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BANACH SPACES IN AN ANALYTIC MODEL OF

SYNTHETIC DIFFERENTIAL GEOMETRY
by Eduardo J. DUBUC and Jorge C. ZILBER

C4HIERS DE TOPOLOGIE ET

GEOJIETRIE DIFFERENTIELLE CATEGORIQUES
Volume.XXXLX-2 (1998)

Résumé. Les mod6les bien adapt6s de Géométrie Diff6rentielle
Synth6tique [5] se construisent comme des topos de faisceaux sur
des sites ou tous les objets sont de dimension finie. Pourtant, quand
on applique a des objets repr6sentables des constructions impor-
tantes dans le topos, comme les exponentiels et les objets des parties,
on obtient des objets "de dimension infinie". Pour 6tudier ces objets
il faut considerer le calcul differentiel dans les Espaces de Banach,
comme 1’ a mis en evidence Douady dans sa th6se [4]. Dans cet arti-
cle nous construisons une immersion de la cat6gorie des ensembles
ouverts des Espaces de Banach complexes et des fonctions holomor-
phiques dans le modele analytique bien adapt6 de GDS introduit
dans [7], et nous prouvons ainsi quelques propri6t6s importantes
de cette immersion. En particulier, qu’ elle preserve les produits et
qu’elle est consistante avec le calcul differentiel, dans le sens que le
calcul differentiel intrins6que synth6tique dans le topos correspond
aux constructions classiques de la th6orie de I’ holomorphie de di-
mension infinie. Ce faisant nous avons trouv6 et resolu quelques
probl6mes int6ressants dans la th6orie des. id6aux des fonctions an-
alytiques de (plusieurs) variables complexes d6velopp6e par Cartan
dans [2] et [3].

Introduction.

The well adapted models of Synthetic Differential Geometry [5] are con-
structed as Topos of sheaves on sites where all the objects are finite dimen-
sional. However, important construction in the topos, like exponentials and
objects of parts, when applied to representable objects, yield objects of "in-
finite dimensional" nature. To study these objects it becomes necessary to
consider differential calculus on Banach Spaces, as it was demonstrated by
Douady in his Thesis [4]. In this paper we construct an embedding of the
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category of open sets of complex Banach Spaces and holomorphic maps into
the analytic (well adapted) model of SDG introduced in [7], and prove two
important properties. Namely, that this embedding preserves products and
that it is consistent with the differential calculus, in the sense that the intrin-
sic synthetic differential calculus in the topos corresponds to the classical
constructions of the theory of infinite dimensional holomorphy. In doing so
we found and solved some interesting problems in the theory of ideals of
analytic functions of (several) complex variables developed by Cartan in [2]
and [3].

1. Construction of the embedding.
We shall work with certain c-algebras introduced in [6] and which carry
an additional structure which is taken care in the following definition: An
Analytic Ring A in a category E is a transversal product and final object
preserving functor A: C - E , from the category C of all open sets of some
C" and holomorphic functions. It has an underlying c -algebra that by abuse
we also denote A = A(C). The Reader can think an analytic ring just as this
c -algebra. However, for details see [6].

Consider any open set B of a banach space C, then the ring O(B)
of complex valued holomorphic functions is an analytic ring, and given any
point p E C , the ring Op(B) = Op(C) of germs at p of holomorphic
functions is a local analytic ring. More precisely:

1.1 Proposition. The functor Holo(B, -): C - Ens (Holo = Holomor-
phic) preserves all limits, thus in particular it is an analytic ring (in sets),
O(B) = Holo (B, C). The ring of germs is the filtered colimit (as ana-
lytic rings) Op(C) = colimpEBO(B), and evaluation at p defines a local
morphism Op(C) - C into the ring of complex numbers.

Proof. It follows from basic results on holomorphic maps between
banach spaces and on analytic rings ([8] and [6]).

D

We have a warning here: Contrary to the finite dimensional case, a
morphism of analytic rings O(B) -&#x3E; O(H) is not necessarily given by an
holomorphic map H -&#x3E; B , not even a morphism O(B) -&#x3E; C is always
given by evaluation at a point p E B . Also, the canonical morphism
O(B) X O(H) --t O(B x H) is not an isomorphism (where 0 here indicates
the coproduct of analytic rings).
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We shall consider now analytic rings in the topos Sh(X) of sheaves on
a topological space X . Recall that the sheaf CX of germs of continuos
complex valued functions is a local analytic ring in Sh(.X). Explicitly, CX
is the functor G -&#x3E; Sh(B) defined by r(H, Cx(U)) = Continous(H, U) ,
for H open in X , U E C. Recall also that an A -ringed space is (by
definition) a pair (X, OX), where CX is a local analytic ring in Sh(X) .
That is, it is an analytic ring furnished with a (unique) local morphism
OX-&#x3E; CX of analytic rings in Sh(X) ([6], [9]). Given any point p E X ,
the fiber is a local analytic ring 7r: Ox,p -&#x3E; CXnp -&#x3E; C. If a is a section
defined in (a neighborhood of) p , we shall denote by [Q]p the corresponding
element in the ring Ox,p, and by Q(p) its value, that is, the complex number
u(P) = 7r([o-]p) .

Given any open set B of a banach space C, the pair (B, OB), where
OB is the sheaf of germs of complex valued holomorphic functions defined
on B , is a (reduced) A -ringed space. More explicitly, OB is the functor
C - Sh(B) defined by r(H,OB(U)) = Holo(H, U) , for H open in B ,
U e C. In particular, r(H, OB) = Holo(H, C) , and if p E H , the fiber of
OB is the local analytic ring Op(B) = Op(C). We have:

1.2 Proposition. The correspondence B e (B, OB) defines a full em-
bedding ,B-&#x3E; A from the category B of open sets of Banach spaces and
holomorphic functions into the category A of A -ringed spaces.

Proof. More precisely, to an holomorphic function f : B - H c C
we assign the morphism ( f, f *): (B, OB) -&#x3E; (H, OH). This clearly defines
a faithful functor. Moreover, given any morphism of A -ringed spaces,
( f, 0): (B, OB) -&#x3E; (H, OH), then f : B -&#x3E; H is holomorphic and O = f * .
This last assertion follows (essentially) since for all continuos linear forms
a: C - C the composite a o f is holomorphic. In fact, let z E B , let V
be an open subset of H such that f (z) E V , and let t be an holomorphic
function, t: V -&#x3E; C. Since f is continuous, then there is an open subset
W C B such that z E W and f(W) c V . Consider the section of OH
(defined in V ) given by t . Since ( f, 0) is a morphism of A -ringed spaces,
then w -&#x3E; Ow([t] f(w)) is a section of OB defined in W . Hence, there
is an open subset U C W such that z E U and an holomorphic function
g: U -&#x3E; C such that gw = Ow([t]f(w)) for all w E U (I). Since 0 preserves
the value of sections, then g(w) = t(f(w)) . Thus, g = t o f on U . Then,
by (1), it follows that [t o f]w = Ow([t]f(w)) for all w E U . Then, we have
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that t o f is holomorphic and [t o f]z = Oz([t] f(z)) . Thus, we have that f
is a continuous function such that for all z E B , for all open subset V of
H such that f (z) 6 V, and for all holomorphic function t: V -&#x3E; C , there
is an open subset U E B such that z E U, t o f: U -&#x3E;. C is holomorphic
and Oz([t]f(z)) = [t o f]z (2). It follows [8] that f is holomorphic, and by
(2), O = f* 

D

Related to our previous warning, we point out that contrary to the finite
dimensional case, the embedding B -&#x3E; A does not preserve products. That
is, the canonical morphism (B x H, OBXH) -&#x3E; (B, OB) x (H,OH) is not
an isomorphism.

We shall construct now an embedding from B into the topos T intro-
duced in [7] which does preserve products and has other good properties
necessary to allow to perform the classical differential calculus of B by the
methods of Synthetic Differential Geometry in the topos T .

Recall the construction of T . We consider the category H of (affine) an-
alytic schemes [7]. An object E in H is an A -ringed space
E = (E, OE) (by abuse we denote also by the letter E the underlying
topological space of the A -ringed space) which is given by two coherent
sheaves of ideals R , S in OD , where D is an open subset of Cm , R C S ,
and where:

The arrows in 1i are the morphism of A -ringed spaces. We will denote
by T the topos of sheaves on 1i for the (sub canonical) Grothendieck
topology given by the open coverings. There is a full (Yoneda) embedding
H -&#x3E; T . Notice that for an infinite dimensional banach open B , the
A -ringed space (B, 0 B) is not in 1i.

1.3 Definition. Let E be an object in 1i, E = (E, OE) as above, let
B be an open subset of a complex Banach space C , and let t = (t, T)
be a morphism of A -ringed spaces, t: (E, 0 E) - &#x3E; (B, 0 B) (we adopt the
corresponding abuse of notation for morphisms). We will say that t has "local
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extensions", if for each x E E, there is an open neighborhood U of x in
Cm and an extension ( f, f*): (U, OU) -+ (B, OB):

The set

jB(E)= {t: (E, OE) -3 (B, OB) such that t has local extensions}
defines a sheaf j B E T .

If g: F - E is an arrow in H, jB(g):]B(E) -&#x3E; jB(F) is given by
composing with g , that is, for t E jB(E) :

The fact that if t has local extensions and g is a morphism of
A -ringed spaces, then the composite t o g also has local extensions, fol-
lows easily by continuity. It is also straightforward to check that j B is a
sheaf on H, that is j B E T .

Moreover, given two open subsets Bl and B2 of complex Banach
spaces Cl and C2 respectively, and an holomorphic function f : Bl --t B2 ,
we consider the morphism ( f, f*): (Bl, OBl ) -&#x3E; (B2, OB2). It is clear that
if E £ H and t E j 81 (E), then 0 t E j B2(E) . Thus, we have an
arrow in T :

j f: j Bl ---+ jB2, (jf)E(t)= ( f, f*) o t for all E £ H and t £ B1(E).
We have then a functor j: B -&#x3E; T . It is clear that r(jB) = B for all

B E B, and that r(jf) = f for all arrows f : Bi - B2 in B .

1.4 Remark. Let E E H, B E B, and let q: E -&#x3E; jB be an
arrow in T. Then, q corresponds to an element q E jB(E), that is,
q: (E, OE) -3 (B, OB) is a morphism of A -ringed spaces with local exten-
sions. Then, q = (q, 4» where q: E -+ B is continuous, and it is immediate
that I"(q) = q (notice here the abuse of language).
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2. On ideals of analytic functions of complex variables.
Let On,p be the ring of germs of holomorphic (= analytic) functions on n

complex variables, p E C". Given a function f defined in a neighborhood
of p , we denote its germ by [f] p . Recall that all ideals in this ring are
finitely generated. More than that:

2.1 Fact. Given any ideal Ip C On,p, there is an open set p E U C Cn
and a (finitely generated) ideal I (U) C O(U) which generate Ip .

Proof. It follows immediately since Ip is finitely generated ([2] pp.
191).

0

Consider in On,p the inductive limit topology for the topology of uniform
convergence on compact subsets on the rings On (U) , p E U C Cn. It can
be proved that in this topology a sequence [fk]p converges to a limit [f] p ,
if there is a neighborhood where (for sufficiently large k ) all fk and f are
defined and the convergence is uniform. We shall refer to this topology as
"the topology of uniform convergence". In what it follows a result of Cartan
is essential ([2] pp. 194, or [3] 28. Lemma 6):

2.2 Lemma (Cartan). All ideals of the ring On,p are closed for the topology
of uniform convergence.

We shall consider now a property of ideals first utilized explicitly in
[1] in the context of C°° functions of real variables. Let p E U C Cn,
q EVe Cm. Let Ip , Jq be ideals in On,p, Om,q respectively. We
denote (Ip, Jq) the ideal in On+m,(p,q) generated by the germs in Ip and
Jq (considered as functions of n + m variables). Similarly for ideals I ,
J in O,(V) , Om(U) respectively, there is the ideal (I, J) in the ring
On+m(UxV).

2.3 Definition. An ideal Ip in On,p is said to have line determined exten-
sions if for any m, and any germ [f](p,q) £ On+m,(p,q), the implication
a) =&#x3E; b) below holds:

a) There are open sets p E U C Cn , q £ V C Cm and f E On+m(U x V)
(which defines the germ) such that for all (fixed) s E V , the germ

[f(-,s)]p £ Ip C On,p.
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b) [f](p,q) E (Ip, 0) C 0,,,,,,,(p,q) (where 0 indicates the zero ideal).

It is easy to see by induction that this will hold provided it holds for
m= 1.

2.4 Lemma. All ideals of the ring 0,,,p have line determined extensions.
For the proof we isolate a fact that has its own interest: 

Lemma A. Given any germ [h](p,o) E On+1,(p,0), the implication a) =&#x3E; b)
below holds:

a) There are open sets p E U C Cn, 0 E V C C and h E On+1 (U x V)
(which defines the germ) such that for all (fixed) s E V , the germ
[s]p[h(-,s)]p E Ip C On,p.

b) [h(-, O)lp E Ip -

This follows from Lemma 2.2: Take a sequence of complex numbers
0 # Sk l-&#x3E; 0 . It is easy to check that the sequence of functions hk = h(-, Sk)
converges uniformly (in a sufficiently small neighborhood) to the func-
tion h(-, 0). Since clearly each germ [hk]p is in Ip , it follows that

[h(-, O)lp E Ip.

Proof (of 2.4). As observed above, it suffices to prove the case m = 1 .
Clearly we can also assume that q = 0. We work with the situation in
definition 2.3, we have to prove that [f](p,0) E (Ip, 0). We indicate by x a
variable x E U C Cn , and by z a variable z (E V c C - Taking U , V
sufficiently small, write

We have [fp]p = [ f (x, 0)]p E Ip . Then, for all fixed s , [s]p[h(-, s)]p E Ip .
Thus by lemma A the germ [h(-, 0)]p E Ip . Now write

Clearly
Thus

As before, we have [f1]p = [h(x, 0)]p E Ip , and for all fixed s ,

[s]p[g(-, s)]p E Ip . Like this, by induction, it follows that in the devel-
opment below all the [fi]p are in Ip .
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(notice the abuse of notation) 
Define [gk](p,0) = [f](p,o) - [zk+1]0[hk](p,0) . Clearly [gk](p,o) E (Ip, 0)

for all k, and since the sequence converges in On+1,(p,0) to [f](p,0), the
result follows (this time again) by lemma 2.2.

F-1

2.5 Corollary. Let U be an open subset of Cn , let p E U , let Jp be an
ideal, Jp C On,p and let f be an holomorphic function, f : U x U - C
such that, for all s E U , [f (-, s)] p E Jp

Then, [ f (w, w)]p E Jp (Here, f (w, w) is the function U - C which
sends w E U to f (w, w))

Proof. We have that [f](p,p) E (Jp, 0) C On+n,(p,p) (where 0 indicates
the zero ideal). It follows immediately that [ f (w, w)]p E Jp .

F-1

Remark: Notice that the same implication holds with the symmet-
ric assumption [ f (s, -)]p E Jp (Use the function g: U x U -&#x3E; C ,
g(w, z) = f (z, w) ).

We pass now to our next result:

2.6 Lemma. Let B be an open subset of a complex Banach space C .
Let U be an open subset of Cn, let q E U, and let Jq C On,q be
an ideal. Let f and g be holomorphic functions, U - B, such that
f (q) = g(q) = p E B . Suppose that for all linear continuos forms a E C’ ,
it holds that [a o f - a 0 g]q E Jq . Then, for all germs [r]p E 0 B,p, it also
holds [r o f - r o g]q E Jq . 

Proof. Let u = f - p and v = g - p , ( u and v are functions U -&#x3E; C).
Given a E C’ , by linearity it follows that a o u - a o v = a o f - a o g ,
thus also [a o u - a o v]q E Jq
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Let b be any bilinear symmetric continuos mapping b: C x C -4 C -
For each s E U , consider the linear map a = b(-, u(s)) . Since

(a o u - a o v)(x) = a(u(x)) - a(v(x)) = b(u(x), u(s)) - b(v(x), u(s)),

we have [h(-, s)]q E Jq , where h indicates the holomorphic function
h: U x U -&#x3E; C, h(x, z) = b(u(x), u(z)) - b(v(x), u(z)). Then, by corol-
lary 2.5, [h(x, x)]q E Jq . That is, [b(u(x), u(x)) - b(v(x), u(x))]q E Jq .
Similarly [b(v(x), u(x)) - b(v(x), V(X))Iq E Jg. It follows that

Proceeding inductively, for all multilinear symmetric continuous map-
pings b: C x --- x C -&#x3E;C , we have:

Let [r]p E O B p . Then, by definition, there exists a ball B(p, 6) and
a sequence of continuous homogeneous polynomials Pk such that r(c) =
Ek&#x3E;0Pk(c-P) uniformly on B(p, 6). Let W be an open subset of U such
that q E W and f (W) c B(p, S) , g(W) C B(p, 6) . It follows that

and

k&#x3E;0 k&#x3E;0

uniformly on W . Since Po is the constant polynomial r(p), we have

uniformly on W . But Pk(c) = bk(c, c, ... , c) for a multilinear symmetric
continuous mapping bk , thus by (1) above [Pk(u(x)) - Pk(v(x))]q E Jq .
Then, by lemma 2.2, it follows that [r(f(x)) - r(g(x))Iq E Jq , that is,
[ro f - rog]q E Jg .

D

When B is of finite dimension, B c Cm, functions f and g as above
are just m -tuples of elements in O(U), and the result means that for the
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ring On,q, the c -algebra congruence defined by an ideal Jq is actually a
congruence for the theory of analytic rings. This is established in (theorem
1.18 [6]), where the result is proved for any local analytic ring. Here, the
coordinates in C = Cm have to be replaced by all continuos forms.

3. Preservation of products.
We want to show now that the functor j: B -&#x3E; T does preserve the

product of two objects in B. The following proposition essentially do this.
Namely, it shows that the natural candidate for the morphism into j (B1 x B2)
which proves that this object is a product is actually well defined.
3.1 Proposition. Let Bland B2 be open subsets of complex Banach spaces,
let E be an object in H , and let U be an open subset of Cn such that
E C U.

Let g1 : U - B1, h 1: U - B1, g2: U --t B2 , h2: U -+ B2 be holomor-
phic functions and consider the holomorphic functions g: U -&#x3E; BI x B2 and
h: U -&#x3E; BI X B2 given by 9(Z) = (g1(z),g2(z)) and h(z) = (h1 (z), h2(z)).

If (g1,g*1)lE = (h1,h1*)lE and (g2,g*2)lE = (h2,h2*)lE ,
then (g,g*)lE = (h, h*)lE
Proof. E is given by two coherent sheaves of ideals J , S in OH,

where H is an open subset of Cn, J c S . E is the Zero set of S , and

OE,x, = On,x/ Jx for x E E .
Let x E E . Since (g1, g1*)lE = (h1, hi)IE and (92,92)IE = (h2, h2)IE ,

we have that g1(x) = h1 (x) = p , g2(X) = h2(x) = q . Thus g(x) = h(x)=
(p, q) (1). Moreover, for all [t]p E C7B1,p, [(t o gi ) - (t o h1)]x E Jx and
for all [t]q E OB2,q, [(t o g2) - (t o h2)]x E Jx.

Let [r](p,q) E OB1xB2,(p,q) be given by an holomorphic function
r:A1 1 xA2 -&#x3E; C, with A1 an open subset of B1 , p £ A1, and A2
an open subset of B2 , q E A2 . Let V be an open subset of Cn such that
x E V g1(V) C A1, hl(V) C A1, 92(V) C A2 and h2(V) C A2 , and
consider the holomorphic function

Let z E V be any point (fixed) and let t: A1 -&#x3E;C be given by
t = r(-, g2(z)) . Since for all w E W ,
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we have that t o gl - t o h 1 = f (-, z) . Thus, [ f (-, z)]x£ Jx , and
this holds for all (fixed) z 6 V. By corollary 2.5 we have then that
[f{w,w)]x E Jx, that is [r(g1 (w), g2(w)) - r(h1 (w), g2(w)]x E Jx . In

the same way [r(h1 (w), g2(w)) - r(h1 (w), h2(w)]x E Jx . Combining these
two equations it follows that [r(g1 (w), g2(w)) - r(h1(w), h2(w)]x £ Jx, that
is, [r o g - r o h]x £ Jx; (2).
Equations (1) and (2), which hold for all x E E and [r](p,q) E OBtxB2,(P,q),

mean exactly that {g, 9*)lE = (h, h*)lE holds.
D

3.2 Theorem. The functor j preserves finite products.
Proof. Let Bl and B2 be open subsets of complex Banach spaces. We

shall prove that j (B1 x B2) = j (B1) x j (B2) .
Let E be an object in 1-£, and consider arrows in T , §1: E - j B1 and

§2:E-&#x3E;jB2. We have to prove that there is a unique arrow

such that j(7ri) o § = §1 and j(1f2) o §= §2 , where 7rl: Bl x B2 --t Bl and
7r2: Bl x 82 - B2 are the projections.

We have that §1: (E, OE) -+ (Bn OB,) and §2: (E, O E) - (B2, OB2)
are morphisms of A -ringed spaces which have local extensions. That is,
for each E E , there exits an open subset V of Cn such that x E V
and holomorphic functions gl : V - Bl and g2: V-&#x3E; B2 such that (gl, g1*)
is an extension of §1 and (g2, g2) is an extension of §2 . We consider the
holomorphic function g: V - Bl x B2 given by g(z)= (g1 (z), g2(z)) .

Let E’ = V n E. In this way we have an open covering of E,
E = U E’ , and for each set E’ , a morphism of A -Ringed spaces

Let E" be any other set in the covering,

with h: W -&#x3E; Bi x B2 given by h(z) = (hI (z), h2(z)) , E" = W n E , and
h 1: W -&#x3E; B1 , h2: W -&#x3E; B2 holomorphic functions such that (h1 , h1) and
(h2, hi) are extensions of §1 and §2 respectively. Let U = V n W . On
U n E = E’ n E" , we have çIIE/nE" = (g1, g*1 )l E’nE"= (h1, h1*)l E’nE’.
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Similarly, 03BC2lE’nE" = (92, g2)IE/nE" = (h2, h2)IE/nE". It follows at once by
proposition 3.1 (applied to the functions g1lU, h l U , g2 lU and h2Iu), that
(9, g*)lE’nE" = (h, h*)lEnE" .

This shows that there exists a unique morphism § of A -ringed spaces,
ç: E - (BI x B2, OB1 x B2), such that , for all E’ in the covering,
§lE’ = (g,g*)E’, with (g,9*)IE/: E’ -+ (BI X B2, OB1xB2). Clearly this
morphism § has local extensions. Moreover, for each E’ in the covering,
we have that

That is (7r l’ 7r*) o§ = §1 . In the same way (7r2, 7r2*) o§ = §2 . Thus, we have an
arrow §: E-&#x3E; j(B1 x B2) in T such that j(7r1)o § 61 and ](7r2)o§ =§2.

It remains to prove the uniqueness of such an arrow. This follows by
showing uniqueness on a covering such as the covering above. In turn, this
is straightforward utilizing again proposition 3.1 in a similar way as in the
preceding argument.

D

4. Compatibility with the construction of the tangent bundle.
Here we show that the functor j is compatible with the construction

of the tangent bundle in the sense that j (T (B)) - j (B)D , where D is
the object of infinitesimals in the topos T, D = [[xlx 2 = 0]] C Qj, and
T(B) is the classical tangent bundle, Recall that the object D is repre-
sentable by the analytic scheme D = ({0}, O1,0/z2)= ({0}, C[E]), where
C[e] = {a + bE with a, b E C, and E 2 = ol (see 4.2 below with n = 0).

4.1 Observation. Let x e Cn, let Jx C On,x be any ideal, and let
(Jx , z2) C On+1,(x,0) be the ideal generated by the germs at (x,O) of the
functions of Jx and the function z2 , z £ C , considered as functions of
n + 1 variables. Then, for all [f](x,0&#x3E; E On+1,(x,0) we have:

if and only if and
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Proof. Write [f](x,0) = [bo]x + [b1]x[z]0 + [t](x,0)[z2]0, with [bo]x,
[b1]x E On,x and [t](x,o) E On+l,(x,o) (notice the abuse of notation). Since
f (-, 0) = bo and a f /az(-, 0) = bl , the result follows.

F-1

4.2 Definition. Let E = (E, OE) be any object in 1l determined by two
coherent shaves of ideals I and J in an open subset U of Cn, J c I .
Recall that E = Zeros(I), and OE,x = On,x/Jx for x E E . We define the
object (E,OE[E]) to be the A -ringed space with fibers

with and

Let 7rx : On,x -&#x3E; Ore,,, be the quotient map. There is a morphism of
analytic rings 6x: On+1 ,(x,0) --t OE,x[E] defined by

which identifies O E,x [E] with the quotient On+1,(x,0)/(Jx, z2) . This follows
by 4.1 and shows that (E,OE[E]) is an object in 1£. Notice that (Jx, z2) is
an ideal in On+1 (U x V) , where V is any open subset of C such that 0 G V.
Moreover, by construction of coproducts of analytic rings and products in
1£ ([6]), we have:

(we should be careful here with the identification E - E x {0}).

4.3 Proposition. We refer to the notations in 4.1 and 4.2 above. Let B
be an open subset of a Banach space C , and let g and h be holomor-
phic functions, g, h: U x V -+ B . Notice that ag/az and ah,/az are

holomorphic functions U x V -&#x3E; C (not B ). We have:

if and only if

Proof. Let x E E . It is clear that the statement (a) means that g(x, 0) =
h(x,O) (say, = p ) and Sx o g* = 6x o h* . That is, for all [r]p E OB,p,
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6x ([r o g](x,0)) = 6x([r o h](x,0)). Then, by definition of 6x it follows

immediately that (a) is equivalent to:

Here, for w E V, a/,az(r o g)(w, 0) = Dr(g(w, 0))(ag/az(w, 0)) , and
similarly for h . 

On the other hand, (b) means that g(x,0) = h(x, 0) = p , ag/az(x,0) =
ah/az(x,0), (say = q E C), 7rx o g(-,O)* = 7rx o h(-,0)* and

7rx o ag/az(-, 0)* = 7rx o ah/az(-0)*. Considering all [r]p E OB,p ,
[sJq E 0 C,q , (b) is equivalent then to:

a) =&#x3E; b). b1) and b2) are the same that a1) and a2) respectively.
Notice that if r = a E C’ is a linear form, Da(g(w,0)) = a . Thus

a/az(a o g)(w, 0) = a(ag/az(w, 0)) , therefore

Similarly

Assume (a3), and let a E C’ be a linear form. We have

Thus

Since Jx C Ix , the value at x of any germ in Jx is 0. Thus

a(ag/az(x,0)) = a(ah/az(x, 0)) (for all a E C’). It follows by the Hahn-
Banach theorem that ag/aZ(x,0) = ah/gz(x,0) = q E C . This shows (b3).
Moreover, it follows now by the lemma 2.6, that



131

for all [s]q E OC,q. This shows (b4), which completes the proof of b).

b) =&#x3E; a). Let a E C’ , from b4), arguing exactly as before we have

7rx([a/az(a o g)(-, 0)]x) = 7rx([a/az(a o h)(-, 0)]x). - On the other hand
by b2) 7rx([(a o g)(-, O)lx) = 7rx([(a o h)(-,O)]x) These two equalities
mean (by definition of 6x ) that 6x([a o g](x,0))= 6x([a o h](x,o)), that is
[a o g - a o h](x,0) £ (Jx, z2) . Then, again by lemma 2.6 applied this
time to the ideal (Jx, z2) , it follows [r o g - r o h](xo) £ (Jx, z2) , that is
6x([r o g](x,0)) = 6z([r o h](x,0)) (for all [r]p E OB,p). This finishes the

proof of a). 
0

We are now in condition to prove that Banach spaces in the topos become

"objects of line type". That is:

4.4 Theorem. Let B be an open subset of a complex Banach space C .

Then,

Proof. We have to show that for each E E 1i, there is a natural (in E )
bijection:

a) Let § be an arrow, §: E - (j B) D . That is, § is an arrow E x D -&#x3E; jB
in T . Then § is a morphism of A -ringed spaces, §:(E,OE[E])-&#x3E; (B,OB)
(see 4.2) which has local extensions. For each x E E , there is an open subset
U of Cn such that x E U , an open subset V of C such that 0 E V and
an holomorphic function g: U x V - B such that (g,g*)lE’xD = §lE’xD,
where E’ = U n E . In this way we have an open covering E = U E’ , and,
for each E’ , a pair of morphisms

Suppose that we have E" in this covering with an holomorphic func-
tion h , (h,h*)IE"xD = §lE"XD. It follows that (g, g*)l(E’nE")xD =
(h, h*)/(E’nE")xD , and thus, by proposition 4.3 (on the object E’ n E")
we have
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This shows there is a pair of morphisms of A -ringed spaces

unique such that for each E’ in the covering, it holds that

and

By a similar argument it follows that 0 and B do not depend on the covering.
Clearly they have local extensions, thus, they are actually arrows in the topos,
which determine an arrow (Y,B): E - jB X jC in T . This defines the
function [ E, (jB)D] -&#x3E; [E, jB x jC] . We have to prove now that it is a
bijection.

b) (inyectivity). Suppose that we have two arrows §1 and Ç2: E --t (jB)D
in T which determine the same pair (Y, B). §1 and §2 correspond to
arrows E x D -&#x3E; jB , that is, morphisms of A -Ringed spaces
(E, OE[ê]) -&#x3E; (B, OB) with local extensions. For each x E E , let (g, g*)
and (h, h*) be a local extensions of §1 and §2 around (z, 0) respectively.
We can assume they are defined in a same open subsets U of Cn, x E U,V
of C, 0 £ V , g, h: U x V -&#x3E; B, (g, g*)lE’xD = §1lE’xD, (h, h*)IE’xD =
ç2IE’xD, where E’ = U n E. Since §1 and §2 determine the same pair
Y, j3), it follows that (g( -,0), g(-, 0)*)lE’ = (h(-, 0), h(-, 0)*) ] E’ and

(ag/az( -,0), ag/az( -,0)*)lE’ =(ah/az( -,0),ah/az( -, 0)*)lE’. Then,
by proposition 4.3, we have (g, g*)lE’xD = (h, h*)l E’ , D , thus §1lE’xD =
ç2IE’xD. And this for each E’ on a covering. It follows that Çl = §2
c) (suryectivity). Let Y: E -&#x3E; jB , j3: E - j C in T, that is

morphisms of A -ringed spaces with local extensions. For each x E E ,
let (g0, g0* ) be a local extension of 0 around x , and let (g1, gi) be a
local extension of P around x , where go: U -&#x3E; B and gi : U - C are
holomorphic functions and U is an open subset of Cn such that x E U .
Let g: U x C -&#x3E; C be the function defined by: g(w, z) = go(w) + zgl (w) .
Thus, g is holomorphic and g(x,O) E B . It follows that there exists an

open subset W of Cn such that x C W and an open subset V of C
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such that 0 E V and g(W x V) c B . Consider g: W x V -&#x3E; B and the
morphism of A-Ringed spaces (g, g*) l E’ x D: E’ x D -&#x3E; (B, OB), where
E’ = W n E . Notice that g0 = g(-, 0) and g1 = ag/az(-, 0). We have an
open covering E = U E’ , and for each set E’ in this covering, a morphism
(g, g*) l E’ x D: E’ x D -&#x3E; (B, 0 B). Exactly in the same way as before in this
proof, it is straightforward to check that these morphisms are compatible in
the intersections of the covering (use proposition 4.3). Thus, this determines
a morphism of A -ringed spaces §: E x D -&#x3E; (B, OB) unique such that for
each E’ in the covering, the restriction ç I E’ x D = (g, g*) l E’ x D. It is clear

that 6 has local extensions and thus it defines an arrow 6: E x D - j B in
T , that is, 6: E -&#x3E; (jB)D . It is immediate also that § determines (by the
construction defined in a) above) the pair (Y, B) .

Finally, it is straightforward to check the naturality in E of this corre-
spondence.

D

Given any open set B in a Banach Space C, the tangent bundle
TB - B of B is, as expected, just the product B x C with the first pro-
jection as ground morphism. That is, we have (T B -&#x3E; B) = (B x C -&#x3E; B),
in particular, TB = B x C . Putting together theorems 3.2 and 4.4 it follows
then that the functor j preserves the construction of the tangent bundle. That
is, (jB)D = j(TB) . We shall see now that the functor j is also compatible
with the construction of the Derivative map. First, we make an observation
to fix the notation.

4.5 Notation. Let B1 and B2 be open subsets of complex Banach
spaces Ci and C2 respectively, and let f be an holomorphic function,
f : B1-&#x3E; B2 - Consider the arrow jf: j B1 -&#x3E; jB2 and the induced ar-
row (jf)D: (jB1)D -&#x3E; (jB2)D . By 4.4 we have (jB1)D = JBI x JC1
and (jB2)D = jB2 x jC2. Thus, we have a corresponding arrow
L: jBi x JC1-&#x3E; jIB2 X jC2.

Let F: B1 x Ci - C2 be given by F(p, v) = Df (p)(v) . Given

p C B, , the function D f (p): C1 -&#x3E; C2 is a linear and continuous map,
and thus it is holomorphic. Given v E C1 , the function p e Df (p)(v)
is holomorphic ([8], 7.18). Thus, F is separately holomorphic. It follows

([8], 8.10) that F is holomorphic. This determines an holomorphic map
G: B1 x Ci -&#x3E; B2 x C2, G(p,v) = (f (p) , D.f (p)(v))= (f(p),F(p,v)).
Thus, G = (f o 7r, F), where 7r is the first projection 7r: BI x C1-&#x3E; B1 .
Now, since j preserves products we have jG: jB1 x jci - jB2 x j C2 .
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Clearly

4.6 Theorem. Let B be an open subset of a complex Banach space C .
Then:

a) (jB)D = j(TB) in T ,
b) Under this isomorphism, given any holomorphic function f : B1 -&#x3E; B2,

the derivative map T B1 -&#x3E; T B2 corresponds to the arrow

Proof. The first part is just theorems 3.2 and 4.4 together. The second
part, with the notation defined in 4.5, means explicitly that the equation
L = j C holds. We shall prove this now. Let E E H, Y: E -&#x3E; jB1 and
B: E -&#x3E; jC1, in T . We have to prove that

Clearly (jG) o (Y, B) = (j f oY, jFo (Y, B)). For each x E E , let (go, g0*)
be a local extension of 0 around x , and let (g1 , gi ) be a local extension of
B around x , where go: U -&#x3E; B and gl: U -&#x3E; C are holomorphic functions
and U is an open subset of Cn such that x E U . Under the isomorphism
jBl x JCI (jBl)D the pair (Y, B) corresponds to some where
§: E -&#x3E; (jBl)D , that is, §: E x D --t j Bl . Let (g, g*) be a local extension
of § around (x, 0) , where g(w, z) = go(w) + zgl (w) . It follows that

( f o g, ( f o g)*) is a local extension of j f o 6 around (x, 0). Thus, under
the isomorphism (jB2)D = jB2 x jC2, the map j f o 6 corresponds to a
pair (a, 6) , where a: E - jB2 and 6: E -&#x3E;. jC2 are arrows in T , and
L o (Y, B) = (a, 6) . Moreover, (( f o y)(-, 0), ( f o g)(-, 0)*) is a local
extension of a around x , and (8/8z(f o g)(-, 0), 8/8z(f o g)(-, 0)*) is a
local extension of 6 around x . But we have f (g(w, 0) = f (go(w)) , thus,
( f o g)(-, 0) = f o go. Moreover,

Thus, it follows that (8/8z(fog)(-,O) = FO(gO,gl). So (fog0, ( f o go)*)
is a local extension of a around x , and (F o (go, gl), F o (go, gl))*) is
a local extension of S around x . On the other hand, since (go, go) is a



135

local extension of qb around x , it follows that ( f o go, ( f o go)*) is a local
extension of j f o 0 around x . Thus, a and j f o 0 have the same local
extensions, and therefore a = j f o Y . Finally, since (go, go) is a local
extension of 0 around x , and (gl , gi ) is a local extension of B around x ,
we have that ((go, gl ), (go, gl )*) is a local extension of (0, B) around x . It
follows that (F o (go, gl), (F o (go, gl))*) is a local extension of jF o (Y, /3)
around x . Thus, J and j F o (Y, (3) have the same local extensions, and
therefore S = jF o (Y, B) . We have shown then that L o (Y, B)= (a, 8) =
(jf o Y, jF, F 0 (Y, B)) = (jG) o (Y,B) .
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