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INVERSE FUNCTION THEOREMS FOR
BANACH SPACES IN A TOPOS

by Eduardo J. DUBUC and Jorge C ZILBER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLI-3 (2000)

R6sum6. En [4] nous avons construit une immersion de la cat6gorie
d’ ouverts d’ espaces de Banach et des fonctions holomorphes dans
un topos mod6le analytique de la GDS [3]. Cette immersion

pr6serve les produits finis et elle est consistante avec le calcul
diff6rentiel.

Nous 6tudions ici les fl6ches dans le topos entre des espaces de
banach. Nous d6montrons qu’ elles peuvent 8tre consid6r6es comme
des fonctions entre ces espaces-IA, et qu’elles s’ averent Goursat ou
G-holomorphes. En plus, elles doivent être compatibles, dans un
certain sens, avec les congruences d6finies par les id6aux dans les
anneaux de germes qui d6finissent les objets du site. La continuite
de la fl6che dans le topos par rapport à la topol.ogie banach corre-
spond exactement a la condition d’ etre holomorphe dans la fonction.
Cependant, ce n’est pas le cas en ce qui concerne les variables in-
ternes de type exponentiel. Nous avons introduit une condition plus
forte qui determine un subobjet de 1’exponentielle strictement con-
tenu dans celui determine par la condition de continuite et qui d6finit
la notion interne correcte de fonction holomorphe.

En nous servant de ces r6sultats, nous avons d6v6lopp6 l’infras-
tructure n6cessaire afin de pouvoir quantifier sur des variables holo-
morphes internes dans le topos et nous avons d6montr6 des th6or6mes
internes de la fonction inverse pour les espaces de Banach.

Introduction.

In [4] we have constructed an embedding j: B - T from the category B
of open sets of complex Banach spaces and holomorphic functions into the
analytic (well adapted) model of SDG T introduced in [3]. This embedding
preserves finite products and is consistent with the differential calculus.

Then, in [5] we consider a topological structure in the topos (in the sense
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of [1]) on objects of the form j B and the exponentials j BX , with X any
object in the site of definition. The topology in j BX strictly generalizes
the "canonical" topology in the set of complex valued morphisms of analytic
spaces considered, for example, in [6].

Here in section 1 we investigate the nature of the arrows A: 3 B,
jB2 in the topos between open sets of banach spaces. We prove that the

global sections functor T: T -&#x3E; Ens is faithful, when restricted to the full
subcategory of objects in the image of the embedding j : B -&#x3E; T . This
means that the arrows in the topos can be considered as functions between
the sets of global sections f = T(A):B1 -&#x3E; B2 such that satisfy some
condition. This condition turns out to be related to the notion of Goursat
or G-holomorphic function. It follows that an arrow A: I Bl B2 is
continuous for the inherited topology if and only if it is of the form j f for a
(unique) holomorphic function f : B1 -&#x3E; B2 . We can say then that continuity
for the inherited opens in the topos is a condition that means that an arrow

jBi - jB2 is holomorphic. It defines a subobject of the exponential
j Bj2 B1 allowing internal quantification (on inherited continuous) variables
of type j Bj2 B. However, this condition is not enough to grasp the meaning
"holomorphic" for the internal logic of the topos. This lead us to study
several stronger conditions which define subobjects of the exponential, and
which will allow the correct internal quantification on holomorphic maps.

In section 2 we consider infinitesimal and local inverse function theorems
for objects of the form j B . It turns out that the infinitesimal inverse
function theorem for an arrow of the form j f is equivalent to the classical
local inverse function theorem for the holomorphic function f . The inverse
function theorems are internal statements in the logic of the topos, and
can be stated and proved using the quantification on holomorphic variables
developed in section 1.

For the convenience of the reader and to set the notation we start recalling
some facts.

0. Recall of some definitions and notation.

The topos T is the topos of sheaves on the category H of (affine) analytic
schemes. 

0.1.1 Recall briefly from [3] the construction of T . We consider the

category H of (affine) analytic schemes. An object E in H is an A -ringed
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space E = ( E, COE ) (by abuse we denote also by the letter E the underlying
topological space of the A -ringed space) which is given by an open subset
D of Cm , and two coherent sheaves of ideals R , S in OD , R C S .
Then, E = supp(S), 0 E = (0 D / R) (the support or set of zeroes of S
and the quotient by R respectively). The arrows in H are the morphism of
A -ringed spaces. We denote by T the topos of sheaves on H for the (sub
canonical ) Grothendieck topology given by the open coverings. There is a
full (Yoneda) embedding H - T . Notice that for an infinite dimensional
banach open B , the A -ringed space (B, OB) is not in H.

Let B be the category of open sets of complex Banach spaces and
holomorphic functions. The embedding j: B - T is defined in [4] as
follows:

0.1.2 Let E be an object in H, E = (E, OE) as above, let B be an
open subset of a complex Banach space, and let t = (t, T) be a morphism
of A-ringed spaces, t: (E, OE) -&#x3E; (B, OB) (we adopt the corresponding
abuse of notation for morphisms). We say that t has "local extensions", if for
each x E E , there is an open neighborhood U of x in C’ and an extension
(f,f*):(U,Ou) -&#x3E; (B, OB) , t(x) = f (x) , and T = p o f * (where p is
the quotient map). The set

jB(E) = {t: (E, OE) -&#x3E; (B, COB) such that t has local extensions}
defines the sheaf j B E T . It follows in a natural way that j B is a sheaf
and that j is functorial. It is clear that r(jB) = B for all B E B, and
r( j f ) = f for all arrows f : B1 - b2 in B .

0.1.3 An arrow t: E -&#x3E; j B in T corresponds to an element t ej B(E) ,
that is, t: (E, OE) -&#x3E; (B, OB) is a morphism of A -ringed spaces with local
extensions. Then, t = (t, T) where t: E -&#x3E; B is continuous, and it is
immediate that r(t) = t (notice here the abuse of language). If E is of the
form (U, Ou) for an open set FI C C’ , then t is an holomorphic function
and T = t* , see [4, 1.2]. Thus, if t , r: U -&#x3E; j B are such that r(t) = T (r) ,
then t = r .

Concerning the inherited topological structures we recall from [5] the
following:

0.2.1 Consider a (fixed) object F in T such that the set of global
sections r(F) is furnished with a (unnamed) arbitrary topology. Assume
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that the topology in. r(F) is Haussdorf and that for any object E in the site
and anyarrow q: E -&#x3E; F in the topos T , the function q = r(q) : E -&#x3E; r(F)
is continuos. Then, an inherited topological structure in the sense of [1] is
determined in the object F . Essentially we can think that the inherited-
open subobjects are those subobjects whose sets of global sections are open
subobjects of r(F) (all the technical requirements for this are developed in
detail in [5], were we develop as well the basic properties of this construction).
In particular, we have:

0.2.2 Let Fl and F2 be objects in the topos such that their sets of
global sections T(Fl) and r(F2) are furnished with topologies as in 0.2.1
above. Then, an arrow in the topos f : F1 -&#x3E; F2 is continuos for the inherited
topological structures if and only if the function between the global sections
T( f ): r(Fl) -&#x3E; r(F2) is continuos.

1. On the arrows between open sets of banach spaces in the topos.

We shall investigate now the nature of the arrows X : j B1 - j B2 in the topos
between open sets of banach spaces. We prove that the functor r: T -&#x3E; Ens ,
when restricted to the full subcategory of objects in the image of the embed-
ding j : B -&#x3E; T is faithful. This means that the arrows in the topos can be con-
sidered as functions between the sets of global sections f = F(A): Bi - B2
such that satisfy some condition. This condition turns out to be related to the
notion of Goursat or G -holomorphic function.

1.1 Proposition. Let Bi and B2 be open subsets of complex Banach spaces
and let A and ii be arrows in T, X , u: jB1 -&#x3E; jB2. If T(X) = T(u),
then A = p.

Proof. We have to see that A o r = u o r for any given E C H, and
r: E -&#x3E; JB1 in T. But T(Xo r) = T(A) o T(r) = T(u)oT(r) = T(u o r) . If
E is of the form ( U, Ou) for an open set U C Cn, then Xor, uor: U - jB2
are just holomorphic functions, thus A o r = u o r , see 0.1.3 above. In the
general case we have an (open) covering Eoc -&#x3E; E , Eoc C Ua C Cn , and
holomorphic extensions fa : Uoc -&#x3E; j B1 , falEoc = r I see 0.1.2 above.
Thus, aswehavejustseen, À 0 ! a = J-l 0 fa . It follows that À 0 r I Ea = J-l 0 r I Ea ’
and in consequence also Xo r = u o r D
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In view of this proposition, the arrows A : j Bi - j B2 can be considered
to be functions f : B1 -&#x3E; B2 which satisfy a certain condition. In our next
theorem we explicitly describe this condition, which turns out to be related to
the notion of Goursat or G -holomorphic function. Before it is convenient to
consider some definitions. Recall that a function f : B1 -&#x3E; B2 between open
sets of banach spaces is Goursat or G -holomorphic if given any U C C
open, and any line segment defined on U , a + xb: U -&#x3E; B1 ( x a variable
in U , a E B1, and b any vector in the banach space containing .61), the
composite f (a + xb): U -&#x3E; B2 is holomorphic (see [7, II, 8]). In this paper
we shall adopt a seemingly stronger condition as the defining property for
G -holomorphic functions:

1.2 Definition. We say that a function f : B1 -&#x3E; B2 between open sets of
banach spaces is Goursat or G -holomorphic if given any U C C open,
and any holomorphic curve defined on U , r: U -&#x3E; Bl , the composite
f o r: U -&#x3E; B2 is holomorphic.

Remark that with this definition it is immediate to see that the com-

posite of two G -holomorphic functions is G -holomorphic. Conversely,
if the weaker definition quoted above happens to be closed under com-
position, then given any holomorphic curve h: U -&#x3E; B1, the composite
f o h: U - B2 would be G -holomorphic, and thus clearly also holomor-
phic (any G -holomorphic function defined on U is holomorphic, just take
the line 0 + x 1 ). It follows that definition 1.2 is the "correct" (closed under
composition) notion.

We recall that the difference between G -holomorphic and holomorphic
functions is in the continuity condition. In fact, a function is holomorphic if
and only if it is continuous and G -holomorphic [7, II, 8.7].

1.3 Proposition. All G -holomorphic functions h: U - B , defined in an
open set U C C" with values in any open set B of a Banach space are
holomorphic.

Proof. Clearly the function h is separately holomorphic, that is, it is

holomorphic in each variable when the others are held fixed. But then it is
known that any such function is holomorphic, see [7, VIII, 36] . D

1.4 Corollary. Let f : B1 -&#x3E; B2 be a G -holomorphic function between
open sets of banach spaces . Then, given any open set U c en and



212

an holomorphic function r: U - B1, the composite h o r: U -&#x3E;C is

holomorphic.

Given a point x E C" and an ideal Ix C 0" in the ring of germs
of holomorphic functions, consider an open subset B C C of a banach
space C . Recall from [5, 3.1 b] that we say that two B -valued germs
of holomorphic functions [s]x , [t]x are equivalent modulo Ix if for all
continuos linear forms a E C’ , [a o (s - t)]x E Ix . That is, s = t mod(Ix)
if for all 0 E Cf ocos=ocotmod(Ix).
1.5 Definition. Let x be a point x E C, and Ix C 0" an ideal in the ring
of germs of holomorphic functions. We say that a G -holomorphic function
f: B1 -&#x3E; B2 between open sets of banach spaces, B1 C C1, B2 C C2
has good reduction modulo Ix if given any pair of holomorphic B1 valued
germs [s]x , [r]x , if r = s mod(Ix), then also f o r = f o s mod(Ix) . That
is, if the following implication holds:

If for all continuous linear forms a E C’, [a o r - a 0 s]x E Ix, then
also for all continuous linear forms (3 E C2, [(30 ( f o r) -,3 0 ( f 0 s) ] x E Ix .

If we think the composition with the continuous linear forms as the
"coordinates" of an holomorphic function, then this condition on f says
that if any pair of holomorphic functions r and s as above have the same
coordinates modulo Ix , then this is also the case for the composites f o r
and f os. 

An important consequence of a result we proved in [4] ([4, 2.6]) is the
following:
1.6 Proposition. With the notations in the previous definition, a G -holomor-
phic function f has good reduction modulo Ix if and only if given any pair
of B1 valued germs [s]x, [r]x, s(x) = r(x) = p, the following implication
holds:

If for all germs [t]p E OB1,p, [t o r - t o s]x E Ix, then also for all
germs [u]q E OB2,q, [u o (f o r) - u o (f o s)]x E Ix . Here q f (p).

Proof. It is an immediate consequence of [5, 3.3]. El

1.7 Remark. All holomo rphic functions have good reduction.

Proof. With the notations in 1.6, consider the germ t = u o f . []
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Notice that u o f is not necessarily holomorphic in general. G-

holomorphic functions which do no have good reduction are necessarily
non holomorphic, which amounts to say that they are not continuous. We do
not know yet any explicit example of a G -holomorphic function which does
not have good reduction.

1.8 Theorem. A function f : B1 -&#x3E; B2 C C2 between open sets of banach
spaces determines a (unique) arrow in the topos X: jB1-&#x3E; jB2 such that
f = r( À) if and only if it is G -holomorphic and it has good reduction
modulo Ix for any point x E en , and any ideal Ix C Onx.

Proof. By proposition 1.1 a function I: B¡ -+ B2 is of the form

f = T(X) for at most one arrow X.
Assume f = r(a) and let r: U -&#x3E; Bl be an holomorphic function. This

defines a section of jBi , r: U -&#x3E; j B1 , and the composite A o r: U - j 82
is a section of j B2 . Thus (see 0.1.3 above) f o r = T(X) o r = T(a o r) is an

holomorphic function. This shows that f is G -holomorphic. Conversely,
if f is G -holomorphic, a section of j Bl defined in U , r: U -&#x3E; j B1 ,
determines an holomorphic function U -&#x3E; Bl (0.1.3 above), and then the
composite f o r in turn defines a section U -&#x3E; j B2 . This is the data that
determines the action A o r (on sections r defined on open sets U ) of an
arrow A in the topos. We shall see now that the possibility to extend this
data to sections defined in a general object E in the site is equivalent to the
good reduction of f .

Let s: E - jBi be a section. Then (see 0.1.1 and 0.1.2 above) s is

a morphism of A -ringed spaces s: (E, OE) -&#x3E; (B1, COB1), s = (s, 0’) ,
Qx: OB1,p -&#x3E; Ex = Oxn /Ix , p = s(x) , E C U C en. Since s has local
extensions, there is an open covering Ea C E , Ea = Ua n E , Ua C U , and
holomorphic functions r,,: Uoc -&#x3E; Bl , such that Vx E Eoc , ra(x) = s(x)
and px o roc* = 6x, where px: 0" -+ Ex is the quotient map. Assume f
has good reduction. We then define for each a , (A o S) ( ( f o s )l Eoc,
00): (Eo, OEo:) -+ (B2, OB2)’ where, for x E Era . 0az = pxO (f o ra)* .
We have to see that this is well defined, that is, it does not depend on the
choice of the extension ra , and (to determine an arrow A o s: E -&#x3E; jB2 in
the topos), that it defines a compatible family for the covering. Both these
statements are clear for the first coordinate of the morphism ( f o s) lEoc . We
now pass to see that they hold also for the second coordinate 0, . Let [t]p,
[u]q be any two germs [t]p E OB,,p [u]q E OB2,q p = s(x) = ra(x),
q = f (p) . Then we have ax ([t]p) = px o r*oc ([t]p) = px ([t o roc]x), and
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8ocx([U]q) = px o ( f o roc)*([u]q) = Px([u o ( f o roc)]x). Considering that
Qx is defined as part of the data for the section s: E -&#x3E; j B1 , the needed
statements for 0, follow simultaneously and immediately from the good
reduction of f and proposition 1.6.

Conversely, assume f = F(A). Let x be a point x E C’ , and Ix C On
be an ideal in the ring of germs of holomorphic functions. It is known (see
[4, 2.1], [3, pp. 191]) that there is an open set U C C’ and a finitely
generated ideal I(U) C O(U) which generate Ix . Clearly I(U) deter-
mines a coherent sheaf of ideals I in Ou equal to Ix at the point x .

Let J be the principal ideal J = {h E O(U) I h(x) = 0}. This pair
of ideals define an object (E, OE) in the site such that E = {x}, and
O E, z = On x lIx. Remark that E C U as objects in the topos. Given any
two Bl valued germs [s]x, [r]x, as in definition 1.5, defined, say, in an
open set U , r , s: U -&#x3E; Bl . Assume that r(x) = s(x) = y, and that for all
germs [t]p E OB1,P’ [t o r - t o s]x e Ix. Then the restrictions of r and s
to E in the topos are equal, rlE = slE. Thus, also (A o r) lE = (A 0 s) IE .
Since f o r = T(X o r) and f o s = F(X o s) , it follows that for all germs
[u]q E ()B2,q, [u o ( f o r) - u o ( f o s)]x E Ix . Thus, again by proposition
1.6, f has good reduction modulo Ix. D

We shall determine now which are the arrows in the topos that correspond
to holomorphic functions. The answer is given by the topological structure
(in the sense of [1]) on jB inherited from the topology of the banach space
B (see 0.2:1 above).

We denote this structure with the letter ’ K’, K[j B] C [j B] = Q [j B]=
S2B (see [5]). Essentially we can think that the k -open subobjects are those
subobjects whose sets of global sections are open subobjects of B .

We shall see that an arrow X : j B1 - jB2 is continuous for the inherited

topology if and only if the function f = T(X):i B1-&#x3E; B2 is holomorphic. In
this case, it follows from 1.1 that A is of the form A = j f for a (unique)
holomorphic function f: Be B2, f - r(A), thus r (A) = A .

1.9 Proposition. Let Bl and B2 be open subsets of complex Banach spaces
and let f be an holomorphic function, f : B1-&#x3E; Bz . Then, j f is continuous
for the x -structure.

Proof. Since f = T ( j f ) , the proof follows immediately from 0.2.2
above. D



215

1.10 Proposition. Let Bl and B2 be open subsets of complex Banach
spaces and let A be an arrow in T , A: j B1 -&#x3E;j B2. Then, A is continuous

for the K -structure if and only if r(A): BI B2 is holomorphic. In this

case, jT(X) =A.
Proof. By 0.2.2 above if follows that A is continuous for the K -structure

if and only if T(A): B1 -&#x3E; B2 is continuous. By theorem 1.8 we know that,
in particular, T(X) is G -holomorphic. The proof follows recalling that a
G -holomorphic function is holomorphic if and only if it is continuous (see
[7, II, 8.7]). The final statement is clear by 1. 1. R

We shall see now that continuity for the rc topological structure actually
defines a subobject of the exponential j B4Bl in the topos. This allows

internal quantification on K -continuous arrows.

1.11 Definition-Proposition. Let Bl and B2 be open subsets of complex
Banach spaces. We define a subobject x [ j B1 , j B2] C jB4Bl by the follow-
ing condition:

dX E H, Vq:X -&#x3E; jBjB12 in T, q factors through K[jBl,jB2] 
iff the corresponding arrow j Bl x X -+ jB2 is K -continuous. By r,-

continuous we mean continuous for the K -structures and the product struc-
ture on j Bl x X (for precision on the product structure see [5, 2.5j)

Proof. We have to show that this property defines a subsheaf of jB 2 jB,
a) Given r: E -&#x3E; X in H, and q: X -&#x3E; jBj2B1 ,

if j Bl x X - j B2 is k -continuous , then so is

b) Given a covering ri : Ui - X , and q: X -&#x3E;j Bj2 B1 , 
if is x -continuous, then so is

Both statements follow easily using 0.2.2 above (see also [5, 1.7]). For
the second notice that since Ui - X is an open covering, then so is
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In proposition 1.10 we have shown that for arrows jBi -&#x3E; jB2 in the

topos, the property of K -continuity captures the meaning of being holo-

morphic. However, for variables of type j B 2 jB, the internal notion of

n -continuity defined by the subobject K[jBI,jB2] C j BjBi is not strong2

enough to capture correctly the internal meaning of being holomorphic.

1.12 Definition-Proposition. Let BI and B2 be open subsets of complex
Banach spaces. We define a subobject Hol (jB1, jB2] C jBj2B1 by the
following condition:

dX E H, X C Cn and Vq:X -&#x3E; jBj2 B1 in T, q factors through
Hol [j B1 , j B2 ] iff the corresponding arrow q:jBI x X - jB2 has local
extensions.

By this later condition we mean that given any point ( p, x) E Bl x X ,
there are open sets Ween, H C B1, ( p, x) E H x W and an holomor-
phic function g: H x W -&#x3E; B2 such that the following diagram commutes
in the topos:

Recall that j(H x W) = jH x W (see [4, 3.2]), and remark that this
condition is much stronger that just the commutativity on the global sections.

Proof. We have to show that this property defines a subsheaf of j Bj2 B1 :
a) Given r: E -&#x3E; X in H , and q: X -+ jB4B1 , if j B1 x X - j B2 has

local extensions, then so has j B, x E -&#x3E;jB1 x X -&#x3E; j B2 .

b) Given a covering ri: Ui -&#x3E; X , and q: X -&#x3E; jBj2 B1 , if

have local extensions, then so has j B1 x X - j B2 .
The statement a) follows from the fact that the arrows r: E - X in

H , E C 01 , X c en have local extensions in the sense that given any
x E E and open Ween, r ( x ) E W , there is an open V C C’ and an
holomorphic function g: V - W which is an extension of r in the obvious
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sense. The statement b) is straightforward from the fact that Ui -&#x3E; X is an

open covering and X C en has the subspace topology. D

The inherited CU -topological structure in the exponential jBX2 (see
[5, section 3]) can also be used in the obvious way to define a subobject of

j Bj2 B1 , namely:

1.13 Definition-Proposition. Let B1 and B2 be open subsets of complex
Banach spaces. We define a subobject CU[jB1,jB2] ] C jBj2 B1 by the
following condition:

VX e H , V q : X -&#x3E; j Bj2B1 in T , q factors through C U [jB1, jB2 ] iff

the corresponding arrow jB1-jBX2 is continuous for the inherited k and
C U structures.

Proof. We have to show that this property defines a subsheaf of j Bj2B1 .
a) Given r: E -&#x3E; X in H, and q: X -&#x3E; j Bj2B1 ,

if jB1 -&#x3E; jBX2 is continuous, then so is jB1 -&#x3E; jBZ2 -&#x3E; jBE2.
b) Given a covering ri : Ui -&#x3E; X , and q: X -&#x3E; j Bj2 B1 ,

if Vi jB1 -&#x3E; jBX2 -&#x3E; jBU2 is continuous, then so is jB1 -&#x3E; jBX2.

The statement a) follows immediately from the fact proved in [5, 3.11]
that the arrow induced by r, jBX2 -&#x3E; jBE2 is continuos for the CU topo-
logical structure.

The proof of b) is easy. By 0.2.2 above we can work with the sets of
global sections. The part corresponding to the map [X, B2] -&#x3E; C(X, B2 )
follows using the fact that a compact set Ii of X is of the form K = K1 U
K2 U ... U Km, K i C Ui , compact subsets of Ui . The part corresponding
to the morphisms [X, B2 ] -&#x3E; Onx (B2 ) /Ix is immediate since the fibers are

the same. D

The three conditions defined on the variables of type jBj2B1 are obvi-

ously related, we have:

1.14 Proposition. With the notations in 1.11, 1.12, and 1.13. there is an

inclusion of subobjects Hol[jB1,jB2] C C U [ j B1 , j B2 ] C k[jB1, jB2].
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These inclusions collapse for the global sections, that is, for actual arrows
j Bi - j B2 in T, .

Proof. Let q: X -&#x3E; jBj2B1 . Assume that q E Hol [jB1, jB2]. We will
show that the corresponding arrow q:jB1 -&#x3E; jBX2 is continuous in the sense
of 1.13. By 0.2.2 we have to do this for the function q: B1 -&#x3E; [X, B2] . Let
( p, x ) C Bl. x X and consider an holomorphic extension g: hT X W -&#x3E; B2 -
With these data at hand, a proof of the continuity of q : Bi - [X, B2] can
be done following exactly the same lines that the proof of proposition 3.8 in
[5]. Thus, we have proved that q E CU [jB1, jB2]. Then in particular the
composite B1 -&#x3E; [X, B2] - C(X, B2) is continuous. Since X is locally
compact, the topology on C(X, B2) is exponential, thus the corresponding
function B1 x X - B2 is continuous. Thus by 0.2.2 above it follows that
q e k [jB1, jB2]. This finishes the proof of the first statement. The second
statement clearly follows from proposition 1.10. D

We see in this proof that the condition q C k[jB1,jB2] is clearly
weaker than the condition q E CU ( jB1, jB2 ) since it corresponds to only
the continuity of the composite Bi - [X,B2] ] -&#x3E; C(X,B2). When

q C CU[jB1,jB2], the continuity of all the composites

B1 -&#x3E; (X , B2] -&#x3E;Onx (B2)/Ix

imposes an stronger condition. This condition is probably strong enough
to guarantee the existence of local extensions. Recall that if a sequence
of germs in Onx ( B2 ) is convergent then the whole sequence "lift" to some

Hol (W, B2 ) with W open, x E W (see [5, 3.4]). Using this fact, since B1
is first countable, it can easily be seen that given a map B1 -&#x3E; 0" (B2), there
are open sets H x W , (p, x ) E H x W , and a lifting H - Hol(W, B2) -&#x3E;

Onx(B2). If this lifting is continuous, then it follows that we have local

extensions in the sense of 1.12. We conjecture that this is the case, so that
we would have the interesting fact Hol [jB1, jB2] = C U [jB1, jB2].

2. The inverse function theorems

In this section we shall prove an infinitesimal inverse function theorem in the

topos. This theorem turns out to be equivalent to the classical local inverse
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function theorem for holomorphic maps between open sets of banach spaces.
We shall also prove a local inverse function theorem in the topos.

Let B be an open set of a banach space C and consider the inherited

topological structure on jB, k[jB] c Q[jB] = QB (see 0.2.1 above).
Recall that given any x E j B in the topos, the infinitesimal neighborhood
of x is defined as the intersection of all K -open neighborhoods, Kx(jB) =
n {U E k[jB]lxeU}. On the other hand there exist the Penon or intrinsic
infinitesimal neighborhood AB(z) = 77{x}, where ’ II’ indicates the
double negation in the logic of the topos. In [5, 1.13, 2.5] it is proved that
KX(3B) = AB(X), and that OB(x) = AC(O) = 77{O}. Thus the objects
OB(x) are isomorphic for all the points x in B, they define the object
of infinitesimals of B , that we simply denote by AB. This object can
be thought in a sense as to be represented by the ringed space consisting
on a single point of B structured with the whole ring of complex valued
holomorphic germs (for more precision see [5, 2.2, 2.3]).

From now on, we assume, without any loss in generality, that 0 E B
and AB = AB(0).

2.1 Definition. We say that a function f E AAB is holomorphic if it has
an holomorphic extension. This determines the subobject Hol[AB,AB] C
OBB of holomorphic functions. It is defined by means of the following
formula:

and such that

Recall that (internal) existential quantification means local existence. It
can be checked by Kripki-Joyal semantics that given X c C" in the site,
and f: X - A ABB (with corresponding f : AB x X - AB), then f factors
through Hol[AB, ABI if and only if for each x in X , there is an open
subset S C B x en, (0, x) ES, and an holomorphic function g: S - B
such that the diagram below commutes in the topos. Notice that S can be
taken of the form s = H x W , for open sets H C B , Ween, and that
AB C jH:
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In particular (X = 1), any actual arrow in the topos AB -&#x3E; A B which
is in Hol[AB, AB] has an holomorphic extension into some j H , for an
open subset H of B .

Recall that 3 (H x W ) = j H x W [4,3.2], and remark that this condition
is stronger that just the commutativity on the global sections.

If D C C is the object of infinitesimals of square 0, recall that the
tangent bundle of any object F in the topos is the exponential T ( F) = FD ,
and that the derivative of any map g: F - G in the topos is defined by
Dg = gD . Given any p E F , we have the derivative at p between the
tangent spaces Dg(p): Tp(F) -+ TQ(G) , q = g(p) . Since D C 77{0}, it
follows that any tangent vector ( E FD factors through 77{p} = AF(p) ,
the infinitesimal neighborhood of its base point p = ç(0). Thus, given
any p E F, there is an identification of tangent spaces Tp(AF(p)) =
Tp(F) . Also, given any g: F - G , g(AF(p)) C AG(q), q = g(p), thus
the restriction of g defines a map f = glA: AF(P) -&#x3E; AG(q). Via the
identification of tangent spaces, we have Df (p) = Dg(p) . In particular we
have:

2.2 Observation. Let B be an open subset of a banach space,

f E HOI[AB, ABI, and g E Hol[H, jB] be any extension of f into an

open subobject H E K[jB]. Then Df(0) = Dg(O) (notice that it follows
that AH = AB since H is k -open).

Recall that all this synthetic differential calculus is compatible with the
classical calculus on banach spaces, in a precise sense described in [4, section
4]. From this it follows 

2.3 Definition-Proposition. Let B be an open subset of a complex Banach
space C. Let f E Hol[AB, AB]. Then D f (0) E H ol[jC, jC]. We say
that Df (0) is invertible if it has an inverse which it is also in Hol ( j C, j C) .

We will need the following observation on holomorphic functions.
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2.4 Observation. Let C , L and R be banach spaces, and let B c C ,
A C R, and S c B x L be open subsets. Let g: S -&#x3E; A be an holomorphic
function, and consider the map (g, II2): S -&#x3E; A x L . Let (p, x) E S be such
that the derivative D(g(-, x)) (p): C -&#x3E; R is invertible (with continuous
inverse). Then, the derivative D(g,7T’2)(p,X):C x L -&#x3E; R x L is also
invertible (with continuous inverse).

We are now in condition to state and prove the inverse function theorems.

2.5 Theorem (infinitesimal inverse function theorem). Let B be an open
subset of a complex Banach space C . Let f E HOI[AB, AB] be such that
D f (0) is invertible. Then f is invertible, that is, (3h E Hol[AB,AB] I
f oh= h o f =id).

Proof . In this proof we will use the letter ‘s’ for the points of the space
X , and we reserve the letter ’x’ for a variable of type X in the topos.

Let f E Hol [AB, AB] be given by an arrow

with corresponding f : A B x X -&#x3E; A B as in definition 2.1. Consider the
arrow (f ,II2): AB X X -&#x3E; AB x X , To prove the statement we have to
show that this arrow has an inverse, which will be necessarially of the form
(h, II2): AB x X -&#x3E; AB x X , and that h has local extensions in the sense
of definition 2.1.

For each s in X , there is an open subset 5s c B x Cn, (0, s) E 5s and
an holomorphic extension 9s: 5s -&#x3E; B . The assumptions mean that, for all
s E X, f (0, s) = 0 and D( f (-, s))(0) is invertible. Thus jgs(0, s) = 0 ,
and by 2.2, D( jgs (-, s))(0) is invertible. It follows then from the compati-
bility of the synthetic calculus with the differential calculus on banach spaces,
and more precisely [4, theorem 4.6], that the usual derivative D(gs (-, s) ) (0)
is invertible (with continuous inverse by 2.3). Consider the holomorphic
function (gs, II2): 5s - B x Cn. By 2.4 we have that

is invertible (with continuous inverse). We can apply then the classical
inverse function theorem for banach spaces to the function (g8, II2). It

follows that there are open subsets S, C B x C" (that we can call with
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the same letter) and Ts C B x Cn such that (0, s) E Ss , ( 0, s ) E Ts and
(gs , II2 ): Ss -&#x3E; Ts has an holomorphic inverse which is necessarily of the
form (ts, II2): Ts - sus . It follows we have in the topos a pair of inverse
arrows (jgs, II2): jSs -&#x3E; jTs and (jts, II2): jTs -&#x3E; jss . Let Ws C X ,
be the open set Ws = II2(Vs), Vs == Ss n ({0} x X) = Ts n ({0} x X ) .
This equality holds since (gs,II2)lVs = (f, II2) lVs = i d . As usual, we shall
indicate also by Ws the corresponding open subobject in the site or in the
topos. By definition we have 101 x Ws = Vs c ss . Since Ss is open, it
follows that AB x Ws C Ss. In the same way, AB x Ws C j Ts . The Ws
form an open covering, thus we have X --- Us Ws in the topos.

We are going to prove now in the internal logic of the topos that the
arrow ( f, II2): AB x X - AB x X is injective and surjective, and thus
invertible. Let e , e’ E OB and x , x’ E X be such that (/,7T2)(6,.c) =
(f,II2)(E’,X’). Clearly x = x’ . Let s be such that x E Ws. Then

(6, X) E OB x Ws and (E, x) E OB x Ws . Thus (f,II2)(£,x) =
(jgs, 7r2) (ê, x) and ( f, 7r2) (ê’, X) =(jgs, 7r2) (ê’, x) . It follows that £= e’,
showing the injectivity. Given (e, z) as above, take s such that x E Ws .
Then (£, x) - ( jgs, 7r2)(ê’, x) , where (e’, x) = (jts, 7r2)(ê, x) , showing the
surjectivity. If ( h, 7r2) is the inverse of ( f , 7r2) , clearly the functions ts are
local extensions for h in the sense of 2.1. This finishes the proof. Notice
that we have proved more, namely, that the local extensions are also inverses
of each other. D

2.6 Remark (infinitesimal invertibility = local invertibility). Theorem 2.5
holds in particular when f is an actual arrow f : AB -&#x3E; AB, in which case
h is given also by an arrow h: A B - AB inverse of g in the topos. Given
any holomorphic function g: B - B such that g(0) = 0 , the restriction of
jg to infinitesimals determines a map jg lAB: AB -&#x3E; AB . Observe then that
it follows (from [5, example 3 after remark 3.7J) that the infinitesimal invert-
ibility of J9lAB in the topos is actually equivalent to the local invertibility
ofg at0.

Analyzing the proof of theorem 2.5 it readily follows a stronger theorem:

2.7 Theorem (second version of 2.5). With the same hypothesis than in 2.5,
let h be the inverse of f . Then, given any extension g of f , an extension t

of h can be choosed so that it is an inverse of g . Concretely, 3 If E K [j B],
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3 G E K[jB]l, 0 E H, 0 E G, and 3 t E Hol[G, H] such that got = idG, 
t o g - i dH , and f = glA, h = tlA extensions of f and h respectively.

2.8 Corollary (local inverse function theorem). Let B be an open subset
of a complex Banach space. Let g E H ol [j B, j B] be such that g(0) = 0
and Dg(0) is invertible. Then, g is locally invertible at 0 . That is,
3H E K[jB], 3G E K[jB] , 0 E H, 0 E G, and 3 t E Hol[G, H],
9 I Hot = ide, toglH = idH .

Proof of 2.7 and 2.8. It is clear that in the proof above we have also shown
the statement in 2.7. Finally, it is also clear that 2.8 follows immediately
from 2.7. D
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