
with P C Proj(A), J C Inj(A) such that the following axioms are
satisfied:

(PIO) P and 9 are closed w.r.t. biproducts and direct summands.
(PI1) Every A in A, has a P-cover P - A and an J-hull A -&#x3E; I.

(PI2) Every P-epic and J-monic f in A is an isomorphism.

Clearly, if (T, 9) with P C Proj(A) and 9 C Inj (A) satisfies (PI1) and
(Pl2), then (add J’, add:1) is a PI-system. Therefore, the relevant axioms
are (PI1) and (PI2). A preabelian category with a PI-system (P,:1) will
be called a PI-category. We define T(A) := T and :1(A) := J.
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Proposition 14 Let A be a PI-category with PI-system (T, 9). Then

T-epimorphisms and J-monomorphisms are both stable under pullback
and pushout.

Proof. We prove the assumption for a pullback (2). Suppose first
that d is a P-epimorphism, and let p : P - B be a morphism with
P e P. then cp factors through d, whence p factors through a. Hence,
a is P-epic.

Next let d be J-monic, and let i : A -&#x3E; I be a morphism with
I E J. Then i factors through the kernel (a) : A -&#x3E; B O C of (-c d) :
B EÐ C -&#x3E; D, i. e. there exists a morphism (r s) : B O C -&#x3E; I with
i = ra + sb. Since d is 3-monic, = td for some t : D -&#x3E; I , and thus
i = ra + tdb = (r + tc)a. Hence a is J-monic. 0

As a consequence we have

Proposition 15 Let A be a PI-category with PI-system (1’,J). Then T
is a projective, J an injective variety, and A is almost abelian. Moreover,
every P-epimorphism (J-monomorphism) is epic (monic). If p : P -&#x3E; A
is a T-cover, and i : A -&#x3E; I an 1-hull, then up to isomorphism, A is
uniquely determined by the morphism ip : P -&#x3E; I.

Proof. By (PIo)! y and are varieties. Since A has kernels and

cokernels, and by (PI1), P is a projective, and 9 an injective variety. In
order to show that is almost abelian, consider a pullback

with i = ker a, and a cokernel d. Then a has a decomposition

with u = cok i. By Proposition 14, v : E -&#x3E; B is a P-epimorphism. On
the other hand, consider a morphism e : E -&#x3E; I with I E J. As in the
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proof of Proposition 14, there exists a lifting

with eu = ra + sb. Hence si = sbi = (eu - ra)i = 0 implies s = td
for some t : D -&#x3E; I. Therefore, eu = ra + tdb = (r + tc)vu yields
e = (r + tc) v, and thus v is 3-monic. By (PI2), we infer that a is a
cokernel. Thus we have shown that is left almost abelian, and by
symmetry, it follows that A is almost abelian.

Next lat f : A -&#x3E; B be a P-epimorphism with cokernel c : B -&#x3E;&#x3E; C.

By (PI1) there is a P-cover p : P -&#x3E; C. Then p factors through c and
also through f . Hence p = 0, and thus 0 -&#x3E; C is P-epic and ’J-monic.
Consequently, (PI2) implies C = 0, whence f is epic. Dually, every
J-monomorphism is monic.

Finally, let p : P -&#x3E; A and p’ : P - A’ be P-covers, and let i : A -&#x3E; I
and i’ : A’ -&#x3E; I be J-hulls, such that ip = i’p’. Consider the pullback

with p = qr and p’ = q’r. Then q,q’ are P-epic, and by Proposition 14
also 3-monic. Hence q and q’ are isomorphisms. D

We shall say that a PI-category A is arraple if each morphism A -&#x3E; B
in A has a decomposition A -&#x3E; E i-&#x3E; B with a P(A )-epimorphism p, and
an J(A)-monomorphism i. By Proposition 15, such a decomposition is
unique up to isomorphism.
Remark. Alternatively, an ample PI-category can be characterized as
a preabelian category A with a proper factorization system (E, M) in
the sense of [13] (cf. [23]) such that S is a projective, and M an injective
class [11]. Namely, E (resp. M) consists of the P(A)-epimorphisms
(resp. J(A)-monomorphisms). Consequently, T(A) and J(A) determine
each other.
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Our next aim is to give a structure theorem for PI-categories. To this
end, we define a bivariety as a variety V together with a pair P = P(V)
and J = Jl’l7) of object classes, closed with respect to isomorphisms,
such that (J, P) is a splitting torsion theory, i. e. for each object A in V,
there is a split exact sequence

with an 3-cover u, and a P-hull v. In other words, the following axioms
are satisfied:

(BV,) Homv(I, P) = 0 for all PEP and I E J.
(BV2) Each A in V is of the form P C I with P E P and I E J.

For a morphism f : A -&#x3E; B in a bivariety V, we define a P-kernel
of f as a morphism p : P -&#x3E; A with P E P and f p = 0 such that
each q : Q - A with Q e J’ and f q = 0 factors through p. Dually, an
I-cokernel of f is a morphism i : B -&#x3E; I with I E J and i f = 0 such
that each j : B -&#x3E; J with J E J and j f = 0 factors through i. For an
object I E J, a sequence P, -&#x3E; P0 u-&#x3E; I will be called a P-presentation if
u is a P-cover and p a P-kernel of u. Dually, we define an I-presentation
of an object P e P as a sequence P u-&#x3E; Io i-&#x3E; Il with an J-hull u and
an I-cokernel i of u. We shall call V a pre-PI-variety if V is a bivariety
with the additional property:

(BV3) Each morphism in V has a P-kernel and an I-cokernel.
There is a functorial description of bivarieties. For varieties and 9,
consider a bifunctor

which is additive in each variable. For PEP and I E J, an element
u E H(P, I) can be interpreted as a morphism u : P -&#x3E; I, and for
morphisms p : Q - P and i : I -&#x3E; J in P and J, respectively, the maps
H(p, I) : H(P,I) -&#x3E; H(Q, I) and H(P, i) : H(P, I) -&#x3E; H(P, J) define a
composition u o p : Q - I and i o u : P -&#x3E; J. If we extend H- by

H(P, Q) = Homp(P, Q); H(I, J) = Homj(7, J); H(I, P) = 0 (23)
for P, Q E P and I, J E J, then it is easily verified that H defines the
Hom-functor of a bivariety V with P(V) = P and J(V) = J. We shall
denote this bivariety V by P O H J. Clearly, each bivariety is of this form.
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Proposition 16 A bivariety V is a pre-PI-variety if and only if P(V)
is a projective, J(V) an injective variety, each I E J(V) has a P-presen-
tation, and each P E P(V) has an I-presentation.

Proof. If V is a bivariety, then P(V) and J(V) are subvarieties, i. e.

closed with respect to biproducts and direct summands. Hence the

condition for V to be pre-PI is necessary. To prove sufficiency, let u :
P -&#x3E; I be a morphism with P E P(V) and I E J(V), and P1 p-&#x3E; P0 v-&#x3E; I
a P-presentation of I. Then u = vr for some r : P -&#x3E; Po. Now let

(s t): P’ -3 P fl3 PI be a weak kernel of (r p) : P ? P1 -&#x3E; Po in P(V).
Then us = vrs = -vpt = 0, and it is readily seen that s : P’ -&#x3E; P is a

P-kernel of u.
Now consider a general morphism (a 0) : Pi e I, -&#x3E; P2 EÐ I2 in V. Let

p : P -&#x3E; PI be a weak kernel of a : PI -&#x3E; P2 in P(V), and q : Q - I, a
P-cover of I1 . By the above, there exists a P-kernel (P’ ) : P’ -&#x3E; P e Q of

(bp cq) : P ? Q - I2. Then it is easily verified that (pp’ qq’) : P’ -&#x3E; Pi e Ii
is a P-kernel of (a0 bc). Thus we have shown that every morphism in V
has a P-kernel. By duality, our proof is complete. D

For a projective resp. injective variety and J, a biadditive functor
(22) will be called a (T, J) - bimodule if P E)H 9 is a pre-PI-variety. We
call (22) small if its values are in Ab. In fact, this definition generalizes
the familiar concept of bimodule over rings:

Proposition 17 Let R, S be rings, P = Proj(R-Mod), and JoP =
Proj(Mod-S). Then each small (P, J))-bimodule is of the form

with U = H(RR, Ss), an (R, S)-bimodule. Conversely, every (R, S)-
bimodule RUS yields a small (P,J)-bimodule by (24).

Proof. Suppose H is a small (P, J)-bimodule. Then U := H(RR, SS)
is an (R, S)-bimodule since RoPOS = End(RR)OEnd(SS) operates from
the right on U. An I-presentation RR - Q0 i-&#x3E; Ql in J’ (DH 3 induces
an exact sequence of functors J -&#x3E; Ab:
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Note that i corresponds to a homomorphism q : Qi - Qo of right S-
modules, and HomJ(Q,-) = Homs(-, Q). Inserting Ss into (25) gives
an exact sequence Ql -4 Qo -H U in Mod-S, and then (25) yields a
natural isomorphism of functors on J:

Similarly, each object Q in 9 has a P-presentation P1 -&#x3E; P0 -&#x3E; Q in
y E)H 9 which gives an exact sequence of functors pop -&#x3E; Ab:

By virtue of (26), inserting of RR into (27) yields an exact sequence

and the equivalence (24) follows by (27).
Conversely, let (24) be given. Then any projective presentation (28)

of the R-module Homs(Q, U) gives an exact sequence (27), and by
Yoneda’s lemma, this amounts to a P-presentation P, -&#x3E; P0 -&#x3E; Q of
Q in y (DH J. In view of the natural isomorphism

a symmetry argument completes the proof. 0

A bifunctor (22) will be called non-degenerate if for each morphism
p in T and i in J, the implications H(p, -) = 0 =&#x3E; p = 0 and H(-, i) =
0 =&#x3E; i = 0 are true. If H is a non-degenerate (T, J)-bimodule, the
associated pre-PI-variety P EDH 9 will be called a PI-variety.

Proposition 18 For a (T, J)-bimodule H, the following are equivalent:
(a) H is non-degenerate.
(b) Any u E H(P, I) is monic if u is J-monic, and epic if u is T-epic

in P OH J.

7yT= Proj(R-Mod) and JoP = Proj(Mod-S) with rings R, S, then
H is non-degenerate if and only if U := H(RR, SS) is faithful as a left
R-module, and as a right S-module.
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Proof. By Yoneda’s lemma, an element u E H(P, I) corresponds to a
natural transformation 1/11, : Homp( -, P) -&#x3E; H(-, I), and u is P-epic in
P EÐH J if and only if vu is componentwise surjective. Hence in this case,
a morphism i : I -&#x3E; J in J satisfies iu = 0 if and only if H(-, i) = 0.
By duality, this proves (a) =&#x3E; (b).

Now let H be of the form (24), and q : Q’ -&#x3E; Q a morphism in
Mod-S with corresponding i : Q - Q’ in J. Then H(-,i) = 0 is

tantamount to Homs(q, U) = 0, and the latter states that every S-linear
map Q - U annihilates q. Clearly, if the implication Homs(q, U) = 0 =&#x3E;

q = 0 holds for Q = SS, then it is also valid for all q : Q’ - Q. Hence,
the implication H(-, i) = 0 =&#x3E; i = 0 just says that US is faithful. By
duality, the proof is complete. 0

Let us define the category DS(H) of H-dual systems (cf. §2.4) for
any (T, J)-bimodule H. Objects are the elements u E H(P, I) with
P e P and I E J. If v E H(Q, J), then the morphisms u - v are given
by commutative squares

in P EDH J, modulo such squares with vf = gu = 0. In the special case
of Proposition 17, we also write DS(U) instead of DS(H).

By J’(DS (H) ) we denote the full subcategory of objects u : P -&#x3E; I

in DS(H) for which u is an J-monomorphism in P O H J. Dually, we
define J(DS(H)). For given P E P (resp. I E J), a particular choice
of u : P - I in P(DS(H)) (resp. J(DS(H))) yields a pair of full and
dense functors

Proposition 19 Let T be a projective, 9 an injective variety, and H a
(T, J)-bimodule. Then DS(H) is an ample PI-category. Moreover, H is
non-degenerate if and only if the functors (31) are equivalen.ces.
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Proof. Clearly, DS(H) is an additive category. For a morphism (30),
choose a weak kernel p : P’ -&#x3E; P of v f . Then it is easily verified that

is a kernel of (30). By duality, we infer that DS(H) is a category with
kernels and cokernels. Moreover, the representation of a kernel in the
form (32) immediately implies:

Obviously, (PIo) is satisfied for these subcategories. For an object u :
P - I, choose a P-cover P’ - I and an J-hull P -&#x3E; I’ in P O H J. Then
(PI,) follows by the commutative diagram

Next let (30) be a P(DS(H))-epimorphism. If v’ : Q - J’ is in
P(DS(H)), then v factors through v’, and the morphism

in DS(H) factors through (30). Hence there is a morphism r : Q -
P with v(l - fr) = 0. Similarly, if (30) is J(DS(H))-monic, then
there exists a morphism s : J - I with (1 - sg)u = 0. Consequently,
ur = sgur = sv f r = sv, and the pair (r, s) yields a morphism v - u.
Furthermore, v = v fr = gur implies (1 - gs)v = (1 - gs)gur = g(l -
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sg)ur = 0, and u = sgu = sv f yields u(1 - r f ) = sv f (1 - r f ) =
sv(1 - f r) f = 0. Hence (30) is an isomorphism, and (PI2) is verified.

Since each morphism (30) admits a decomposition

into a P(DS(H))-epimorphism and an J(DS(H))-monomorphism, we
infer that DS(H) is ample. Now Proposition 18 completes the proof.

0

Proposition 20 For a PI-category A, the Hom-functor
HomA : P(A)oP x J(A) -&#x3E; Ab (34)

is a non-degenerate bimodule.

Proof. Trivially, (34) is a bimodule. The non-degeneracy follows by
Proposition 18 since every P-epimorphism (J-monomorphism) is epic
(monic). D

Let us define a PI-subcategory A of a PI-category B as a full subcate-
gory which contains P(B)UJ(B) and is closed with respect to biproducts,
kernels, and cokernels. Thus is again a PI-category with P(A) = P(B)
and J(A) = J(B). A fully faithful, fully exact functor F : A -&#x3E; B be-
tween PI-categories will be called a PI-embedding if F induces equiva-
lences P(A) -&#x3E; P(B) and J(A) - J(B). If F is dense, we speak of a PI-
equivalence. Similarly, we define a PI-equivalence T O H J = ~-&#x3E; P’ O H’ 91
between pre-PI-varieties as an equivalence which restricts to equiva-
lences T ~-&#x3E; T’ and J ~-&#x3E; J’. Now we are ready to prove:

Theorem 4 Each PI-category A admits a PI-embedding A -&#x3E; A into
an amPle PI-category .A., and every such embedding A 9 B extends to
a PI-equivalence A ~-&#x3E; 13. Up to PI-equivalence, ample PI-categories
are in one-to-one correspondence "7bith’, PI-varieties. 

Proof. Suppose A is a PI-category. Then (34) is a non-degenerate
(T(A), J(A))-bimodule. Since for each object A in A, we can choose a
P(A)-cover p : P - A and an J(A)-hull i : A - I, there is a functor
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with F(A) := ip, and F is faithful by Proposition 15. In order to show
that F is full, consider a commutative diagram

with P(A)-covers p, q, and J(A)-hulls i, j. We take the pushout

with gi = ts and j q = tr, and then the -pullback

with q = vw and r = uw. By Proposition 14 we infer that r is J’(A)-
epic, and u is J(A)-monic. Hence u is an isomorphism. Consequently,
vu-1 s : A - B splits (36) into two commutative squares, and thus F is
full. By the description of kernels (32) and cokernels in DS(HomA), it
follows easily that F is fully exact: Hence, Proposition 19 and 20 imply
that (35) is a PI-embedding. Furthermore, F is a PI-equivalence if and
only if A is ample. Therefore, any other PI-embedding A 9 B into an
ample PI-category B leads to PI-equivalent categories A = fl3 m B .

Finally, if we start with a PI-variety J’ EDH J, then H is a non-
degenerate (T, J)-bimodule. By Proposition 19, DS(H) is an ample
PI-category, and (31) are equivalences. Under these equivalences, the
bimodule (34) corresponds to H, i. e. P O H J is recovered by DS (H) . 0
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Note: In a PI-category A, the varieties P(A) and J(A) may have a
non-trivial intersection, in fact, they may coincide. In the corresponding
PI-variety P(A) EDH J(A), however, these varieties are disjoint. Never-

theless, the intersection P(A)nJ(A) in A is determined by the PI-variety.
By the preceding theorem, the ample PI-categories A, are just the

maximal ones, i. e. those for which each PI-embedding .A 9 fl3 into
a PI-category 23 is an equivalence. In contrast to this, let us define a
PI-category to be minimal if it has no proper PI-subcategories. Like
for the ample PI-categories, the theorem establishes a one-to-one cor-
respondence between minimal PI-categories and PI-varieties, up to PI-
equivalence. Moreover, any PI-category .A has a smallest (hence mini-
mal) PI-subcategory A. For a (T, J)-bimodule H and A = DS(H), this

category A will be denoted by Lat(H). Its objects can be viewed as

generalized lattices (cf. Example 4 of §7).

Proposition 21 A PI-subcategory C of a PI-category A is closed with
respect to subquotients. In particular, the smallest PI-subcategory of A
is .A = ab(P(A) U J(A)).

Proof. Since every kernel A -&#x3E; B in A is a kernel of a morphism
B -&#x3E; I with I E J(A), and every cokernel B -» C is a cokernel of a
morphism P -&#x3E; B with P E P(A), a PI-subcategory C of A, is closed
with respect to subquotients. Now the proposition follows. 0

A particular class of minimal PI-categories will be discussed in §7.

6 Bimodules and adjoint functors

Continuing the results of the last section, we shall now establish a cor-
respondence between ample PI-categories and pairs of adjoint functors
between mod(P) and com(J).

Proposition 22 Let C, D be abelian categories with enough injec-
tives, and D with enough projectives. Let E : D -+ C be a f unctor which
is left adjoint to F : C -&#x3E; D. Then

is a (Proj(D), Inj(C))-bimodule. 



206

Proof. For any object I in Inj(C), a projective presentation P, -&#x3E;

Po -H F(I) in D yields a P-presentation of I in Proj(D) EDH Inj(C). By
duality and Proposition 16, the assertion follows. D

In particular, every adjoint pair E -1 F defines an ample PI-category
DS(H), and a minimal PI-category Lat(H). Conversely, let H be a
(P, J)-bimodule, and A an arbitrary PI-category corresponding to H,
i. e. up to PI-equivalence, A can be realized as a PI-subcategory of
DS(H). We define a pair of functors

as follows. The functors (31) induce full and dense functors

which define (38) on P and J, respectively. For an object M in mod(P),
choose a projective presentation P, -&#x3E; P0 -&#x3E;&#x3E; M. Then H°(M) is given
by the cokernel Ho(P1) -&#x3E; Ho(P0) -&#x3E;&#x3E; Ho (M) in A, and H° is defined
dually. If A is abelian and H non-degenerate, Ho coincides with (12).

In addition, we introduce a pair of functors into the reverse direction:
I 

Since A is fully embedded into DS(H), each object A in A is given by
a morphism u E H(P, I) in P EÐH J. Let p : P’ -&#x3E; P be a P-kernel of u.
Then we define So(A) as the cokernel Cok p in mod(P). Dually, S°(A)
is defined as the kernel of an I-cokernel of u.

Note: The definition of the functors (38) and (40) takes its simplest
form in terms of the pre-PI-variety P EÐH J. Namely, if the objects of
mod(P) are given by projective presentations p : P1 -&#x3E; Po in P, and
the objects of A are given by morphisms u E H(P, I) in P EÐH J, then
Ho (p) is obtained as an I-cokernel of p, and  So(u) is a P-kernel of u.

By this remark it follows immediately that (Ho, So) and (S°, H°) are
adjoint pairs of functors:

Hence the composition E := SoHo and F := SoH’ yields a pair of
adjoint functors E -l F:
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Proposition 23 Let P be a projective, J an injective variety. Then (37)
and (42) give a one-to-one correspondence between (T, 9) -bimodules H
and adjoint pairs E -l F, up to natural isomorphism. Moreover, H is
non-degenerate if and only if E, F are faithful on J’ and J, respectively.

Proof. If H is given, then E = S°Ho and F = SoH° yield the (P, J)-
bimodule Hommod(p)(P, SoHo I) = HomA(HoP, H°I) = H(P, I). Con-
versely, an arbitrary adjoint functor pair (42) defines a (P, J)-bimodule
(37). For P E P, a projective resolution in mod(P) is 0 -&#x3E; P, and an
I-cokernel of 0 -&#x3E; P is given by the unit morphism up : P - F(I) of the
adjunction E -l F, with I = E(P). Thus Ho(P) is given by the object
up in Lat(H). By (37), up can also be represented by the identical
morphism 1 : E(P) - I, which has an I-cokernel I -&#x3E; 0 in P EÐH J.
Hence S°Ho(P) coincides with E(P).

Finally, H is non-degenerate if and only if for each P e P, the unit
morphism qp : P -&#x3E; FE(P) of E H F is monic, and for each I E J,
the counit morphism EF(I) - I is epic. Clearly, if qp is monic for all
P e P, then E is faithful on P. Conversely, suppose E is faithful on
T. If qp would not be monic, there would exist a non-zero morphism
q : Q - P in P with ?7pq = 0. This would imply E(q) = 0, whence
q = 0, a contradiction. By duality, we are done. D

Remark. If P = Proj(R-Mod) and JoP = Proj(Mod-S) with rings
R, S, then the explicit description (24) of H yields

with U = H(RR, Ss). Then com(J) = (Mod-S)OP.
Recall that a class C of objects in an additive category is said to

(co-)generating if for every morphism f : A - B which annihilates each
morphism C - A (resp. B -&#x3E; C) with C E C, it follows that f = 0.

Now let H be a (P, J)-bimodule. We shall introduce three properties
of H which generalize the relevant concepts for Morita duality. Firstly,
an object P e P will be called strict if there is an 3-hull P -+ I in P O H J
which is a P-kernel. (In this case, each 9-hull P - I is a P-kernel!) Then
we define H to be left balanced if P is generated by the strict objects
in P. Secondly, we call H a left cogenerator if every morphism P’ -&#x3E; P
in P is a P-kernel of some u E H(P, I) in P EÐH J. Thirdly, we shall
say that H is left injective if every morphism p : P -&#x3E; P’ in P has the
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property that each morphism u E H(P, I) in P E9 H ’J which annihilates
a P-kernel of p factors through p. The corresponding right notions are
defined dually. If the respective left and right property is satisfied, we
simply speak of a balanced, cogenerating, or injectives bimodule H.

Proposition 24 Let R, S be 7ings, T = Proj(R-Mod)), and JoP =
Proj(Mod-S). For a small (T,g)-bimodule H and its corresponding
(R, S)-bimodule U = H(RR, SS), the following equivalences hold:

(a) H is left (right) balanced =&#x3E; RUS is balanced.
(b) H is a left (right) cogenerator =&#x3E; RU (resp. Us) is a cogenerator.
(c) H is left (right) injective =&#x3E; RU (resp. US) is injective.

Proof. By duality, it suffices to prove the "left" statements.
(a) Since an I-presentation of P e P coincides with a projective pre-

sentation of the S-module HomR(P, U), it follows that P is strict if and
only if for each Q E P, the S-linear maps HomR(P, U) -&#x3E; HomR(Q, U)
are induced by R-linear maps Q -3 P. But this assertion holds for all
Q e J’ iff it is true for Q = R. ,Hence P is strict if and only if the
natural map

P -&#x3E; Homs(HomR(P, U), U)
is epic. For P = R this says that R -&#x3E; End(US) is surjective. On the
other hand, RR is strict if and only if P is generated by strict objects.

(b) By definition, H is a left cogenerator if and only if for each
morphism p : P’ -&#x3E; P in P there exists an exact sequence of R-modules
P’ p-&#x3E; P -&#x3E; Homs(Q, U) with Q E JoP. Here, Q can be replaced by a
free S-module, and then the assertion states that the cokernel of p is
cogenerated by RU.

(c) Finally, H is left injective iff -each R-module Homs (Q, U) with
Q E J°P is injective, that is, if RU is iajective. 0

By virtue of (38) and (40), the above concepts have the following
functorial description:

Proposition 25 Let H be a (T, J)-bimodule, and A a PI- subcategory
of DS(H). With the notations of (38), (40), and (42), the following are
equivalent:



209 

(a) H is a left cogenerator
(b) E is faithful

(c) Ho is faithful
(d) SoHo = 1

Proof. (a) =&#x3E; (b): Recall that for an object M in mod(P), given by
a projective presentation p : Pi - Po, an I-cokernel u : Po - Io of p
represents Ho(M) in DS(H), and an I-cokernel i : Io -&#x3E; I, of u yields
an injective presentation of E(M). Therefore, the application of E to a
morphism ( f, g) in mod(P) is given by a commutative diagram

with an I-cokernel v of q, and an I-cokernel j of v. If E carries ( f, g) to
zero, then h factors through i. Hence v f = hu = 0, and (a) implies that
f factors through q, i. e. (f, g) represents a zero morphism in mod(P).

(c) =&#x3E; (a): Let p : P’ -&#x3E; P be a morphism in P and u E H(P, I) an
I-cokernel of p. In order to show that p is a P-kernel of u, let q : Q - P
be a morphism in P with uq = 0. For an J-monomorphism uo : Q - Io
we obtain a commutative diagram:

Since Ho is faithful, it follows that g factors through p.
The implications (a) =&#x3E; (d) =&#x3E; (c) = (b) are trivial. D

By Proposition 23, we infer

Corollary. If a (T, J)-bimodule H is a cogenerator, then H is non-
degenerate.

Proposition 26 Let H be a (T, J)-bimodule, and A a PI-subcategory
of DS(H). With the associated functors (42), the left- and right-hand
statements are equivalent:
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(a) H is left injective
(b) E is exact
(c) F(g) C Inj(mod(T))

(a’) H is right injective
(b’) F is exact
(c’) E(T) C Proj(com(J)).

Proof. We prove the equivalence of the left-hand statements.
(a) =&#x3E; (c): Let i : M -&#x3E; P be a monomorphism in mod(P) with

P E P, and Pi p’-&#x3E; P0 p-&#x3E;&#x3E; M a projective presentation of M. Then (a)
states that every morphism Po -&#x3E; F(I) with I E 9 which annihilates
p’ factors through ip. Hence every M -&#x3E; F(I) factors through i. This
implies that F(I) is injective in mod(P).

(c) =&#x3E; (b): Since E is left adjoint to F, we already know that E
is right exact. Therefore, it suffices to prove that E respects mono-

morphisms. Thus let i : M -&#x3E; N be a monomorphism in mod(P), and
k : K - E(M) the kernel of E(i) : E(M) -&#x3E; E(N) in com(J). Choose
a monomorphism j : K - I in com(J) with I E J. Then j = lk for
some 1 : E(M) -&#x3E; I. By the adjunction E H F, this morphism I cor-
responds to a morphism l’ : M -&#x3E; F(I), and l’ factors through i since
F(I) is injective. Hence 1 factors through E(i), and thus j = 0. We
infer that K = 0, i. e. E(i) is monic.

(b) =&#x3E; (a): Let P2 p’-&#x3E; Pi p-&#x3E; Po be an exact sequence of projectives
in mod(P), and u : P, -&#x3E; F(I) a morphism with I E J and up’ = 0.
Then E(P2) -&#x3E; E(P1) -&#x3E; E(fo) is, bxac-t, and u induces a morphism
u’ : E(P1) -&#x3E; I in com(g) which annihilates E(p’). Hence u’ factors

through E(p), and thus v, factors .through p. 0

7 Morita varieties and strict almost abel-

ian categories
In this section we shall encounter two classes of almost abelian cate-

gories which possess a natural structure of a PI-category. In view of

Proposition 24, let us define a Morita variety as a PI-variety P O H J cor-
responding to an injective cogeneratpr H, However, we do not assume
that H is balanced. If H is merely a cogenerator, we shall speak of a
faithful PI-variety. Any PI-category with an underlying faithful (resp.
Morita) PI-variety will be called a;faithful PI-category (resp. a Morita
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category). By Proposition 22, 25, and 26, an ample faithful PI-category
is tantamount to an adjoint pair (42) of faithful functors E and F which
are exact in case of a Morita category.

Now let us focus our attention upon the initial category Ao, and the
terminal category A° (cf. §3) of a PI-category A. If A is faithful, then
mod(T(A)) and com(J(A)) can be regarded as full subcategories of A
(Proposition 25), and we have

Our next theorem shows that for a Morita category A, the PI-system is
determined by .A.o and .fl°:

Theorem 5 Let A be a PI-category with PI-variety P(A)OHJ(A). The
following are equivalent:

(a) A is a Morita category.
(b) (38) gives equivalences.:  mod(P(A)) = Ao and com(J(A)) = .A°.

Proof. By Proposition 25, the fuhctbts’(38) are fully faithful if and
only if H is a cogenerator. Under this assumption, H is injective if and
only if the morphisms in P(A) and J(A) are strict. This means that

P(A) C Ao and J(A) C A°. By Proposition 8, the latter implies that
the inclusions (44) are equations. 0

Note: By the preceding theorem, Morita categories can be regarded as
almost abelian categories with an intrinsic PI-structure.

Via the equivalences of the theorem, the functors (42) induce an
adjoint pair of functors:

Corollary. If A is a Morita category, then both of the abelian categories
Ao and A ° have enough projectives and injectives.

Proof. Since Ao is equivalent. to mod(P(A)), we only have to show
that Ao has enough injectives. Let A be an object in Ao. Since M° is
faithful, the unit morphism A - MoMo(A) of the adjunction MO -1 Mo
is monic ([26], IV.3). Since A° has enough injectives, there is an I E
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J(A) and a monomorphism M°(A) -&#x3E; I. By the left exactness of Mo,
this yields a monomorphism A -&#x3E; MoM°(A)-&#x3E; Mo(I), where Mo(I) is
injective in Ao by Proposition 26. 0

Now let P be a projective, J an injective variety, and

an adjoint pair of functors E -1 F with corresponding (P, J)-bimodule

according to Proposition 22. We retain the notations of §6. In partic-
ular, let A be a PI-category belonging ,to H. For any object A in A,
the counit of H° -1 So and the unit of S° -1 H° (cf. (38) and (40) ) yield
regular morphisms

where Eo is P(A)-epic, and 770 is J(A)-monic. (By abuse of notation,
we write 60 for the natural transformation HoSo -&#x3E; 1 as well as for its
A-component, etc.)
Note: If A is a Morita category, then HoSo(A) E ,Ao and H°S°(A) E AO
for all objects A in .A. The restriction of H°S° to ,A.o coincides with MO,
and the restriction of HoSo to A° coincides with Mo of (45).

We shall say that the object A of A is strict if the morphisms (48) are
isomorphisms. Equivalently, this means that there is a cokernel P -&#x3E;&#x3E; A
and a kernel A -&#x3E; I with P E P(A) and I E J(A). Clearly, this concept
is compatible with the notion of strict object in P our 3 introduced in §6,
namely, P e P is strict if and only if Ho(P) is strict in A, and similarly
for I E J. By As we denote the full subcategory of strict objects in A.

Proposition 27 Let E H F be a pair of adjoint functors (46) with
corresponding (T, 9) - bimodule (47), and let A be any PI- category with
a PI-embedding A Y DS(H). Then the functors (38) and (40) yield
equivalences:
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Proof. Let A be an object in As. Then S.(A) = SoH°S°(A) =
SoH°S°HoSo(A) = FESo(A). Hence So(A) is in mod(P)ref, and A =
HoSo(A). Conversely, let A be in mod(P)ref. If qo : A - S’°H°(A)
denotes the unit morphism with respect to Ho -l So, then we have an
isomorphism

Since eo of (48) is a natural transformation, the diagram

is commutative. By (48), êoHosoHo is P(A)-epic, and n°H° is J(A)-
monic. Now consider the morphism Hono: Ho(A) -&#x3E; HoSoHo(A).
By virtue of (50), its composition with HoSon°Ho is an isomorphism,
whereas its composition with êoHo is the identity. Consequently, q’H.
and êoHo So Ho are isomorphisms by (PI2). Since êoHo is also an isomor-
phism, Ho(A) E As. Moreover, we infer that Son°Ho is an isomorphism,
whence (50) implies that qo is an isomorphism. By duality, this com-
pletes our proof. 0

For a Morita category A, we have a rather nice description of As,
hence of the reflexive objects in Ao and Ao:

Proposition 28 Let H be a (T, J) - bimodule which is an injective co-
generator, and A a corresponding Morita category. Then As = Ao nA° .
In particular, ,R.s is an abelian Serre subcategory of A.

Proof. Clearly, Ao n A° C ,As. The reverse inclusion follows by
Theorem 5 and Proposition 8 since for each A in As , there is a cokernel
P - &#x3E;&#x3E; A and a kernel A -&#x3E;&#x3E; I with P E Proj(Ao) and I E Inj (A°). D

We conclude this section with the discussion of strict PI-categories
A which we define by As = A. Equivalently, this says that every T(A)-
epimorphism is a cokernel, and every J(A)-monomorphism is a kernel.
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In this case, we obviously have:

Therefore, the strict PI-categories coincide with the almost abelian ca-
tegories with strictly enough projectives and injectives, and we have
reason to speak of strict almost abelian categories.
Example 1. For an abelian category with enough projectives and
injectives, and a finite poset Q, the almost abelian category An of Ex-
ample 2.5 is strict. In fact, the objects P in An with P(i) projective
for all i E S2 and P(i) -&#x3E; P(j) split for i  j are projective, and for
each F E An, there is a cokernel P - &#x3E;&#x3E; F with such a P. Namely, if

L: F(j) -&#x3E; F(i) --- Ci is exact in A, then the P(i) can be chosen as
ji

EÐ Pj with Pj E Proj(A) such that P(i) - F(i) is induced by morph-
ji
isms Pi -&#x3E; F(i) which arise from epimorphisms Pi -&#x3E;&#x3E; Ci. Thus An has
strictly enough projectives. The dual assertion follows by the obvious
equivalence (AoP)n = Anop. 
Example 2. Let B denote the almost abelian category of (real or
complex) Banach spaces. For any set X , consider the spaces l1 (X ) and
loo (X ) of summable resp. bounded functions on X . For a Banach space
E, the continuous linear maps l1 (X ) -&#x3E; E correspond to maps X -
E with bounded image, and the continuous linear maps E -&#x3E; I’ (X)
correspond to maps X - E’ with bounded image. Hence l1 (X ) is

projective and 1’(X) injective in B. Moreover, the unit ball El 9 E
gives rise to a cokernel ll(E1) -&#x3E;&#x3E; E, and similarly, E 9 1’(E’) is a

kernel in B. Therefore, B is a strict almost abelian category.
Example 3. Let R be a noetherian integral domain with quotient
field K, and A an R-order in a finite dimensional K-algebra A. Let e
be a central idempotent of A. Recently, O. Iyama [22] considered the
quotient category C := A-lat/eA-lat of A-lattices modulo homomor-
phisms factoring through some eA-lattice. His results [22] imply that
C is a strict almost abelian category. If C has a projective object Q
which generates Proj(C), he proves that C is of the form r-lat with an
R-order r.
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Proposition 29 Every strict PI-category A is minimal. If A is ample
or faithful, then A is abelian.

Proof. The minimality follows by Proposition 21. If ,A is ample, then
every morphism in A is strict; if A, is faithful, then Ho : mod(Proj (A))
/+ A is a full embedding. Hence is abelian. D

We shall give a characterization of the PI-variety of a strict PI-
category. Let us call a P-kernel p : P - A in a PI-variety V strict if
each morphism P -&#x3E; I with I E J(V), which annihilates a P-kernel of p,
factors through p. Note that if A E J(V), this just means that p is an
I-cokernel. Dually, a strict I-cokernel is defined.

Proposition 30 For a PI-variety V = T EDH J, the following are equiv-
alent :

(a) The PI-category Lat(H) is strict.
(b) The P-kernels and I-cokernels in V are strict.

(c) Every P-kerael, and every I-cokernel of a morphism u E H(P, I)
in V is strict, and the objects in J’ and 9 are strict.

(d) For each kernel A -&#x3E; P in Lat(H) with P E P, the object A is
strict, and for each cokernel I -&#x3E;&#x3E; B in Lat(H) with I E J, the

object B is strict.

Proof. (a) =&#x3E; (b): Let f : A - B be a morphism in V. By Propo-
sition 19, there is a faithful embedding V Y Lat(H). Let 9 : K - A
be the kernel of f, and p : P -&#x3E;&#x3E; K a cokernel in Lat(H) with P E P.
Then gp : P - A lies in V and is a P-kernel of f . Now let q : Q - A
be an arbitrary P-kernel of f . Then q = gr for some r : Q - K, and
gp = gr o s for some s : P - Q. Hence p = rs, and by Proposition 2, r
is a cokernel. Therefore, if u : Q - I is any morphism in V with I E J
such that v, annihilates a P-kernel of q, then u factors through r. Since
I is injective in Lat(H), u factors through q = gr. Thus we have shown
that q is strict in V, and by duality, this also follows for I-cokernels.

(b) =&#x3E; (c): This holds since an J-monomorphism (T-epimorphism)
u E H(P, I) is just the same as an I-cokernel of 0 -&#x3E; P (resp. a P-kernel
of I -&#x3E; 0 ).

(c) =&#x3E; (d): The conditions in (c) imply that for u E H(P, I), the P-
kernels and I-cokernels of u are strict in Lat(H), and that the objects
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of P and J are strict in Lat(H). Since each kernel A -&#x3E; P in Lat(H)
with P E T is a kernel of some u E H(P, I), it follows that A is strict
in Lat(H). By duality, this implies (d).

(d) =&#x3E; (a): By Proposition 21, and by duality, it suffices to show
that for each kernel A - B in Lat(H) the object A is strict whenever
B is. If B - I is a kernel with I E J, then A -&#x3E; B -&#x3E; I is also a
kernel. If P -* B is a cokernel with P E P, then A is a subquotient of
P, say, A «- C -&#x3E; P. Then by assumption, C is strict. Therefore, a
cokernel Q -&#x3E;&#x3E; C with Q e J’ yields a cokernel Q - C -&#x3E;&#x3E; A, whence A
is strict. D

The following shows how Proposition 30 is related to Theorem 3:

Corollary 1 Let E -1 F be a pair of adjoint functors (46) with corre-
sponding (T,g)-bimodule (47) non-degenerate. Then Lat(H) is strict if
and only if E, F constitute an almost equivalence.

Proof. If Lat(H) is strict, then Proposition 27 implies that Lat(H)
is equivalent to mod(P)ref. By Proposition 11, Q,(Lat(H)) is equivalent
to mod(P). Hence Theorem 3 implies that E, F constitute an almost
equivalence. Conversely, suppose the latter holds, and A, := Lat(H).
Then Proposition 27 shows that mod(P)ref and As are equivalent almost
abelian categories. Since H is non-degenerate, there are full embeddings
P -&#x3E; As P J. Thus by Proposition 30, it remains to prove that every
P-kernel of a given u E H(P, I) is strict. If k : K - P is the kernel of
u: P -&#x3E; F(I) in mod(P), this means that each morphism K -&#x3E; F(J)
in mod(P) with J E 9 factors through k. If P -&#x3E;&#x3E; C is the cokernel of k
in mod(P), then we have an exact sequence K - P -+ C in mod(P)
which entirely lies in mod(y)ref. Hence E(K) -&#x3E; E(P) -» E(C) is
exact in com(J) . Then a morphism f : K - F(J) corresponds to a
morphism E(K) -&#x3E; J which lifts along E(K) -&#x3E; E(P). Hence f factors
through k. D

Recall that a ring R is said to.be. left (right) coherent if every finitely
generated left (right) ideal of R is finitely presented. Equivalently, this
says that the category R-proj (proj-R) of finitely generated projective
left (right) R-modules is a projective variety. Now let R be a left, and
S a right coherent ring. Consider the varieties P = R-proj and J =
(proj-S)°P. Then mod(P) = R-mod, the category of finitely presented
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left R-modules, and com(J) = (mod-S)OP. A slight modification of
Proposition 17 shows that a small (P, 3)-bimodule H is tantamount to a
bimodule RUS with RU and Us finitely presented, and the corresponding
adjoint functor pair is given by (43). Therefore, we write lat(U) instead
of Lat(H). Clearly, H is non-degenerate if and only if RU and Us are
faithful (cf. Proposition 18). Let us call RUS a cotilting bimodules (cf.
[18, 37, 7]) if U is finitely presented and faithfully balanced (i. e. RU
and Us are faithful with R = End(US) and S = (EndRU)°p) with

Corollary 2 Let R be a left, S a right coherent ring, and RUS a bimod-
ule, finitely presented and faithful over R and S. Then lat(U) is strict
if and only if U is a cotilting bimodule.

Proof. By assumption, the varieties P = R-proj and J = (proj-S)°P
constitute a PI-variety V := P s3H J, and Proposition 30 applies. For

P E P, Q E J, a morphism u : P -+ Q in V is given by an R-linear
map u : P -&#x3E; Homs(Q, U). Thus a P-kernel of u amounts to an exact
sequence P’ p-&#x3E; P u-&#x3E; Homs(Q, U) with P’ E P. Hence p is strict if
and only if each R-linear map P’ -&#x3E; Homs(Q’, U) with Q’ E JoP which
annihilates the kernel of p factors through p. Clearly, this statement is
not altered if Q’ is replaced by S, and Q by some finitely generated free
S-module. Hence, the assertion states that every short exact sequence
K y P -+ M of R-modules, with P E P and M finitely cogenerated by
U, the map HomR(P, U) - HomR(K, U) is surjective. But this amounts
to ExtR(M, U) = 0. Thus we have shown that the first assertion in

Proposition 30(c) states that ExtR(M,U) = Exts(N, U) = 0 whenever
M is finitely cogenerated, and N finitely generated by U. In fact, this
statement is equivalent to (52). By symmetry, it suffices to prove:

To show "=&#x3E;", let M E R-mod be given. Consider a free presentation
nM -&#x3E; An -&#x3E;&#x3E; M. Since RU is faithful, we have an embedding A y Um,
whence Ext2 (M, U) = Ext1R(nM, U) = 0. Conversely, let us assume

ExtR«(J, U) = EXt2 (_, U) = 0, and consider an injective resolution
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RU -&#x3E; I0 a-&#x3E;&#x3E;I1. For M -&#x3E; un in R-mod, we have a commutative
diagram:

Hence 8* is epic, i. e. ExtR(M, U) = 0.
Finally, the argument in the proof of Proposition 24(a) shows that

the objects of T are strict if and only if R = End(US). By duality, we
are done. 0

Example 4. For an order A over a Dedekind domain R, the (A, A)-
bimodule A* = HomR(A, R) is cotilting, and lat(A*) is equivalent to
A-lat.

Remark. In conjunction with Theorem 3, the above corollaries yield
a cotilting theorem (cf. [7], Theorem 2.4) for modules over coherent
rings. Moreover, we get the following symmetric characterization of
(co-)tilting torsion theories (cf. [2, 37, 9]):
Theorem 6 Let R be a left coherent ring. An almost dbelian category
A is equivalent to a torsionfree class in R-mod induced by a cotilting
bimodule RUS if and only if Ql(A) = R-mod and Qr(A) = (mod-S’)°P
for somme right coherent ring S’. (Then S’ = S).
Remarks. 1. Equivalently, the condition of the theorem says that A is
strict with Proj (A) m R-proj and Inj(A) = (proj-S)OP for some right
coherent ring S.
2. In the case of an artinian algebra S, Assem [2] considers a tor-
sion class T in S-mod = (mod-S)’P. Then his first tilting condition
states that T contains the injective left S-modules, that is, Qr(T) =
(mod-S)OP. His second condition, saying that T is functorially finite in
S-mod, is equivalent to Ql(T) = R-mod for some artinian algebra R.

8 Locally compact abelian groups
As an example to illustrate some of the preceding results, let us consider
the category C of locally compact abelian groups, with continuous ho-
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momorphisms as morphisms. As already noticed in §2.2, this category
is almost abelian, with the topological direct sum as biproduct, and for
a morphism f : A -&#x3E; B in ,G, the kernel and cokernel are given by

where Ker f and Im f are to be understood in the group theoretical
sense. Then Ker f is endowed with the induced topology, and B / Im f
with the quotient topology. Hence the coimage of f is given by the
quotient A -» Im f , whereas the (categorial) image of f is 1m f yo B.
The three most fundamental objects in L, the group Z of integers, the
reals R, and the circle group T, are connected by a short exact sequence

The projective and injective objects in f, are well-known ([28], Theo-
rem 3.2 and 3.3):

Proposition 31 An object P in ,G is projective if and only if P =
Rn O z(m) for sorrze n E N and a cardihal,m;- an object I in L. is,’injective
if and only if I = Rn O Tm with n ei N. and.a cardinal m. In both cases,
n and m are invariants for P and I, respectively.

In particular, the bijectives in ,G are just the vector groups R". There
is a natural way to split off bijectives from an arbitrary group A in L.
Define C(A) as the connected component of zero in A, and B(A) as the
union of compact subgroups of A. Then C(A) is the smallest closed

subgroup of A which contains all the images of morphisms R - A ([21],
Theorem 25.20); and B(A) is the largest closed subgroup of A which is
annihilated by every morphism A -&#x3E; R ([21], Theorem 24.34).

Proposition 32 For A in ,G, the following are equivalent:

(a) A does not have R as a direct summand.
(b) C(A) C B(A).

Proof. (a) =&#x3E; (b): Suppose C(A) 0 B(A). Then there exists a

morphism i : R - A with image not in B(A), i. e. there exists a
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morphism p : A - R with pi # 0. Hence pi : R - R is a topological
automorphism of R, and thus R is a direct summand of A.

(b) =&#x3E; (a): If R would be a direct summand of A, there would be

morphisms R I A 5 R with pi = 1. Thus C(A) C B(A). 0

The following cancellation lemma generalizes the Krull-Schmidt The-
orem :

Lemma 8 Let C be an object in an additive category with End(C) local.
Then A El) C Ef B 0 C implies A = B.

Proof. The isomorphism A O C = B O C is given by mutually inverse
morphisms (a b c b) : A s3 C -&#x3E; J3 C C and (p q r s): B O C -&#x3E; A O C. Hence
(p q r s) (a b c d) = 10) yields rb + sd = 1. Since End(C) is local, there are two
cases:

Case 1: sd is invertible. Then q - -pbd-1, c =’-s-lra, and pa +
qc = 1 implies p(l + bd-1s-1r)a = 1, and b = -aqs-1 yields a - p(1 +
bd-ls-lr) = ap - aqs-lr = ap + br = 1. Hence a : A -&#x3E; B is an

isomorphism.
Case 2: rb is invertible. Then B = B’ s3 B" with induced isomor-

phisms b : C ~-&#x3E; B" and r : B" ~-&#x3E; C. Hence by Case 1, we obtain
A=B’OC=B. 0

As an immediate consequence we get the uniqueness result proved
in [5] (cf. [21], Theorem 24.30):
Proposition 33 Any locally compact abelian group G is of the form
Rn EÐ A with n E N, where A has no direct summands isomorphic to R.
The isomorphism class of A, and n E N are uniquely determined by G.

Proof. Let U be a compact symmetric neighbourhood of zero in G.
Then U + U is compact. Hence U + U is contained in U + F for a finite
set F C G. Therefore, the subgroup (U) generated by U is contained
in U + (F). Since (U) is open, we have C(G) C (U) C U + (F). Now
if G = Rn EÐ A, then the projection p : Rn O A -&#x3E;&#x3E; Rn maps U + (F)
onto Rn = p(U) + (P(F)). Since p(U) is compact, we infer that the R-
subspace generated by p(F) cannot be proper in R". Hence n  |p(F)|,
and the assertion follows by Lemma 8. 0

Note: Nevertheless, the R-dimension of HomC(R,G) or HomC(G, R)
can be infinite! Notice also that we have not made use of Proposition 32.
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By Proposition 33, the structure of ,G reduces to that of the full
subcategory of objects A with C(A) c B(A). In fact, this category is
just a minimal PI-category:
Theorem 7 The category,G of locally compact abelian groups is a Mori-
ta category with L. = Ab and ,G° = Ab°p, the category of compact
abelian groups. The minimal PI-subcategory C of C coincides with the

full subcategory of objects A with C(A) C B(A), i. e. without direct
summands R. The defining (Z, Z) - bimodule for ,C is T.

Proof. For any A in C, there are regular morphisms Ad - A - Ab,
where Ad denotes the group A with the discrete topology, and Ab is the
Bohr compactification of A (see [21], 26.11). Hence C. = Ab, and £°
consists of the compact groups in C. Therefore, let P(C) = Proj(Ab)
be the full subcategory of free abelian groups in C, and J(L) the full
subcategory of products Tm for some cardinal m. For sufficiently large
m, we have an epimorphism Z(m) -&#x3E;&#x3E; Ad, i. e. a cokernel in ,G, and a
kernel Ab -&#x3E; Tm . Hence we obtain a P(C)-cover p : Z(m) -&#x3E; A and

an J(£)-hull A -&#x3E; Tm. In order to verify (PI2), let r : A - B be a

P(C)-epimorphism and J(C)-monomorphism in C . Then r induces an
isomorphism Ad ~-&#x3E; Bd, and an isomorphism J3 ~-&#x3E; A of the character
groups. By a result of Kaplansky and Glicksberg [17] (cf. [4], 10.6), this
implies that r is an isomophism in C, and thusc is a PI-category. By
Theorem 5, C is a Morita category.

Next let us determine L. Since R is bijective, the objects without R

as direct summand form a P¡:.subcategory of £. For each such object
A, the argument in the proof of Proposition 33 shows that C(A) is

compact, and since A/C(A) is 0-dimensional, this implies that there is
a compact open neighbourhood U of 0 in A. Hence there is a symmetric
neighbourhood V of 0 with U + V = U, and thus V generates a compact
open subgroup C of A. This yields a short exact sequence C -&#x3E; A -&#x3E;&#x3E; D
with a discrete group D. If C -&#x3E; I is a kernel with I E J (C), the
pushout
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shows that A is a subquotient of some 1 s3 P with P E P(C), whence
A E L by Proposition 21. Finally, Proposition 17 yields the (Z, Z)-
bimodule H (Z, Z) = HomC(Z, T) = T. D

By a self-duality of a category we understand a functor D : Aop -&#x3E;
A with a natural isomorphism D 2 ~-&#x3E; 1. In view of the preceding the-
orem, Pontrjagin’s duality theorem generalizes as follows:

Proposition 34 An ample Morita category A with T = Proj (A.) and
J = Inj(A°) is self-dual if and only if there exists an equivalence D :
TOP ~-&#x3E; J and a natural isomorphism

Proof. If A admits a self-duality D : AoP -&#x3E; .A,, then D induces
an equivalence (Ao)OP ~-&#x3E; A°, hence an equivalence D : Pop ~-&#x3E; J, and
thus an isomorphism (55) which is natural in P and Q. Conversely,
if these conditions are satisfied, then (55) defines a self-duality of the
ample category A. D

Corollary. Let S be a commutative ring, P = Proj(S-Mod) = JoP,
and SU an injective cogenerator. Then the Morita category DS(sUs) is
self-dual.

Proof. In view of Proposition 17, H(P, Q) = Homs(P, Homs(Q, U))
= Homs(P OS Q, U) = H(Q, P), whence the assertion. O

For the Morita category ,G, this implies that L is self-dual (Proposi-
tion 21). Since the unique indecomposable bijective object R is carried
into itself under the duality of ,G = DS(T), the corollary reduces to
Pontrjagin’s theorem if U is specialized to the Z-module T.
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