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CATEGORICAL STRONG SHAPE THEORY
by Mikhaii A. BA TANIN

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVIII -1 (1997)

RESUME. Le but de 1’article est une interpretation cat6gorique de
la th6orie de la forme forte. Pour cela, on construit une bicatégorie
speciaie, appel6e bicatégorie homotopiquement coh6rente des distri-
buteurs simpliciaux. On montre que la th6orie de la forme forte d’un
foncteur simplicial K peut 6tre caract6ris6e comme une extension à
droite, dans cette bicat6gorie, d’un distributeur simplicial associ6 d K
le long de lui-m6me.

Cette caractérisation permet d’obtenir des propri6t6s
générales de la th6orie de la forme forte, et on obtient une

equivalence entre differentes approche de cette theorie.

Introduction
The homotopy theory of procategories appeared for the first time

in T.Porter’s work on the stability problem for topological spaces [39].
Strong shape category for topological spaces was introduced by D.A. Ed-
wards a.nd H.Hastings in [23] and at about the same time by F.W.Bauer
[4].

A more geometric construction of strong shape, based on the use of
bumotopy coherent natural transformations, and hence, closely related
to  Porter’s initial ideas, was suggested by J.T.Lisica and S.Mardesic
[35]. At the present time there are a number of constructions, which
however, lead to equivalent results [2,11,12,22,26,27,40].

On the other hand, ordinary shape theory has been interpreted from
a categorical point of view by D.Bourn and J.M.Cordier [8,16], and the
problem of finding a similar interpretation for strong shape theory was
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formulated [9,19]. Such an interpretation is of special interest, because
it is connected directly with Grothendieck’s plan sketched out in [25].
Having in view this application, D.Bourn, J.-M.Cordier and T.Porter
developed some categorical machinery, which they called "homotopy
coherent category theory" [9,15,13,14,17,18,19]. Closely related ideas
can be found also in [10,20,29,28,38,44].

Our present article is devoted to a partial solution of this problem.
We can not say that we have obtained the complete solution, because
some very interesting questions should be clarified. For example, we
do not discuss here exact squares and morphisms between strong shape
theories. We mention some others in the following overview of our work.

In section 1 we recall the Bourn-Cordier axiomatics of shape theory
and some related categorical constructions. Technically our approach
is based essentially on a combination of the above mentioned Bourn-
Cordier-Porter theory and the author’s construction of the homotopy
coherent category of a monad [2]. We give here some definitions and
results from these theories.

In section 2 we demonstrate that some basic shape constructions can
be defined in an arbitrary bicategory. We consider some axioms, which
characterize a shape theory of an arrow K up to isomorphism as the
right extension of K along itself.

In some bicategories, such an extension may not exist. But it is

possible, that it exists in some extended bicategory. Depending on the
choice of this bicategory, we thus obtain various type of shape theories.
As an example we consider ordinary categorical shape theory.

The 2-category Cat of categories may be included in the following
chain of embeddings of bicategories:

where pro(Cat) and Dist are the bicategories of procategories and
distributors respectively ( see example 2 in section 2 for the definition).
The bicategory pro(Cat) contains the shape theories of Cech type. We
thus obtain some classification of the types of possible shape theories.
We consider also the bicategory Pro(Cat), which is a noncofiltered
analogue of pro(Cat) . Again we have some type of shape theories
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intermediate between Cech and general type theories. The existence of
similar shape theories was observed in [8, Remarque p.182].

The most interesting examples arise, when K : A - B has a left
adjoint L in Pro(Cat) or in pro(Cat). In this case L(X) plays the
role of a "resolution" of an object X. In some sense Pro(B) contains the
resolutions of all possible types and we call it the category of resolutions
of B.

Our approach has again one advantage. It may be easily dualized to
consider coshape theories as well. We develop this theory in a parallel
way.

A goal of the next sections is to show that strong shape theory may
be considered within the frame of the above bicategory approach.

In section 3 we construct the appropriate bicategory of distributors.
We start from the simplicial enriched version of distributor theory [6]
and substitute every category of simplicial natural transformations by
the homotopy category of coherent transformations. The same pro-
cess is applied to the composition functor and right and left extension
functors. We thus obtain a biclosed bicategory CHDist. As in the
nonenriched situation we can associate with every simplicial functor K
some simplicial distributor §K and, hence, consider a shape theory of
this distributor in CHDist. We call this theory a strong shape theory
of the simplicial functor K. The theory developed in section 2 permits
us to characterize this theory up to isomorphism.

Section 4 is devoted to the construction of a category CPH(B),
which is a coherent analogue of Pro(B) for a simplicial category B. We
call this category the category of strong resolutions of B. We introduce
a notion of strong K-resolution of an object X, which is a generalization
of the notion of K-associated inverse system and study the properties
of strongly K-continuous functors.

Here we give also the first examples of strong shape and coshape
theories. A very interesting example of strong shape (coshape) cat-
egory arises as the strong shape (coshape) category of the simplicial
inclusion i, : Qcf C Qc (if : Q,,f C Qf), where Q is a Quillen [41] sim-
plicial closed model category and Q c, Q f, Q cf are the subcategories of
cofibrant, fibrant, and both fibrant and cofibrant objects of Q respec-
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tively. Then we prove, that the strong shape (coshape) category of i,
(if) is isomorphic to HoQc (HoQf) of [41] and hence is equivalent to
HoQ.

Other examples are the coherent homotopy category of a monad [2]
and various categories of homotopy homomorphisms [7].

The highly developed part of the known approaches to strong shape
theory is based on the use of the appropriate homotopy category of
inverse systems or similar concepts. We consider this type of strong
shape constructions in section 5.

We introduce the notion of strong K-associated inverse system and
develop the abstract categorical scheme for constructing the strong
shape categories of this type. We show that this approach agrees with
that of the authors mentioned above and with our general bicategory
approach. The last part of section is devoted to proving the equivalence
of the notions of strong K-associated inverse system and of Mardesic
strong expansion [35].

This provides us with a number of examples of strong shape and
coshape categories. Among them the coherent prohomotopy category
and strong shape category of Lisica and Mardesic, ho(pro - S) of Ed-
wards and Hastings and strong shape and coshape categories of Cathey-
Segal [12].

We cannot, however, develop the theory of strong shape in full anal-
ogy with the ordinary one. The reason for such a situation is the lack
of an analogue of the Kleisli construction of a monad in the bicategory
CHDist. Indeed, in general the monad multiplication in CHDist
is associative only up to homotopy and, hence, its Kleisli "category" is

not an object of CHDist.
This difficulty is considered in section 6. We show that our construc-

tion of coherent right and left extensions of a simplicial distributor along
itself may be endowed with the structure of an Aoo-monoid in the sense
of [3]. This allow us, by considering an appropriate Kleisli construction,
to associate with every strong shape (coshape) theory some locally Kan
simplicial category, whose homotopy category is initial strong shape
(coshape) category. This result is closely related to the Dwyer-Kan
hammock localization [21] and recent results of R.Schwanzl and R.Vogt
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[42].
This construction shows, in addition, that it would be naturally .to

consider strong shape theories not in the bicategory CHDist but in
some more general categorical concept, which may be called the Aoo-
bigraph, which is a sort of Aoo-monoid in the category of simplicial
bigraphs (see the concluding remark in section 5). We do not give a
precise definition, because it is sufficiently complex and deserves sepa-
rate consideration.

The other interesting question is the existence of limits and colimits
in strong shape categories. As these categories by their nature are de-
fined up to higher homotopies, we must consider only homotopy limits
and colimits. So we need a definition of homotopy limit of Aoo-morphism
between Aoo-graphs. This theme leads us to the question about the
connections of our theory and A.Heller’s approach to the genesis of ho-
motopy theories [29]. These connections seem to be of great interest,
because both these theories describe essentially the same mathematical
concepts, but from different points of view.
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1 Preliminary discussion
We adopt the following notations: for a category B and two objects
X, Y of B we denote by B(X, Y) the set of morphisms from X to Y.
If B is enriched in some monoidal category, then B(X, Y) is the value
of the enriched hom-functor on X, Y. We denote by S the category of
simplicial sets, and by A the cosimplicial object of s consisting of the
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standard simplicies A(n). We use also the notation Top for the cate-
gory of all topological spaces, and lCa for its subcategory of compactly
generated spaces.

The category ka is a closed monoidal category and at the same
time a simplicial category. We shall denote by lCa and by q its
internal and simplicial enriched hom-functors respectively. We use also
the notation ANR for the category of absolute neighbourhood retracts.

The necessary basic category theory and enriched category theory
can be found in [6,30,33]. The simplicial techniques we will need are in
[10,24].

REMARK. Some words about the size (in the set theoretical sense) of
the categories involved. In our paper we are taking the view of [30] [2.6,
3.11 and 3.12] on the existence of functor categories, limits and colimits.

Let B be a simplicial category. We say, that two morphisms f, g :
X - Y are homotopic if there is a I-simplex F in B1(X, Y), such that

We call such a simplex a homotopy from f to g. If F, G are two homo-
topies from f to g we say, that they are homotopic provided there is a
2-simplex ol E .62 (X, Y) such that

and d2 (0’) is degenerate.
These relations are not equivalence relations unless B is locally Kan,

that is B(X, Y) is a Kan simplicial set for any X, Y E ob(B), however we
can associate with B its homotopy category 7r(-B) taking as 1r(B)(X, Y)
the set of connected components of B(X, Y).

We assume, that the reader is acquainted with the definition of bi-
category of distributors, Dist, [6,8,16] and of its basic properties.

To gain a better understanding of our approach we must recall some
definitions of categorical shape theory.

In [8,16] the following definition of a shape theory is given.
Let K : A -&#x3E; B be a functor. Then a pair (S, SK), where SK is a

category and S : B - SK is a functor, is said to be a shape theory for
K if
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1. ob(SK) = ob(B) and S(X) = X,
2. if s E SK(X, K(Q)), there is a unique f E B(X, K(Q)) such that

S(f) = S,
3. S is K-continuous functor.
It was shown that these three axioms are equivalent to the following

ones:

1*. SK is isomorphic to the Kleisli category of the monad (T, p, y) in
the bicategory of distributors Dist generated by an adjunction /&#x3E;s -1 /&#x3E;s,

2*. Y 0 ’OK is invertible,
3*. /&#x3E;s is a right extension of OS 0 OK along OK-
Our main idea was to separate the general bicategory properties of

shape theory from those, which issue from the special feature of the
bicategory of distributors. This leaded us to the following axiomatics.

We call a shape theory for K a monad (T, p, y) in Dist with the
following properties:

1** q 0 ’OK is invertible,
2** T is a right extension of T 0 OK along OK-
If we have such a theory, we can consider the pair (S, KlT), where S

is canonical functor to the Kleisli category and show that it is a shape
theory for K in the sense of [8]. Conversely, the monad from axiom
1* satisfies our conditions if (S, SK) is a shape theory for K. Below

we shall see, that the existence of a multiplication, p, is a consequence
of the conditions 1**, 2**, and our axiomatics will take final form ( see
definition 2.6). We give a proof of the equivalence of the two axiom
systems in proposition 2:5.

Our axiomatics may be considered in any bicategory and this is its
main advantage. It only remains to us to find a bicategory appropriate
for developing the strong shape theories.

For these purposes we use the homotopy coherent category theory
of [15,19] and the construction of the homotopy coherent category of a
monad from [2,14]. Below we recall some points of these theories.

We use in our work a general definition of homotopy limit given in
[9], which generalizes the Bousfield-Kan notion of homotopy limit [10].

The following construction is extracted from [19]. Let A be a small
S-category. For objects X,Y of A form the bisimplicial set B11 (X, Y)
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defined by

where

is defined by composition in A,

and si : W(X, Y)n * --+ T (X, Y)n+l,* by the canonical morphism

Set now A(X,Y) = Diag(T(X, Y)).
DEFINITION 1.1 Let B be a complete S-category, with cotensorization
( - ) ( -) : B x sop --+- B,

an S -functor.
The simplicially coherent end of T will be the object ,AT(A, A) of B

defined by 
on

DEFINITION 1.2 Let B be a cocomplete S-category with tensorization
- x - : B x S - B,

an S -functor.
The simplicially coherent coend of T will be the object fAT(A, A) of

B defined by

where ,
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As was established in [19], for coherent ends ( coends), the cosimpli-
cial (simplicial) replacement formula and a universal property similar
to that of homotopy limits ( colimits) are satisfied. We need also the
following properties of coherent ends.

PROPOSITION 1.1 ([19]) If a simplicial functor T : AOP x A -+ S is .

such, that T(A’, A") is a Kan simplicial set (we shall say in this case,
that T is locally Kan), then FAT(A, A) is a Kan simplicial set too.

Recall now some definitions. Let A be an S-category. Every S-
natural transformation between two S-functors F, G from A to S is de-
fined by a set of simplicial mappings from A(O) to S(F(X), G(X)) , X E
ob(A). Let To(X ) : F(X ) -&#x3E; G(X) be the corresponding simplicial map.
DEFINITION 1.3 We will say that an S-natural transformation T be-
tween two S-functors from A to S is a level weak equivalence (level ho-
motopy equivalence) provided To(X) is a weak equivalence ( homotopy
equivalence) of simplicial sets for every object X of A.

An important property of coherent ends is

PROPOSITION 1.2 ([19]) If S,T : AOP x A --+ S are two locally Kan
S functors and 17 : S -&#x3E; T is an S-natural transformation which is a
level homotopy equivalence, then

is a homotopy equivalence.
If we use weak equivalences instead homotopy equivalences, then the

similar property is true for coherent coends, without the assumption that
S, T are locally Kan.

Finally, we have to formulate a statement, which we call, following
[19], the coherent Yoneda lemma.
PROPOSITION 1.3 (COHERENT YONEDA LEMMA [19]) Foreachs-functor

there is an s-natural homotopy equivalence
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The following construction was considered in [2] for a simplicial
monad. Here we dualize it for the case of a simplicial comonad.

Let (Z,u,~) be an S-comonad on A. Then for every X E ob(A) one
can define a simplicial object L*(X) of A putting

Suppose now, that A is S-tensored and there exists the realization

We thus obtain an S-endofunctor on A which we shall denote by Zoo.
The counit 6, considered as a simplicial morphism from L* (X ) to a
constant simplicial object X*, generates after simplicial realization an
S-natural transformation

By applying the functor A(-, Y) to L*(Y) levelwise we obtain a cosim-
plicial object A(L*(X),Y) in S and

where Tot is Bousfield-Kan total space functor [10].
As was proved in [2], if A( L*( X), Y)) is a fibrant cosimplicial sim-

plicial set in the sense of [10], then one can define a simplicial transfor-
mation

such that (Loo, Poo, coo) becomes a comonad on 1r(A).
One special case of this construction is especially important for us.

Let A be a simplicial category. Then, following [19], the simplicial set
of coherent transformations between simplicial functors F, G : A --+ S
is given by

With every simplicial category A one can associate its discretization
Ad . This is the S-category with
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For a simplicial category A let 0(A, S) be the category of simplicial
functors from A to S and their simplicial transformations. Let i : Ad --+
A be the inclusion functor. Then we have a pair of adjoints:

Let (L, u, c) be an S-comonad on F(A, S) generated by this adjunction.
Then we have

PROPOSITION 1.4 For every simplicial functors F, G : A --+ S there is
a natural isomorphism

PROOF. Let us give an explicit description of L(F) = Lani i*(F).
Namely, for an object X of A we have

There is an action

induced by the simpliciality of F. It generates the counit e of L.
The comultiplication p is defined on a summand F(Ao) x A(Ao, X)

by

where 1 is the canonical map A(0) - A(Ao, Ao) which "picks out the
identity map" [19].

Now, we have
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But

and

where T(X,Y) = S(F(X),G(Y)) and Y(T)* is a cosimplicial object
from [19]. Hence, we have

by the cosimplicial replacement formula from [19]. The last object is
exactly Coh(A, S)(F, G).

Q.E.D.

Finally, we have to say something about the procategories which we
shall use in our work.

Let A be an arbitrary small S-category, X : A -+ A be an S-functor.
We can associate with X the following simplicial functor P : A --+ S:

DEFINITION 1.4 The category of resolutions of A is the S-category
Pro(A), which has the simplicial functors from different small S-categories
to A as the objects, and the enriched hom-functor

Let now A be a directed set. We call an inverse system in A over
A an arbitrary functor X : A’ - A, where A’ is the small category
associated to A. We shall denote such a functor by (Xx) if it leads to
no confusion.
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DEFINITION 1.5 The procategory pro(A) is the full simplicial subcat-
egory of Pro(A) generated by the inverse systems in A over different
directed sets.

Using the enriched Yoneda lemma [30] it is not hard to show, that

More detailed information about pro(A) may be found in [16,23,12]
There is an obvious dualization of the construction above. We thus

obtain the categories of direct systems inj(A) [23] and of coresolutions
Inj(A).

2 Shape theories in a bicategory
Let D be a bicategory with objects A, B, C, .... For every A, B let
D(A, B) be the category of arrows from A to B. Let © be the functor
of composition in D:

For two arrows S, T E ob(D(A, B)) we denote by D(S, T) the set of
morphisms in D(A, B) from S to T, that is the set of 2-cells. For each
object A, let IA or simply I, denote the identity arrow on A. These
data are connected by a coherent system of canonical isomorphisms
[5]. Usually, one does not mention these isomorphisms to shorten the
notations. This is possible because of the coherence theorem [34].

For any object A of D the category D(A, A) is monoidal with respect
to &#x26; and IA.

DEFINITION 2.1 A triple (T, u, n), where T is an object of D, p E
D(T 0 T7 T) andq E D(IA, T) is called a monad over A in D, provided
(T, u, n )is a monoid in D(A, A). That is
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Let K : A - B be an arrow, and p E (K Q9 T, K) . We shall say that
(K, p) is a right module over T (or simply a right T-module) if

The definition of left T-module is evident.

DEFINITION 2.2 Let K : A --&#x3E; B be an arrow in D. We shall say
that in D there exists a right extension of T E D(A, C) along K if the
functor D(- 0 K, T) is representable.

We shall denote a corresponding representing object (which is unique
up to isomorphism) by Ran(K, T). So we have a natural isomorphism

If in D there exist right extensions of any T E D(A, C) , C E ob(D)
along K then we say that D is closed on the right with respect to K. In
this case, the functor - 0 K : D(B, C) - D(A, C) has a right adjoint
Ran(K, -). 

In the dual situation we give

DEFINITION 2.3 We shall say that in D there exists a left extension of
T E D(C, B) along K if D(K 0 -, T) is representable.

We shall denote a corresponding representing object by Lan(K,T). As
above, we have a natural isomorphism

and the dual definition of closedness on the left with respect to K.
Thus we have that D is closed on the right ( on the left) if it is

closed on the right (on the left) with respect to any arrow K and D is
biclosed if it is closed both on the right and on the left.

Let now there exist in D a right extension of some S E D(A, C)
and of K itself along K. Then we have the following isomorphisms
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Define the 2-cells

by the formulas:

and

by

when S = K.

Dually, if in D there exist a left extension of S E D(C, B) and of K
along K then we have the following 2-cells

and

defined by

PROPOSITION 2.1 The 2-cells p and 71 define on Ran(K, K) a structure
of a monad over B in D. Moreover, p defines on K a structure of a
left module over Ran(K, K).

In the dual situation we obtain a monad structure on Lan(K, K)
over A and a right module structure on K over Lan(K, K).
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PROOF. Let A, B, C be the objects of D, and let X E D(A, B), Y E
D(A, C) and Z, W E D(B, C). If in D there exists a right extension of
Y along X then we have the following commutative diagram

where m is composition of 2-cells.
Thus for every g E D(Z 0 X, Y) and f E D(W, Z) we have

Taking g = p : Ran(K, S) 0 K -+ S we have, that

for every f : W --+ Ran(K, S), if Ran(K, S) does exist.
Applying this formula for p we thus obtain

where Putting in
we have

and

The formula (4) gives us the following equation

hence
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On the other hand

So by (5) and (6) we obtain

Moreover, applying (3) to q we have

This gives us two equations

Putting again in we have

and

Thus the formulas (4),(7),(8),(9),(10) give us the desired result.

Q.E.D.

COROLLARY 2.1.1 Let S and T be two right (left) extensions of K
along K, then the monads (T, uT, l1T) and (S, J.ls, l1S) obtained as in the
proposition 2.1 are canonically isomorphic.

By analogy with [8,16,33] we give the following

DEFINITION 2.4 The monad (Ran(K, K), J.l, 11) is called the codensity
monad for K. Dually, (Lan(K, K), p, 11) is called the density monad for
K.
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Let K : A --+- B be an arrow in D. Then K generates two functors:
- 0 K and K 0 -.

DEFINITION 2.5 Let T : B -&#x3E; C be an arrow. We shall say that T is

K-continuous if for any arrow S : B -+ C the functor - 0 K induces a
bijection

Dually, T : C -+ A is K-cocontinuous if for any arrow S : C --+ A
the functor K 0 - induces a bijection

LEMMA 2.1 If in D there exists Ran(K,T0K), then T is K-continuous
if and only if the 2-cell

is an isomorphism.
Dually, if Lan(K, K 0 T) exists then T is K-cocontinuous if and

only if

is an isomorphism.

PROOF. Immediately from the definitions.

Q.E.D.

Let K; A --+ B be as above. The main definition of this section is

DEFINITION 2.6 Let T : B --+ B be an arrow and let q : I -&#x3E; T be a

2-cell. We shall say that the pair (T,,q) is a shape theory for K if the
following two axioms are fulfilled:

1. 71 0 1 : K - T 0 K is an isomorphism.
2. T is K-continuous.

Dually, let T : A --+ A be an arrow and let 17 : I --+ T be a 2-cell. We
shall say that the pair (T, q) is a coshape theory for K if the following
two axioms are fulfilled:

1. 10 n : K --+ K 0 T is an isomorphism.
2. T is K-cocontinuous.
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PROPOSITION 2.2 Suppose for an arrow K E D(A, B) that there exists
a

(co)shape theory (T,,q), then one can define 2-cells

such that (T, p, 71) is a monad for K, (K, p) is a left (right) T-module
and p is an isomorphism.

PROOF. Define for a shape theory (T, q) :

The proof that p and p have the necessary properties is analogous to
that of the proposition 2.1.

For a coshape theory we have to define

Thus according to this proposition every (co)shape theory has a
canonical monad structure. So we shall say that a triple (T,P,77) is a
(co)shape theory for K having in view that (T,n ) is one and p is its
canonical multiplication.

PROPOSITION 2.3 Let K : A -&#x3E; B be an arrow admitting a (co)shape
theory (T, p, q) and S : B -&#x3E; C (S : C -&#x3E; A) be K - (co) continuous, then
there exists a 2-cell

such that (S, k) is a right (left) T-module.

PROOF. Define

The remaining part of the proof is again analogous to that of the
proposition 2.1.
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THEOREM 2.1 If in D there exists a right (left) extension of K along
K, then the pair (Ran(K, K), q) ((Lan(K, K), TJ) ) , where TJ is the unit
of a codensity (density) monad, is a shape (coshape) theory for K if and
only if the 2-cell

p : Ran(K, K) 0 K --+- K is an isomorphism (11)

(p : K 0 Ran(K, K) --+- K is an isomorphism) . (12)

Moreover, if there exists a shape (coshape) theory (T, TJ) for K then
T is a right (left) extension of K along K and (T, JL, q) is isomorphic
to the codensity (density) monad for K.

DEFINITION 2.7 We shall say that an arrow K E D(A, B) is (co )formal
in D if a right (left) extension of K along K exists and satisfies condi-
tion (11)((12)).

Thus we can reformulate the theorem:

for an arrow K there exists a (co)shape theory if and only if K is

(co)formal, and this (co)shape theory is multiplicatively isomorphic to
(Ran(K, K), JL, q) ((Lan(K, K), p, ’l) ) 

PROOF. We will prove the theorem for shape theory. The proof for
a coshape theory is dual. 

Let Ran(K, K) exist and let (11) be satisfied. Then from proposition
2.1 we have that ’q © lK is an isomorphism.

Furthermore, formula (3) gives us the equality a-1( f ) = p(b)(f) for
every f E D(S, Ran(K, K)). As a-1 and p are isomorphisms so b is
also and thus Ran(K, K) is K-continuous. Hence (Ran(K, K), q) is a
shape theory for K.

On the other hand, if (Ran(K, K), q) is a shape theory for K, then
p is an isomorphism because p(,q 0 1) = 1 and 1 is an isomorphism
by definition.

Let us prove the second part of the theorem. Indeed, let (T, q) be a
shape theory for K, then for every S we have the natural isomorphisms:
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Thus T is a right extension of K along K.

Q.E.D.

EXAMPLES. Below we give some examples of bicategories and shape
theories.

1. Let Cat be the 2-category of categories, functors and natural
transformations. In this bicategory a right extension of K along K is
a right Kan extension RanKK, whereas a left extension is not LanxK.
It is indeed a left extension of K along K in bicategory Cat°p, which
has as objects the categories and

2. Let now pro(Cat) be the following bicategory. The objects of
pro(Cat) are the categories, the arrows from A to B are the functors
from A to pro(B) and 2-cells are their natural transformations. The

composition of arrows is defined by

There is an obvious full embedding

which is a homomorphism of bicategories.
There is a dual construction for the category of direct systems. De-

note the corresponding bicategory by inj(Cat’P). Then we have a

homomorphism and full embedding of bicategories

3. The similar process leads to the bicategories PTO(Cat) and
Inj(Cat).

4. Finally, let Dist be the bicategory of distributors [6,8,16]. There
are the following homomorphisms of bicategories, which are the full
embeddings
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where for a functor L : A - Pro(B) the distributor $*(L) =0L is

The composition c])* . ’z-p is the embedding of Benabou, Cat c Dist,
and is denoted by W* as well [6].

There are also the dual embeddings [6]

defined for a functor L : A ---+ Inj(B) by

Via the homomorphisms 4)* , 4)* one usually defines a shape (coshape)
category for a functor K : A --&#x3E; B as the Kleisli category of the codensity
monad for OK (of the density monad for OK ) in Dist [8,16]. Remark
however that a homomorphism of bicategories may not preserve right
(left) extensions and so the shape (coshape) theories. For example, 4)*
preserves only the pointwise right Kan extensions [8].

5. In any bicategory if K has a left adjoint L with unit 0 : I - K 0 L
and counit 0 : L 0 K --+ I, then Ran(K, K) and Lan(L, L) may be
calculated as K 0 L. It is easy to see that (K 0 L, 0) is a shape theory
for K and a coshape theory for L provided 0 is isomorphism.

As an example of such a situation we can consider the Marde0161ié
shape theory of topological spaces [36]. This theory corresponds to the
full embedding of the homotopy categories x(ANR) - x(Top). As it
was noted in [16], a full subcategory i : A C B is dense in the sense of
[36] if and only if i has a left adjoint in pTO(Cat). This left adjoint for
X E ob(B) is given by an A-expansion of X.

In the situation of adjunction a shape (coshape) theory has some
very nice properties. For example, the image of such a theory under
any homomorphism of bicategories is again a shape theory.

Another situation, related closely with the properties of adjoints is
described in the following proposition:
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PROPOSITION 2.4 Let K be an arrow from A to B and let

be a pair of adjoints with unit 0 : 1 -&#x3E; T 0 S and counit 0 : S 0 T - I,
such that 0 0 lK (lK (8) 0) is an isomorphism and S is K-continuous
(T is K-cocontinuous).

Then (T (8) S, 0) is a shape (coshape) theory for K and the monad
(T (8) S, p, 0), generated by the adjunction, is isomorphic to the codensity
(density) rnonad of K.

PROOF. The proof for a shape theory follows from the fact that TOS
is K-continuous as T is a right adjoint. Thus (T(8)S, 0) is a shape theory
for K. It is not hard to check from the definition of adjointness that p
and the multiplication in the codensity monad coincide.

Q.E.D.

This proposition allows us to prove the equivalence of our axiomatics
for a shape theory and that of [8].

PROPOSITION 2.5 If (S, SK) is a shape theory of a functor K in the
sense of [8](see section 1), then SK is isomorphic to the Kleisli cate-
gory of the codensity monad in Dist of OK and S is the corresponding
canonical functor. 

Conversely, if (T, /-t, 77) is a shape theory for OK in Dist , then

(S, KIT) is a shape theory in the Bourn-Cordier sense.

PROOF. The first part of the proposition is a corollary of 2.4. The
second follows from the lemma 2.1 and the remark on the pages 174-175
of [8], that Os (9 r is invertible if and only if r is invertible, where r is
the 2-cell from the lemma 2.1.

Q.E.D.
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3 Homotopy coherent bicategory of sim-
plicial distributors

This section is devoted to the construction of a bicategory of distributors
convenient for the development of the strong shape theories.

We start from the bicategory of simplicial distributors SDist. The
objects of SDist are the simplicial categories. If A and B are two S-

categories then SDist(A, B) is the S-category of S-distributors from
A to B, that is the S-category of S-functors from BOP x A to S. For

two simplicial distributors S and T, let SDist(S,T) be the simplicial
set of S-natural transformations from S to T. The composition of the
distributors is given by the coend

The identity arrow I E SDist(A, A) is given by the enriched hom-
functor

In addition, we have a right extension Ran(S, T) of T along S for any
S E SDist(A, B) and T E SDist(A, C) given by the end [6,8,16]

Similarly, for S E SDist(B, A) and T E SDist(C, A)

and we have the S-natural isomorphisms

For two simplicial categories A, B define the following S-endofunctors
on SDist(A, B).

If K is an S-distributor from A to B then put:
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It is evident, that L’, L", L"’ are S-endofunctors on SDist(A, B) .
Furthermore, L’, L", L"’ have S-comonad structures. More precisely, let

be defined by the action

and

be defined on the summand K(X, Z) x A(Z,Y) by the morphism

induced by A(0) - A(Z, Z). It is not hard to check that L’ is a comonad

with q as a counit and p as a comultiplication. The comonad structures
on L" and L"’ are defined analogously.

LEMMA 3.1 Let Ad be the discretization of an S-category A, and let
i : Ad--+ A be the corresponding inclusion functor. Then we have a pair
of adjoints:

where (1 x i)* is the restriction functor. Then (L’, p’, n’) is induced by
the adjunction above.
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Analogously, (L", p" , TJ") and (L’, p"’, n"’) are induced by the adjunc-
tions generated by the inclusions-

and

respectively.

PROOF. Proof is immediate from the definitions.

Q.E.D.

LEMMA 3.2 For the monads (L’, p’, 77’) , (L", p", q") , (L"’, p"’, 77-) the
natural transformations n00 , n"00 , 71’" are level homotopy equivalences.

PROOF . The proof for L’ is standard via the existence of the simplicial
deformation retraction of simplicial ob jects

induced by augmentation q’ : L§(K) - K, where K* is a constant

simplicial object.
Indeed, the pair of adjoints (1 x i) * and Lanixi induces a simplicial

monad M’ = ((1 x i)* - Lanlxi, p, c) on ,S’Dist(Ad, B). Moreover, the
simplicial distributor (1 x i)*(K) has an obvious M’-algebra structure.
Hence, we can consider May’s bar construction B*(M’, M’, (1 x i)*(K)).
It is easy to verify now that there is a natural isomorphism of simplicial
objects

and so the existence of the desired deformation retraction follows from a
well known resolvent property of the bar-construction [37,38]. This de-
formation retraction gives us the necessary homotopy equivalence after
simplicial realization.

The proof for L" and L"‘ is analogous.
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DEFINITION 3.1 For two simplicial distributors R, T from A to B de-
fine the simplicial set of coherent transformations from R to T by

and the set of homotopy classes of coherent transformation by

where S(-) and I - I are the singular complex functor and geometric
realization functor respectively.

REMARK. We use in this definition the functor 51 - I to avoid the
difficulties associated with a possible "wrong" homotopy type of the
coherent end §AT(A, A) if some T(A, B) are not fibrant.

It is evident that CHDist(-, -) is a simplicial functor and so we
can consider CHDist as an endodistributor TAB on 7r(SDist(A, B))

PROPOSITION 3.1 There are the 2-cells of endodistributors on 7r(SDist(A, B))

which define TAB as a monad in Dist.
Moreover, the canonical functor P from 7r(SDist(A, B)) to the

Kleisli category of TAB is the localization functor at the class of the
level weak equivalences of S-distributors.

PROOF. Note, that by proposition 1.4 and lemma 3.1 we have an
S-natural isomorphism

This allows us to define e : I - TAB by the mappings induced by q"’
and canonical inclusion of a simplicial set to the singular complex of its
realization.
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Furthermore, the cosimplicial simplicial set

and hence, is fibrant [2,19]. On the other hand this gives us a homotopy
associative and homotopy unitary composition on TAB ( see [2,14] for
the definition of this composition for simplicial transformations between
simplicial diagrams in Ka).

Furthermore, (13) shows, that the canonical functor

inverts the level weak equivalences of simplicial distributors, because

Let now F : 1r(SDist(A, B)) --+ C be a functor inverting the level
weak equivalences. Then define G : K1TAB --+- C on objects by G(T) =
F(T). A morphism f : R -&#x3E; T in KdTAa is specified as a homotopy class
of a morphism 0: L’"R --+ S[T[ . Thus we can take G( f ) as a morphism
fitting commutatively into the diagram:

It is evident that we thus defined KIT,,,, as the localization of 7r(SDist(A, B)

at the class of the level weak equivalences.

DEFINITION 3.2 Let A, B be two simplicial categories. Define the cat-
egory
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So the objects of CHDist(A, B) are all simplicial distributors from
A to B, and the morphisms are the homotopy classes of their coherent
transformations. Remark that this definition of coherent transforma-

tions differs from that of coherent transformation of simplicial functors
from [19]. It is not hard to verify, however, that if T is a locally Kan
simplicial distributor, that is T(X, Y) is a Kan simplicial set for every
X, Y, then there is a level homotopy equivalence

DEFINITION 3.3 Let T : A --&#x3E; B and R : B ---+ C be two simplicial
distributors. Define their coherent composition as

Let T : A --* B and R : A --+ C be two simplicial distributors.
We shall call the right coherent extension of R along T the following
simplicial distributor, CHRan(T, R) : B --+ C,

Analogously, the left coherent extension of T : B --+ A along R :
C --+ A is CHLan(R, T ) : B --+ C

LEMMA 3.3 There are the following S-natural isomorphisms
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PROOF. Let E*,*,*(X, Y) be a trisimplicial set defined by

with the obvious face and degeneracy maps. Then L’ (L" (T)) (X, Y)
is isomorphic to diag(diag23E*,,,*(X,Y)), where diag23 is the diago-
nal functor with respect to two last variables. On the other hand

L"’(T)(X,Y) is isomorphic to diag(diagl2E*,*,*(X,Y)), where diagl2
is the diagonal functor with respect to two first variables. This implies
the isomorphism (14).

The isomorphism (15) follows readily from the coend formulas for 8)
and Q9H and simplicial replacement formula for coherent coends. Anal-
ogously, the end formulas for the simplicial Ran (Lan) and CHRan
(CHLan) and cosimplicial replacement formula for coherent ends lead
us to the isomorphisms (18,19).

Finally, the isomorphism (16) follows from the following calculation

The proof of (17) is analogous.

The main theorem of this section is

THEOREM 3.1 The simplicial bifunctor - 0H - induces a bifunctor

There are natural isomorphisms
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which satisfy the coherency conditions.
Moreover, we have the following natural isomorphisms

So we have a biclosed bicategory CHDist with the simplicial cat-
egories as the objects, the simplicial distributors as the arrows , the

homotopy classes of their coherent transformations as 2-cells and 0h as
the composition of arrows. We shall call this bicategory the homotopy
coherent bicategory of simplicial distributors.

PROOF. To prove the first statement of the theorem it is sufficient

to remark that OH, being a coherent coend, preserves level weak equiv-
alences of simplicial distributors [10,19].

The coend formula gives us the associativity condition as well. The
isomorphism TOHI - T is obtained as follows

because q£ is a level homotopy equivalence and hence is an isomor-
phism in CHDist. The proof for 10hT is analogous. The coherency
conditions may be checked immediately.

Finally, using lemma 3.3 we obtain

The proof for CHLan is analogous.

Q.E.D.
Let K : A --+ B be a simplicial functor between two S-categories.

Then we can define two simplicial distributors OK : A - B and OK :
B --&#x3E; A.
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PROPOSITION 3.2 There are the natural isomorphisms in CHDist

and weak equivalences of simplicial sets

for every simplicial distributor T.

PROOF.

The last simplicial set is weakly equivalent to T(x,K(y)) via n’oo.

Q.E.D.

PROPOSITION 3.3 Let K, L : A --+- B be two simplicial functors such
that ¢L is a locally Kan sirrcplicial distributor. Then there is a natural

homotopy equivalence

PROOF. The proof is an easy consequence of the coherent end for-
mula, coherent Yoneda lemma and the fact that for a Kan simplicial set
k the natural inclusion of k to Slkl is a homotopy equivalence.

Q.E.D.

Let K : A - B be a simplicial functor.

DEFINITION 3.4 We shall say that a simplicial distributor

is strongly K -continuous (strongly K-cocontinuous) provided T is
OK-continuous (OK -cocontinuous) in CHDist.

A simplicial functor

is strongly K-,continuous (strongly K-cocontinuous) if OT is a strongly
K-continuous distributor (OT is a strongly K-cocontinuous distributor).
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Finally, we can give the definition of a strong shape (coshape) theory
for a simplicial functor K : A - B. In analogy with the nonenriched
(or rather trivially enriched) situation we define

DEFINITION 3.5 A strong shape (coshape) theory for K will be a sim-
plicial distributor T : B - B together with a coherent transformation
7y : I - T such that:

- 77 induces a weak equivalence of simplicial sets

for every X E ob(B), Y E ob(A),
- T is strongly K -continuous (strongly K-cocontinuous).

Thus a strong shape (coshape) theory for K is a shape (coshape)
theory for OK (OK) in CHDist . If a strong shape (coshape) theory
exists for K then, according to theorem 2.1 the canonical morphism

is an isomorphism and we will say that K is strongly formal (strongly
coformal) functor.

We thus obtain

THEOREM 3.2 For a simplicial functor K : A -3 B there exists a strong
shape (coshape) theory if and only if K is strorcyly formal (strongly co-
formal) and this theory is isomorphic to the codensity (density) monad
of OK (OK) in CHDist.

DEFINITION 3.6 We say that a simplicial functor K : A - B is a weak
full embedding if it induces a weak equivalence

for every X, Y E ob(A).
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PROPOSITION 3.4 Every weak full embedding is strongly formal and
strongly coformal.

PROOF. We have the following chain of homotopy equivalences and
isomorphisms

The last is homotopy equivalent by the coherent Yoneda lemma to
SIB(X, K (Y)) 1, which is weakly equivalent to OK (X, Y) .

The proof of strong coformality is analogous.

Q.E.D.

Remark now that for any monad (T, p, q) in CHDist over a simpli-
cial category B, we can construct a monad (-7r(T), 1r(J.L), r(i7)) in Dist
over 7rB by passing to the set of connected components. We shall call
this monad a homotopy monad of (T, U,n ). We can apply this to the co-
density(density) monad in CHDist and we thus obtain the following
definition.

DEFINITION 3.7 Let K : A -&#x3E; B be a strongly formal (coformal) func-
tor. Then we will call the Kleisli category of the homotopy monad of
its codensity (density) monad in CHDist the strong shape (coshape)
category for K. We will denote this category by SshK (CshK.

The canonical functor

will be called the strong shape (coshape) functor.

The basic examples of strong shape (coshape) categories will be con-
sidered in the next sections. Here we remark only one important prop-
erty of strong shape categories, namely the existence of a comparison
functor between strong and weak shape categories.
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PROPOSITION 3.5 Let K : A -&#x3E; B be a strongly formal (coformal)
functor. Then 7rK : rA --+ 7rB is formal (coformal) and the canonical
functor

fits commutatively into the diagram in Cat :

A similar diagram exists for the coshape theories.

PROOF. The proof is immediate.

Q.E.D.

4 Strong shape theory and strong reso-
lutions

Let B be a simplicial category. Let A, M be two small simplicial cate-
gories and let

be two simplicial functors. We shall denote such functors by {X,B}, fyil}
respectively. 

We can associate with these functors two simplicial functors from B
to S:

P(Z) = hocolimxB(Xx, Z) , Q(Z) = hocolim,,R(Y,,, Z) .

Then define

As in proposition 3.1 we establish that on CP7"l(B), there is a natural
multiplication, which is associative up to homotopy and has a homotopy
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unity. Thus we can consider a category CP1l(B) with the simplicial
functors of the type X : A --+ B , Y : M --+ B as objects and with

as the set of morphisms. The composition is induced by the multipli-
cation on CPH(B) and the identity is given by the identity natural
transformation of IX,B}.

DEFINITION 4.1 We call CPH(B) the category of strong resolutions of
B.

LEMMA 4.1 There is a homotopy equivalence:

If A , M are trivially simplicial enriched and cofiltered then

If in addition, B(XN, YJL) is Kan for every A , p the

PROOF.

But iBS(B(Y,,,Z),SIP(Z)I) is Kan [19] and by the coherent Yoneda
lemma is homotopy equivalent to SIP(YJj)I. Hence

holimt,JB!E(B(Y,,,Z),SIP(Z)I) - S(holim,,Ihocolz*m,BH(Xx,Y,,)I).

The second equivalence follows from the fact that in the cofiltered
case the homotopy colimit is weakly equivalent to the colimit [10].

The third homotopy equivalence follows immediately as the cofil-
tered limit of Kan simplicial sets is a Kan simplicial set.

Q.E.D.
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DEFINITION 4.2 Let K : A -+ B be a simplicial functor, (Xx) be an
object of CFH(B). Let X be an object of B and let p be a 0-simplex
of hocone(X, {Xa}) [9J. We denote it by p : X -&#x3E; {Xa} and call it a
homotopy coherent cone over X . 

We say that the pair ({Xa}, p) is a strong K-resolution of X if the
natural map

induced by p, is a weak equivalence for every P E ob(A).

THEOREM 4.1 Let K : A -+ B be a simplicial functor. Suppose that for
an object X of B there is an object P = {Pa} of CPH(A) together with a
homotopy coherent cone p : X --+ K(P) = {K(Pa)} such that (K(P), p)
is a strong K-resolution of X. Similarly, let K(Q) = (IK(Q,,)}, q) be
a strong K-resolution of Y.

Then there is a homotopy equivalence

if K is strongly formal.

PROOF. We have the following chain of isomorphisms and homotopy
equivalences:

From the strong formality of K, we have a homotopy equivalence
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The following results are the homotopy coherent analogues of some
shape-theoretic results [16,36] and yields some more understanding of
the notion of strong K-continuous functor.

PROPOSITION 4.1 Let K : A -&#x3E; B be a simplicial functor, T : B --+ C
be a strongly K-continuous and locally Kan distributor. Let (f Y,}, q)
be a strong K-resolution of Y. Then q induces a natural homotopy
equivalence

Let L : B --+ C be a strongly K-continuous functor such that OL is

locally Kan. Then q induces a natural homotopy equivalence

if this homotopy limit exists in C.

PROOF.

As T is strong K-continuous and locally Kan, the last object is homo-
topy equivalent to holimT(X, Y.) by lemma 2.1.

The remaining part of the proposition is evident.

Q.E.D.

Let now K : A --&#x3E; B be a weak full embedding. Suppose that
for each object X of B, there is an object P(X) = (Px) of CFH(A)
together with a homotopy coherent cone p : X - K(P(X)) = {K(PÀ)}
such that (K(P(X)),p) is a strong K-resolution of X. Then there is a
natural weak equivalence:
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and hence an isomorphism

Thus the theorem 4.1 and the arguments of [16, p.57] give us

THEOREM 4.2 The correspondence X --+ P(X) provides a functor

The strong shape category of the functor K is isomorphic to the category
C defined as follows:

- ob(C) = ob(B)
- for X, Y E ob(B)

Under the conditions of theorem 4.2, we can give the following char-
acterization of K-continuous functors.

THEOREM 4.3 Let C be a simplicial category with srraall homotopy lim-
its. Let T : B -&#x3E; C be a simplicial functor such that O(T-K) is locally
Kan distributor.

Then T is strong K-continuous if and only if for any object X of B
and any strong K-resolution ({K(Pa)}, p) of X, we have a homotopy
equivalence

PROOF. Proposition 4.1 gives us the proof in one direction.
If (21) is satisfied, then the strong K-continuity of T follows easily

from the coherent Yoneda lemma and lemma 2.1:
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There is an evident dualization of the constructions above for the
case of strong coshape theory. Thus we have a category of strong cores-
olutions CI1í( B) and an isomorphism:

the notion of strong K-coresolution and dual versions of all the results
above. We omit the details as they should be clear.

Now we are able to give some examples of strong shape and strong
coshape theories.

EXAMPLES.

1. Let K : A - B be a simplicial functor, having a left simplicial
adjoint L. Then

hence

if K is strongly formal and

if L is strongly coformal, where (T, p, q) and (R, p, e) are the simplicial
monad and comonad respectively generated by the adjunction.

Thus in this case the phenomenon of coherence does not play any
role.

2. Suppose we are in the situation of example 1, and let im(A) be
a full image of A in B and k : im(B) - B be corresponding simplicial
inclusion.

PROPOSITION 4.2 Let X - T*(X) be a natural augmentation con-
sidered as a cone over X. Then the pair (T*(X), 77) is a strong k-
resolution of X .

If B(X, T*(Y)) is a fibrant cosimplicial simplicial set for every X, Y E
ob(B) (i.e. T = (T, p, 77) is a fibrant monad in the terminology of [2])
then Sshk is isomorphic to the coherent homotopy category CHToo - B
[2].
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lence

But L(T*(X)) is contractible to the constant cosimplicial object L(X)
and hence,

The second part of the proposition follows from the strong k-continuity
of

and proposition 4.1.

Q.E.D.

REMARK. There is an evident dual version of this proposition for
the case of the comonad (R, p, f). We obtain thus a characterization of
the homotopy coherent category of this comonad as a strong coshape
category.

2a) As a corollary of this proposition we obtain that the category of
coherent diagrams and their coherent transformations [2,15,19,44] may
be considered as a strong shape or strong coshape category depending
on the choice of an adjoint to the restriction functor. In particular,
the categories CHDist(A, B) are examples of strong shape and strong
coshape categories.

2’) Let R be a commutative ring with unit. Consider the Bousfield-
Kan monad (R, J.l, f) on the category of simplicial sets [10,2]. Let k be
an inclusion of the full subcategory generated by the R-algebras in S .
Then we obtain a homotopy equivalence

where Roo(Y) is the Bousfield-Kan R-completion of Y [10].
2c) Finally, a very important example arises when one considers a

category of algebras of some simpticial monad (T, p, n) and its subcat-
egory of free algebras. Then the simplicial resolution of a T-algebra X



-44-

given by the bar-construction B.(T, T, X) [37,38] is a strong k-coresolution
of X.

The resulting strong coshape category is isomorphic to the coherent
homotopy category of T-algebras [3]. Depending on the choice of T,
it presents the various theories of homotopy homomorphisms [7], for
example, the Aoo2013 and Eoo-morphisms [3,7,31].

3. Let Q be a Quillen [41] simplicial closed model category and
Q,, Q f, 9c/ the subcategories of cofibrant, fibrant, and fibrant-cofibrant
objects of Q respectively. Let us show that the strong shape category
of the simplicial inclusion i, : Q,f C Qc (strong coshape category of
i f : Qc/ C Q f), is isomorphic to HoQ, (respectively to HoQ f) of [41]
and hence, is equivalent to HoQ.

Indeed, for X E ob( Q c) let p : X -+ Px be a trivial cofibration
with Px E ob(Q,f). Then for every fibrant and cofibrant Z, we have a
homotopy equivalence

and hence (Px, p) is a strong i,-resolution of X. The conclusion follows
now from theorem 4.2 and [41, Theorem 1]. In the dual case the proof
is similar.

5 Inverse system approach
DEFINITION 5.1 We call the coherent prohomotopy category of a sim-
plicial category B the full subcategory CPH(B) of the category of strong
resolutions of B generated by the functors

for which A is the category associated with a directed set. We call such
functors inverse systems.

Recall, that a map between inverse systems in pro(B) is said to be a
levelwise homotopy equivalence provided it may be represented by some
natural transformation, which is a level homotopy equivalence.
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THEOREM 5.1 Let B be a locally Kan finitely S-cotensored complete
S-category. Then CPH(B) is the localization of7r(pro(B)) with respect
to levelwise homotopy equivalences. The full subcategory of CPH(B)
generated by the inverse systems over cofinite directed sets is isomorphic
to the coherent prohomotopy category for B introduced in [2J.

PROOF. Via the lemma 4.1, for every two inverse systems over
cofinite directed sets we have the isomorphisms

where Ranoo is a monad on r(pro(B)) from [2]. Thus the full subcate-
gory of CPH(B) generated by the inverse systems over cofinite directed
sets is isomorphic to the Kleisli category of Ranoo and so the second
statement is proved.

To finish the proof we have to substitute every inverse system by
an isomorphic system over a cofinite set [36] and to repeat the proof of
theorem 6.2 from [2].

Q.E.D.

COROLLARY 5.1.1 The category CPH(Top) is isomorphic to the Lisica-

Mardesic coherent prohomotopy category CPH - Top [32].

REMARK. The formula

was proven for the first time by J.-M.Cordier [13].

THEOREM 5.2 Let B be a simplicial closed model Quillen category, and
suppose that every object of B is cofibrant. We assume, in addition,
that the condition ,N from [23, P-45] is satisfied. Then CPH(B) is

isomorphic to Ho(pro(B)) of Edwards-Hastings.
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PROOF. Let us show that CPH(B) is the localization of 7r(pro(B))
at the class of trivial cofibrations.

Let us associate with every inverse system X a fibrant inverse system
over a cofinite directed set together with a trivial cofibration

(see the construction of Ezoo in [23]). Then we have the following
isomorphisms

as all Xx are cofibrant, A is directed and M is cofinite. But the last

simplicial set is none other then

where holim’ H is Edwards-Hastings homotopy limit in S [23].
As was shown in [18], for an inverse system FXAI in lCa, there is a

natural homotopy equivalence

Then we have

Thus every morphism f : X - Y in CPH(B) may be specified as
a morphism in x(pro(B)) from X to Ex°°(Y) . If now f is a trivial
cofibration, then this formula shows that it induces a bijection

for every Z, because Ex°°(Z) is fibrant.
The proof may be completed now as in proposition 3.1.
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DEFINITION 5.2 Let K : A --+ B be a simplicial functor, X E ob(B).
An inverse system {Xa} is strongly K-associated to X if there is a

cone p : X --+ IXx} (i.e. a morphisms in pro(B) ), such that for every
P E ob(A):

is a weak equivalence.

It is evident now that the obvious analogues of theorems 4.1, 4.2,
4.3 and proposition 4.1 remain true after the passage from C’PH(B) to
CPH(B).

EXAMPLES.

1. For a simplicial category B, let K be inclusion K : B - pro(B),
then SshK is isomorphic to CPH(B).

Similarly, CIH(B) is isomorphic to the strong coshape category of
K : B -&#x3E; inj(B).

2. Let M C C be a admissible pair of categories in the sense of
Cathey-Segal [12] and let K be the corresponding inclusion functor.

PROPOSITION 5.1 Assume that M satisfies the conditions of Theorem
4.1 of [12J. Then the strong shape category of K is isomorphic to hoMC
of [12J.

PROOF. Let X be an object of C and let i : X - X be a trivial
cofibration with fibrant X.

As was shown in Theorem 4.1 of [12], every fibrant object of C is
the limit of an inverse system over M. Let

Then i induces a cone X --+ IM,BI. We have, in addition, for every
object P of M a homotopy equivalence

and an isomorphism (see the continuity condition [36])
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Then (IM,B},p) is strongly K-associated to X. The conclusion follows
now from theorem 4.2 and the fact that {Ma} is a fibrant inverse system
[12, Remark 4.2].

Q.E.D.

This proposition provides us with a number of examples of strong
shape categories (see [12]).

REMARK. Using this proposition one can prove the isomorphism of
Sshx and hoMC without any restriction on M. But this demands some
supplementary work and we shall do it in a further article.

We are going now to prove the equivalence of our notion of strong
K-associated inverse system and Marde0161ié’s notion of strong expansion
[35].

Let A be a full simplicial subcategory of B and K be the inclusion
functor.

If p : X - Z is a morphism in B, then it induces a simplicial map

and we denote by a . p a simplex of Bn(X,Y), which corresponds to a
simplex Q E Bn(Z,Y) under B (p, 1).

DEFINITION 5.3 Let (Xx) = (XÀ,PÀ,BI, A) be an inverse system in B
and let p = (px) : X - (Xx) be a morphism in pro(B).

Then we say that p : X -r (Xx) is a strong expansion of X provided
the following two conditions are satisfied:

(8Ml). For every object P of A and every morphism f : X --+ P,
there exists a À E A and a morphism h : Xx - P such that

(SM2). For every A E A, P E obA, morphisms fo, f, : Xa -&#x3E; P and
homotopy F E B1(X,P), such that



- 49

there exist a A’ &#x3E; A and a homotopy H E R,(X,B,, P) such that

and H - Px, is homotopic to F.
If all Xx are objects of A we say that p is a strong A-expansion.

It is obvious that for the inclusion ANR C Top, this definition is
exactly Marde§i6’s definition of strong expansion [35, Definition 1.1].

THEOREM 5.3 Let B be finitely cotensored and suppose that A is closed
with respect to this cotensorization. Let OK be a locally Kan distributor
then for p : X - {Xa} the following are equivalent:

- p is a strong expansion of X,
- (IXx},p) is strongly K-associated to X.

PROOF. Let p be a strong expansion of X. Let us show that for every
P E ob(A), the map p* from the condition (22) induces an isomorphism
of all homotopy groups for any choice of base point.

Indeed, this is obvious for xo [35, Remark 1.2].
Denote by q,B7 q,B,Bi the simplicial mappings induced by application

of the functor B(-, P) to p,B,p,B,B, respectively. As A is finitely S-
cotensored, then (SM1) implies the following property:
for any finite simplicial set k and simplicial map r : k - B(X, P) there
exist a A E A and a mapping ra : k - B(XÀ, P) such that qA - rA is

homotopic to ro. 
Let y be a vertex of colimaB(Xa, P), which we take as a base point.

Let x = p*(y) . Let aA(n) be the boundary of A(n) with base point
* and let r : 8A(n) - B(X, P) be a base point preserving map. Then
from the above property we conclude that there exist a A E A and a

mapping ra : 9A(n) --+ B(XÀ, P) such that qA - rA is homotopic to r.
Without loss of generality we can assume that in B(XA, P) there is a
base point YA7 such that qÀ (y À) = x, but, of course, rA may not preserve
the base points.

However, a homotopy joining r and qA - rA gives us a 1-simplex F
such that:
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Thus, by (SM2) there exist a A’ &#x3E; A and 1-simplex H in B(X,B,, P) such
that:

and

in the fundamental groupoid of B(X, P) .
Now, (23) implies that qÀ)/ . rA defines some element

whereas (24) shows that 7rn-l(qÀ’)(/» is equal to the element repre-
senting by r in 7rn-l((B(X,P)),x), because B(X, P) and B(X,B,, P) are
Kan. Hence, p* is surjective in homotopies.

Let i : a0(n) -&#x3E; A(n) be canonical inclusion. We are going to show
that p satisfies the following generalization of the condition (SM2):

(SM2*) For every commutative diagram

there exist a A’ &#x3E; A and a map

such that in the diagram

the following relations hold:
- the triangles A , B , C commute,
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- there exists a homotopy G, which makes D homotopy commutative
and fits commutatively into the diagram

Indeed, denote

and let

be the morphisms induced by i. These are Kan fibrations because

B(X, P) and B(XÀ, P) are Kan simplicial sets.
As A is closed under finite cotensorisation, we have from (SM1) and

(SM2) and Kan conditions for ,Ci and BA :
- for every O-simplex ç of B there exist a A E A, 0-simplex ( x of BA and
1-simplex a of 13 such that

- for every pair of 0-simplices ço, y E BA and 1-simplex a E B , such
that

there exist a A’ &#x3E; A and 1-simplex w E BA’ such that

and there exists a 2-simplex E E B such that

and d2(E) is degenerate.
The same is true for e : IEA} - E.
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Returning to the diagram (25) we see that 0 and 0 are 0-simplices
in E and B respectively and p(y) = bA(§). From the above property
of e we conclude that there exist a A’ &#x3E; A, a 0-simplex OA, E S x, and
I-simplex a E E such that

Thus

Then there exist a L" &#x3E; A’, 1-simplex o,’ in BL" such that

and 2-simplex E in B such that

The relation (28) gives us a commutative diagram:

As pait is a Kan fibration, there exists a 1-simplex a" in £L" such that

Put

On the other hand
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and so from (29) and the equality do(a) = do(eL(Q")) we have the
following diagram:

Let H be a solution of corresponding left lifting problem. Then put

We thus have

It is easy to verify, using (30,31,32 and 33), that Y’ and G, considered
as map A(n) -+ B(X)..II,P) and homotopy A(n) x A(l) --+ B(X, P)
respectively, satisfy the conditions (26,27).

Let now ry : aAa(n) -&#x3E; B(Xy, P) preserves base point and let qA - rA
represent the trivial element in tt(n-1((B(X, P)), x). Thus, by (SM2*)
there exists a y’ &#x3E; y such that qy’y* ry represents the trivial element
in ttn-1 ((B(Xy’, P)), y y’) and hence, p* is injective in homotopies.

Finally, if ({Xy}, p) is strong K-associated to X, then p* induces a
bijection of xo and an equivalence of fundamental groupoids. The result
follows now readily from the well known description of the fundamental
groupoid of a Kan simplicial set [24].

Q.E.D.

REMARK. The proof of this theorem is an abstract simplicial version
of the proof by Mardesicof his product theorem and the main lemma on
strong expansions [35, Theorem 2.1, lemmas 3.1, 3.2].
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COROLLARY 5.3.1 Let K : ANR -&#x3E; Top be the inclusion functor.
Then the Lisica-Mardesic strong shape category of topological spaces is
isomorphic to SshK.

PROOF. This follows from the theorem 4.2, which generalizes thus
the main theorem of [35, Theorem 4.2] asserting that strong expansions
are coherent expansions in the sense of [32].

Q.E.D.

6 Strong shape categories and function
complexes

This section is based on a theory developed by author in [3], so we recall
some definitions and results from that paper.

DEFINITION 6.1 Let B be an S-category with a bifunctor

an object IB of B and isomorphisms

which make B a monoidal category [30]. We shall say that B is a

monoidal S-category if O B is an S-functor and a, l, r are S-natural.

Let Sf be a simplicial category, which has as objects sequences of
simplicial sets and as enriched hom-functor

with the obvious definition of composition.
In S f there is the following tensor product:

Let, in addition, I S f be the family (0, A(0), 0,...). 



-55-

LEMMA 6.1 ([3]) There are S-natural isorrLOrphisms a, r, l, which to-
gether with O S f and IS make S f a monoidal S-category. We call it
the category of sirrapliciat families.

REMARK. A similar tensor structure on the category of the families
of chain complexes was considered by V.Smirnov in [43].

DEFINITION 6.2 An S-operad E is a monoid (E,y,n) [33] in s f with
multiplication 

and unit

A morphism of S-operads is a morphism of monoids in S f.

Let now B be a monoidal S-category with enriched hom-functor B,
tensor product 0B and unit object IB. For X E Ob(B) put

Then we have an S-functor :

LEMMA 6.2 ([3]) For each object X of K the family B f(X, X) has a
natural structures of an S-operad.

Let E be an S-operad .

DEFINITION 6.3 An £-algebra in B is an object X of B together with
a morphism of S-operads

So our definition of algebra of operad is the same as in [37].
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DEFINITION 6.4 We call an S-operad E an Aoo-operad provided all En
are weakly contractible. An S-algebra X in B is said to be an Aoo-
monoid in B if 9 is an Aoo -operad. 

EXAMPLE. Every monoid in B is an Aoo-monoid.
We do not give the definition of the Aoo-morphisms between A,,-monoids,

because it demands too many place. For a detailed discussion of this subject
see [3, 7].

Let B be a category with finite colimits and let X*,* be a bicosimplicial
object in B . Then we can construct a cosimplicial object V(X) = V(X*,*)
as follows [2] :

V(X)’+l is colimit of the diagram

See also [2] for the definition of cofaces and codegeneracies .
REMARK. As is noted in [19], V(X) is none other then a left Kan

extension along the ordinal sum functor. As the construction of this

type was developed for the first time in [1] , V is called in [19] the
Artin-Mazur codiagonal functor.

Let now B be a monoidal category with finite colimits . Then we can
define a tensor product 0c of cosimplicial objects in B by the formula

where (X0BY)*’* is the following bicosimplicial object:

with obvious cofaces and codegeneracies [2].
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PROPOSITION 6.1 ([2,3]) If O B commutes with colimits, then the cat-
egory cB of cosimplicial objects of B is monoidal with respect to the ten-
sor product defined above and with constant cosimplicial object In = IB
as the unit object.

Consider two examples.
1. For a simplicial category B the s-category SDist(B, B) is a mo-

noidal S-category. If we apply the realization functor to each simplicial
hom-set in B, then we can consider B as a Ka-category and hence, con-
struct a monoidal category of topological endodistributors on B, which
we shall denote by T Dist(B, B).

We can also introduce a simplicial structure in TDist(B, B) by ap-
plying the singular complex functor to each hom-space in TDist(B, B).
It is obvious, that the fibrewise singular complex functor provides us
with a monoidal S-functor

This functor is not strict monoidal, however, as we have only a natural
morphism

which is not an isomorphism in general.
Remark also that the categories SDist(B, B) and T Dist (B, B) are

complete and simplicially cotensored. So for every cosimplicial object
T* in these categories the total object

is defined.
2. The category Gr(C) of S-graphs over the fixed set of objects C

is the following S-category. The objects of Gr(C) are the functions :

The enriched hom-functor is
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The monoidal structure is given by

and

Remark that the category of monoids with respect to the monoidal
structure above on Gr(C) is isomorphic to the category of S-categories
with fixed set of objects C and S-functors between them, which are
identities on C .

DEFINITION 6.5 We shall say that an S-graph G is an Aoo-graph pro-
vided it has a structure of an Aoo -monoid in Gr(C). We shall say also
that G is locally Kan if G(a, b) is a Kan simplicial set for every a, b E C.

Every A,,,,.-graph G over C generates a category 1r(G), which we call
the homotopy category of G. It is defined by

- ob( 1r ( G)) = C
- the set of morphisms from X to Y is 1r(G(X, V)),
- the composition and identities are induced by Aoo-structure on G.

The following proposition is proved in [3].

PROPOSITION 6.2 Let (T*, p*, n*) be a cosimplicial monoid in cTDist(B, B)
Then the simplicial endodistributor

has a natural Aoo-monoid structure in SDist(B, B). Moreover, the

unit 17* induces a morphism of Aoo-monoids

We shall use this proposition to obtain the following theorem:

THEOREM 6.1 For any simplicial distributor K : A -&#x3E; B the simplicial
distributor CHRan(K, K) (CHLan(K, K)) has a natural Aoo-monoid
structure in SDist(B, B) (in SDist(A, A)). Moreover, the unit of the
codensity (density) monad of K is a morphism of Aoo-algebras.
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PROOF. Let us prove this theorem for the case of right extension.
For this we use the isomorphism (18). We have

But

where Ran and L’ in the last formula are the topological analogues in the
topological bicategory TDist of the corresponding functors in SDist.
(Their definitions are evident and repeat the definitions of simplicial
Ran and L’. )

Thus the theorem will follow from the proposition 6.2 if we prove that
for every topological distributor K : A -&#x3E; B the cosimplicial distributor

is a monoid in cTDist(B, B).
Remark firstly that for any three distributors E, F, K : B -&#x3E; B, we

have a natural morphism

M is associative and unitary with respect to 77 : I - Ran(X,X). It is

sufficient to repeat the proof of proposition 2.1.
Let now R : A -&#x3E; C and T : A -&#x3E; D be two topological distributors.

For X E ob(D) and Z E ob(A) let

be the morphism induced by
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For X E ob(D) and Y E ob(C) we have the following isomorphisms

Define a natural transformation

by the composition

be the (p + 1)-iteration of L.
Then the following composition

defines a morphism
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It may be verified immediately that p* and q* : I -&#x3E; Ran(L:(K), K),
induced by a(n), give the needed monoid structure on Ran(L’(K), K).

Q.E.D.

REMARK. It is straightforward, but rather long, to prove that in
CHDist the multiplication on CH Ran(K, K) (CHLan(K, K)) in-

duced by the Aoo-monoid structure above coincides with the canonical
multiplication in the codensity (density) monad.

COROLLARY 6.1.1 Let K : A - B be a strongly formal (strongly co-
formal) sirraplicial functor between simplicial categories.

Then the assignment

generates a locally Kan Aoo-graph SSHK (CSHK), over ob(B), such
that its homotopy category is isomorphic to SshK (CshK). The unit of
the codensity monad generates an Aoo -monoid morphism

such that tt(P) is the canonical strong shape (strong coshape) functor.
Moreover, for SSHK (CSHK), there exists a locally Kan S-category,

which is isomorphic to SSHK (CSHK) as A,,,,-graph (see [3, Section 2]
for the definition of this isomorphism).

PROOF. This is an immediate corollary of Theorem 2.4 from [3].

Q.E.D.

REMARK 1. In general, the simplicial category constructed above is
not locally small (see remark at the begining of section 1). But if K and
X, Y E ob(B) satisfy the conditions of theorem 4.1, then SSHK(X, Y)
is homotopy equivalent to some small simplicial set, and so SshK is

locally small. This situation is well known in ordinary shape theory
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[16], and is discussed in detail for the strong shape theory of topological
spaces in [26].

As is noted in [26], one of the advantages of the approach of [4,26] is
the possibility to deal with an individual strong shape function and thus
to use strictly commutative diagrams. The corollary above explains why
this approach is possible.

CONCLUDING REMARK. Using the results of [3] one can show that
for any simplicial categories A, B the assignment R, T - CHDist(R, T)
provides a Aoo-graph, whose homotopy category is CHDist(A, B).
Similarly, the coherent composition of distributors may be considered
as an Aoo-mapping.
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