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THE MONODROMY GROUPOID OF A LIE GROUPOID

by Ronald BROWN and Osman MUCUK

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVI-4 (1995)

Resume: Dans cet article, on montre que, sous des condi-

tions générales, Punion disjointe des recouvrements universels
des étoiles d’un groupoide de Lie a la structure d’un groupoide
de Lie dans lequel la projection possède une propriete de mon-
odromie pour les extensions des morphismes locaux reguliers.
Ceci complete un rapport 46ta,iU6 de r6sultats announces par J.
Pradines.

Introduction

The notion of monodromy groupoid which we describe here a.rose from
the grand scheme of J. Pradines in the ea.rly 1960s to generalise the
standard construction of a simply connected Lie group from a Lie al-
gebra to a corresponding construction of a. Lie grOllpOld from a Lie
algebroid, a notion first defined by Pradines. These results were pub-
lished a.s [20, 21, 22, 23]. The recent survey by Mackenzie [17] puts these
results in context.

The construction by Pra.dines involved several steps.
One was the passage from the infinitesimal Lie algebroid to a locally

Lie groupoid. This we will not deal "1ith here.
Next was the passage from the locally Lie groupoid to a Lie groupoid.

In the ca.se of groups, this is a simple, though not entirely trivia.l, step,
and is part of classical theory. However, in the groupoid case, instead
of the locally Lie structure extending directly, there is a, groupoid.lying
over the original one and which is minimal with respect to the property
that the Lie structure globalises to it. This groupoid may he called the
holonomy groupoid of the locally Lie groupoid. This new result is the

main content of Theor eme 1 of the first note [20]. Its construction is

given in detail (but in the topological case) in [2] (see section 5 below).
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Finally, there is a need to obtain a maximal Lie groupoid analogous
to the universal covering group in the group case, and in some sense
locally isomorphic to any globalisation of the locally Lie structure. This
groupoid may be called the monodi-omy gT’oupoid, or star universal cov-
ering groupoid. Any glohalisattion of the locally Lie structure originally
given is sandwiched between the holonomy and monodromy groupoids
by star universal covering morphisms.

A feature of universal covering groups is the classical lVlonodromy
Principle. This is an important tool for extending local morphisms on
simply connected topological groups, and is formula.ted for example in
Chevalley [8], p.46, so as to be useful also for constructing maps on
simply connected topological spaces. The statement by Chevalley is

more neatly expressed in the language of groupoids a,s follows:

if B is a simply connected space, then the topological groupoid B x B,
with multiplication (y, z)(x, y) = (x, z), has tlze property that if f : W -&#x3E;
H is any local morphism frorn an open connected subset 1/1/ o f B x B
containing the diagonal, to a groupoid H, then f extends to a morph,ism
on B x B.

The word monodromy is also widely used for situations of parallel
transport around loops, yielding morphisms from a fundamental group
to a symmetric group whose image is called the monodromy group (see
Encyclopaedic Dictionary of Mathema.tics, Iyanaga and Kawad [14]).
It is notable that Poinca,r6’s 19.5 paper which defined the fundamen-

tal group is concerned at that point with the monodromy of complex
functions of many variables.

Pradines required for his results the extendibility of local mor phisms,
and realised that these uses of monodromy had a common basis and
general formulation, as a theory of extensions of local morphisms on
differentiable groupoids, now called Lie groupoids. His result, which
we call the Monodromy Theorem, see section 6 below, was stated as
Th6or6me 2 in Pradines [20].

The note [20] gives no indica,tions of the constructions of these
groupoids or of the proofs. In the years 1981-85, Pradines outlined
to the first author the constructions of the holonomy and monodromy
groupoids and the proofs of the theorems, and an incomplete sketch was
written up as Brown [3]. The results on holonomy were worked up in
the topological case in the thesis of M.A.-F.E.-S. Aof, [1], and a further



347

refined result, under still weaker assumptions, is published in Aof and
Brown [2].

The main results of this paper can be summarised roughly as follows.
Recall that the stars of a groupoid are the fibres of the source map.

Theorem A Let G be a Lie groupoid of differentiability class r &#x3E; 1

and whose space of objects is paracompact. Suppose the stars Gx at

the vertices of G are path connected. Let IIG denote the disjoint union
of the universal covers of the stars Gx for all objects x of G, and let
p : IIG -&#x3E; G denote the projection. Then there is a topology on IIG
making it a Lie groupoid and such that p restricts on each star to tlze

universal covering map.

Theorem B Under the assumptions of Theorem A, let f : V -&#x3E; H be a

local morphism from a neighbourhood V of the identities of G to a Lie
groupoid H. Then V contains a neighbourhood W of the identities of G
such that the restriction of.f to 111 lifts to a ’m,oTphism of Lie groupoids
IIG -&#x3E; H.

We call IIG the monodrorrzy groupoid of the Lie groupoid G.
The two theorems are proved concurrently, and ar e given in more

generality in section 6. The structure of the proof is explained in section
1.

Note that in the locally trivial case, Mackenzie [16] gives a non-trivial
direct construction of the topology on IIG and proves also that this IIG
satisfies a monodromy principle on the globalisability of continuous local
morphisms on G.

In the case G is a, connected topological group satisfying the usual
local conditions of covering space theory, the monodromy groupoid IIG
is the universal covering group, while if G is the groupoid X x X,
for X a topological space, the monodromy groupoid is, again under
suitable local conditions, the fundamental groupoid 7rlX. Thus part
of the interest of these results is in giving a wider perspective to the
fundamental groupoid of a space. However, the construction for the
fundamental groupoid of a space is essentially contained in the locally
trivial case dealt with in Mackenzie [16].

In a companion paper, Brown and Mucuk [7], we give the basis of
one of Pradines’ intended applications of holonomy by showing how a
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foliation on a paraco1l1pact manifold gives rise to a locally Lie groupoid,
and how the existence of non-trivial holonomy of a foliation gives ex-
amples of non-extendibility of a locally Lie groupoid. It is notable how
well the formal theory of the holonomy groupoid fits with the intuition.
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1 Outline of the proof
In the following sta,tements, we omit certain local conditions which are
in fact necessary for the validity of the proof.

The topology on HG is constructed via a groupoid M(G, 1/11) which
is defined to satisfy a monodromy principle, namely the globalisability
of local morphisms defined on an open subset W of G such that OG C
Hf C G. At this first stage, M(G, W ) is not a Lie groupoid but has
the weaker structure of a "star Lie groupoid" . Also, the Monodromy
Principle which it satisfies is weak, in that smoothness of the morphism
is not involved. This We explain in section 3.

However, using an extra "locally sectionable" condition, we con-
struct the structure of Lie groupoid on M(G, Tiff). This stage r elies on
methods of holonomy, which we outline in section 5. The method is
described completely by Aof and Brown in [2].

Next, we relate this groupoid M(G,W) to IIG, which is defined,
following Mackenzie [16], so that its stars are the universal covers of the
stars of G. We give conditions under which there is an isomorphism of
groupoids M(G,W) -&#x3E; IIG (theorem 4.2). This identifies the stars of
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M(G, W) as the universal covers of the stars of G. It also allows the
imposition of a topology on lIG from the topology on M(G, W). The
combination of these two approaches gives, in section 6, the general
formulation and proofs of Theorems A and B of the Introduction.

2 Star Lie groupoids
Let G be a groupoid. We write OG for the set of objects of G, and also
identify OG with the set of identities of G. An element of OG ma.y be
written as x or 1x as convenient. We write a, B: G -&#x3E; OG for the source
and target maps, and, as usual, write G(x,y) for a-’ (x) n B-1(y), if

X, y E OG. The product hg of two elements of G is defined if and only
if cxh = ¡3g, and so the product map 7: (h, g) H hg is defined on the
pullba.ck Gax(3G of 0: and 0. The difference map 8: G Xa G - G is

given by 8(g, h) = gh-1, and is defined on the double pullback of G by
a.

If x E OG, and W C G, we write Wx for W n a-lx, and call Wx
the star of W at x. The following definition is given in Pradines [20]
but replacing the term "star" by "a-"; a similar remark a,pplies to
Definition 1.4. The reason for our change of terminology is that notation
other than a is often used for the source map.

In order to cover both the topological and differentiable cases, we
use the term C’’ manifold for r &#x3E; -1, where the case r = -1 deals
with the case of topological spaces and continuous ma,ps, with no local
assumptions, while the case r &#x3E; 0 deals as usual with Cr manifolds
and C’’ maps. Of course, a C’ map is just a continuous map. We then
abbreviate C’’ to smooth. The terms Lie group or Lie groupoid will then
involve smoothness in this extended sense.

Definition 2.1 A locally .star Lie groupoid is a pair ( G, 11l) consisting
of a groupoid G and a, smooth manifold W such that:

(i) OG C 14/ C G ;
(ii) W is the topological sum of the subspaces vTlx = W n a-1 x,

x E OG;
(iii) if 9 E G, then the set W n Wg is open in W a.nd the right

translation Rg: Wg-1 n W -&#x3E; W n Wg, w -&#x3E; wg, is a diffeomorphism.



350

Remark. In [2], the assumption is also made that W generates G.
Since this assumption is not required in some of the following results,
we omit it from the definition, although it will hold in the examples we
study.

A star Lie groupoid is a locally star Lie groupoid of the form (G. G),
and the notation (G, G) is then usually abbreviated to G. The stronger
concept of a Lie groupoid will be defined later, and we will find that a
Lie groupoid G is a star Lie groupoid if and only if G is topologically the
sum of the spaces G(x, y ) for all x, y E OG . Also, a star Lie group is not
necessarily a topological group, but is more a.nalogous to what is called
in the literature a semi-topological group, in which all that is assumed
is that left and right translations are continuous. A Lie groupoid G may
be retopologised as the topological sum of its stars to become a star Lie
groupoid.

The following simple proposition shows that any locally star Lie
groupoid is extendible to a star Lie groupoid. This is essentially Propo-
sition 1 of section 1 of Pra.dines [20]. For the convenience of the reader,
we repeat the proof a.s given in Proposition 5.2 of Aof and Brown [2].

Proposition 2.2 (star extendibility) Let (G, W) be a locally star Lie
groupoid. Then G may be given the structure of star Lie groupoid such
that for all x E OG, Wx is an open subset of Gx.

Proof We define charts for G to be the right translations

for g E G(x,y) and x, y E OG . Suppose that h, g E Gx and Wyg meets
Wzh. Then there are elements it E Wy and v E Wz such that 2cg = vh.
So (Rh)-l Rg maps the open neighbourhood Wv-1u n W of u in Wy to
the open neighbourhood W n Wu-1v of v in Wz. So these charts define
a smooth structure as required. 0

We shall use Proposition 2.2 in the situation of the following proposi-
tion, whose last statement, on covering ma,ps, will be used several times
later. This statement is, in the case G is a. group, closely related to a
result of section 1 of Douady-Lazard [10]. This result was a sta,rting
point for Pradines and us; however, the assumptions made there are
different.
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Proposition 2.3 Let (G, W) be a locally star Lie groupoid, and let i :
W -&#x3E; G be the inclusion. Let p : M -&#x3E; G be a morphism of groupoids
which is the identity on objects, and suppose given i : W -&#x3E; M such that

(a) pi = i, and (b) i(ww’) - (iw)(iw’) whenever w, w’, ww’ belong to W.
Let W = i(W) have the smooth structure induced by i from that on W.
Then (M, W) is a locally star Lie groupoid. Further, if M is given the
extended star Lie structzire, then each map on stars px : Mx -&#x3E; Gx is a

covering map.

Proof We have to prove that the conditions for (M, W) to be a locally
star Lie groupoid are satisfied. This is trivial for the first two conditions.
For the third, let m E M. In order for W n W m to be non-empty, we
must have m = 6-lii where v - iv, u = i’l.l for u, v E W . Since the
smooth structure on W is also induced from that on W by the inverse
of the restriction of p mapping W -&#x3E; W, the required condition on
(M, W) follow from that on (G, W).

Let g E G(x, y). Then Wy, which is open in Gy, is taken by the right
translation Rg: Gy -&#x3E; Gx to the open neighbourhood Wyg of g in Gx.
Further 

Since p is the identity on objects, j3h = y. For ea,ch h E P-’(g), the
restriction p I lvyh, Wyg is a, diffeomorphism since it is the composite of .
the diffeomorphisms Wyh -&#x3E; Wy -&#x3E; 1,Vyg.

Finally, the sets Wyh for all h such that ph = g are disjoint. For

suppose m E vVyh n Wyk, where ph = pk = g. Then there are ti, z, E X/
such that m = (iu)h = (iv)k. Taking p of this gives ug = vg. Hence
u = v and so h = k.

The sum is hence topological because each of the sets Wy h a.re open,
by definition of the topology in terms of charts. So p I Mx, Gx is a

covering map. M

For our purposes, the use of this result is that the easy Lie structure
to obta,in on the monodromy groupoid is that of star Lie groupoid.

We shall find the following result useful. It is due to Nla,ckenzie

(private communication, 1986). We first give a, definition.
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Definition 2.4 Let G be a star Lie groupoid. A subset W of G is
called star connected (resp. star simply connected) if for each x E OG,
the star Wx of 1;11 at x is connected (resp. simply connected). So a star
Lie groupoid G is star connected (resp. star si1nply connected) if each
star Gx of G is connected (resp. simply connected).

Proposition 2.5 Let G be a star Lie groupoid which, as a groupoid,
is generated by the subset W. Suppose that OG C W and that W is
star connected. Then G is star connected. A similar result holds with
connected replaced by path-connected.

Proof Let g E G(x, y). Then g = wn...1VI, where w, E 1;V n

G(Xr-1,Xr), with xo = x and Xn = y. Let 9r = wr .... w1. By induction
over r we have that gr is in the same component a,s 9r-1 because they
both belong to 1Vxr9r-1 which is connected, because of the homeomor-
phism given by the right transla.tion

where we take wo = 1x. Hence g = gn a.nd gi are in the same component
of Gx. But gl and 1x are in 14/z which is connected. So Gx is connected.
That is, G is sta.r connected. The proof for path-connectivity is similar.
o

Corollary 2.6 Suppose further that G is a Lie group, W is path con-
nected, and p : M -&#x3E; G, i : W -&#x3E; M are given a.s in Proposition 2.3,
with M generated by a(W). Then the group structure on M gives M the
structure of Lie group such that p is a covering map and a morphism of
Lie groups.

Proof The assumptions imply that M -&#x3E; G is a covering ma.p, by
Proposition 2.3, and that M is connected, by Proposition 2.5. It is

now standard that the group structure on G lifts to M with the given
identity of M as the identity for this group structure. But the right
multiplication on M with the first group structure is a lift of the right
multiplication of G, and so coincides with that obtained from the new



353

structure. Hence the two structures coincide, a.nd the group M obtains
the structure of Lie group as required. M

If G is a non-connected topological group, and p: G -&#x3E; G is a univer-
sal covering map on each component of G, then there is an obstruction
in H3(TT0G, TT1(G, e)) to the group structure on G being liftable to a
topological group structure on G. This result and generalisations of it
are due to R.L. ’Ta.ylor [2.5]. Proofs ly modern groupoid methods are
given in Mucuk [18] and Brown and R4ucuk [6].

3 The weak monodromy principle
The construction here is a generalisation to the groupoid case of a con-
struction for groups in Douady and Lazard [10]. Let G be a star Lie

groupoid, and let W be any subset of G containing X = OG, and such
that W = W-1. Then W obtains the structure of pregroupoid: this
means that W is a reflexive graph, in the sense that it has the struc-

ture of maps aw, OW: Vf1 - X, i.: X -&#x3E; Vf1 with awt = owt = 1x, and
further there is a partial multiplication on W in which if vu is defined
then Bwu = awv, (tBwu)u = u(tawu) = u, and ea.ch it E W has an
inverse u-1 such that uu-1 = tBwu, u-1u = tawu. There is also an

associativity condition. For further discussion of this, see for example
Crowell and Smythe [9]. For our purposes, we do not need this, since
we know already that W is embeddable in a groupoid.

There is a standard construction M(W ) associating to a pregroupoid
W a morphism i: W -&#x3E; M(W) to a groupoid M(W) and which is uni-
versal for pregroupoid morphisms to a groupoid. First form the free

groupoid F(W) on the graph W , and denote the inclusion W -&#x3E; F(W )
by u -&#x3E; [u]. Let N be the normal subgroupoid (Higgins [13], Brown [4])
of F(W ) generated by the elements [vu]-1[v][u] for all u, v E W such
that vu is defined and belongs to W . Then M(W) is defined to be
the quotient groupoid (loc. cit.) F(W)/N. The composition W -&#x3E;

F(W) -&#x3E; M(W) is written i, and is the required universal morphism.
In the ca,se W is the pregroupoid arising from a subset W of a

groupoid G, there is a unique morphism of groupoids p: M(W) -&#x3E; G
such that pi is the inclusion i: W -&#x3E; G. It follows that i is injective.
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Clearly, p is sur jective if and only if T11 generates G. In this case, we

call M(W) the monodromy groupoid of (G, W) and write it M(G, W).
We now resume our assumption that G is a star Lie groupoid, and

we assume W is open in G. Let W = T(W). It follows from Proposition
2.3 that the pair (M, W), where M = M(W), inherits thP structure of2.3 that the pair (M, W), where M == M(W), inherits the structure of
locally sta.r Lie groupoid. Further, this structure is extendible to make
M into a star Lie groupoid, such tha.t each ma.p on stars px : Ali, -&#x3E; Gx
is a covering map.

We can now state a Monodromy Principle, which we call "weak"
because it involves no continuity or differentiability conditions on maps.

Theorem 3.1 (Weak Monodromy Principle) Let G be a Lie groicpoid
and let W be an open subset of G containing OG. Suppose that G is star
simply connected and W is star conn ected. Let H be cr, groupoid over OG
and let O: 14/ - H be a morphism of pregroupoids which is the identity
on OG. Then extends uniquely to a groupoid morphism, 0: G - H.

Proof By Proposition 2.5, M(G, T/Tf) is star connected, and by Propo-
sition 2.3, p: M(G, W) -&#x3E; G is, when restricted to stars, a covering map
of connected spaces. Since G is star simply connected, it follows that p
is an isomorphism. The result now follows from the universal property
for M(G, W). 

A useful special case of Theorem 3.1 is the following. Let q: E -&#x3E; OG
be a function a.nd let the symn2etry groupoid Sq of q he the groupoid
over OG of bijections Ex -&#x3E; Ey for all fibres Ex = q-1 (x) of q, and all
x, y E OG.

Corollary 3.2 Let X be a connected and simply-connected space, let

W be a connected neigbourhood of the diagonal of X x X such that each
section Wx = ly E X : (x, y) E W} is connected. Let 0: W - Sq be
a morphism of pregroupoids. Suppose eo E E is given. Then there is

a unique function v: X -&#x3E; E such that ?Pqeo = eo and vy = O(x, y)x
whenever O(x, y) is defined.

Proof This follows from the above Weak Monodromy Principle, by
setting 



355

forallxEX. 0

Corollary 3.2 is stated in Chevalley [8] as the Monodromy Principle.
Note that in 3.1 and 3.2 there is no topology given on H or Sq and there
are no assumptions of continuity or differentiability of 0.

4 The star universal cover of a star Lie

groupoid
Let X be a topological space, and suppose that each path component
of X admits a simply connected covering space. It is standard that if

TT1X is the fundamental groupoid of X, topologised as in Brown and
Danesh-Naruie [5], and x E X, then the target map (3: (TT1X)x - X is
the universal covering ma,p of X based at x (see also Brown [4], Chapter
9).

Let G be a star Lie groupoid. The groupoid IIC is defined as follows.
As a set, IIG is the union of the stars (TT1Gx)1x. The object set of ITG is
the same as that of G. The function a: IIG ---7 X maps all of (TT1Gx)1x
to x, while,6: IIG -&#x3E; X is on (TT1Gx)1x the composition of the two target
maps

As explained in Mackenzie [16], p.67, there is a multiplication on TIG
given by ’concatenation’, i.e.

where the + inside the bra.cket denotes the usual composition of paths.
Here a is assumed to be a path in G, from lx to a(1), where B(a(1)) = y,
say, so that b is a path in Gy, and for each t E [0,1], the product b(t)a(1)
is defined in G, yielding a path b(a(1)) from a(1) to b(1)a(1). It is

straightforward to prove tha.t in this way IIG becomes a groupoid, and
that the final map of paths induces a morphism of groupoids p: IIG -&#x3E; G.

If each star Gj, admits a simply connected cover at 1,, then we may
topologise each (IIG)x so that it is the universal cover of Gx based at
1x, and then IIG becomes a. star Lie groupoid, as remarked above (see
also Mackenzie [16]). We call IIG the star universal cover of G. For
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example, if G = X x X, then IIG is the fundamental groupoid 1rlX.
(In general, one could call IIG the fundamental groupoid of G, but this
might cause confusion.)

Let X be a topological space admitting a simply connected cover.
A subset !7 of X is called liftable if U is open, path-connected and the
inclusion U -&#x3E; X maps each fundamental group of U trivially. If U is

liftable, and q: Y -&#x3E; X is a covering map, then for any y E Y and x E U
such that qy = x, there is a unique map i: U - Y such that ix = y and
qi is the inclusion U -&#x3E; X. This explains the term liftable.

We also need a result on covering maps and star Lie groupoids.

Proposition 4.1 Let q: H - G be a morphism of star Lie groupoids
which is the identity on objects and such that on each star, q: Hx -&#x3E; Gx
is a covering map of spaces. Let TV be a neighbourhood of OG in G
satisfying the following condition:

(*) W is star path-connected and W2 is contained in a star path-
connected neighbourhood V of OG such that for all x E OG, Vx is liftable.

Then the inclusion i: W -&#x3E; G lifts to a Lie pregroupoid morphism
W - H.

Proof Let 1: W -&#x3E; G and j : V -&#x3E; G be the inclusions. For each x E G,
the inclusion Vx -&#x3E; Gx lifts uniquely to jx: Vx -&#x3E; Hx mapping Ijc to lx,
and this defines a lift ix: 14/x -&#x3E; Hx. We prove tha.t the union of these
maps j: W -&#x3E; H is a pregroupoid morphism.

Let u, v E W be such that uv E 1/1/. Let au = x, av = y. Since
W is star path-connected, there are paths a, b in Wx, Wy, from u, v
to 1x, ly, respectively. Since uv is defined, (3u = y. The concatenation
b o a is then a path from 1.l1’ to lx. Since Vf12 C V, b o a is a path in
Vx. Hence j(b o a) is a lift of b o a to H. By uniqueness of path liftings,
j(b o a) = ( jb) o ( ja). Evalua.ting a.t 0, and using i(uv) = i(uv), gives
i(uv) = (iu)(iv). Hence i is a pregroupoid morphism. 11

Theorem 4.2 Suppo.se that G is a star connected star Lie groupoid and
W is an open neighbourhood of OG satisfying the condition (*). Then

there is an isomorphism over G of star Lie groupoids M(G, W) -&#x3E; IIG,
and hence the morphism M(G, l11) - G is a star universal, covering
map.
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Proof By Proposition 4.1, the inclusion i: W -&#x3E; G lifts uniquely to a
morphism of star Lie pregroupoids i’: W -&#x3E; IIG such that pi’ = i. The
universal property yields a morphism 0: M(G, W) - IIG of star Lie
groupoids. Hence for each x E X we have a commutative diagram

But px and qx are covering maps, qx is universal and M(G, W)x is

connected. Hence 0.,: M(G, W)x -&#x3E; (IIG)x is an isomorphism. Hence O
is an isomorphism. 0

This theorem has a useful corollary in the group case .

Corollary 4.3 Let G be a path-connected Lie group and let W be a path-
connected neighbourhood of the identity e of G such that W2 is contained
in a liftable neighbourhood of e. Then the morphism M(G, HI) - G is
a universal covering map, and hence M(G, W) obtains the structure of
Lie group.

Corollary 4.4 (Weak monodromy principle) Let f : W -&#x3E; H be a mor-
phism from the star Lie pregroupoid W to the star Lie groupoid H, where
W satisfies the condition (*). Then f determines uniquely a nzo?-I)hz*sm
f’: IIG -&#x3E; H of star Lie groupoids such that f’ j’ = f .

5 Locally Lie groupoids and
holonomy groupoids

The a.im now is to obtain a. similar type of result for Lie groupoids and
Lie morphisms. We recall that the locally trivial case is handled in

Mackenzie [16].
Our aim is the locally sectionable case (see Definition 5.1). The

technique of using here the holonomy groupoid construction was out-
lined by Pradines to the first author in 1982 (see Brown [4]), and for
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Pradines [20] was a happy application of the holonomy construction
which he had already found.

We need a Lie version of the globalisability theorem proved in Aof-
Brown [2] for a locally topological groupoid. The aim of this section

is to give the modifications necessary for the Lie case. No essentially
new ideas are involved in the proofs, but we do make a simple but
crucial deduction which clarifies the relation between extendibility and
holonomy, and in particula.r gives a useable condition for extendibility.

One of the key differences between the cases r = -1 or 0 and r &#x3E; 1

is that for r &#x3E; 1, the pullba.ck of Cr ma.ps need not be a, smooth sub-

manifold of the product, and so differentiability of maps on the pullback
cannot always be defined. We therefore a,dopt the following definition of
Lie groupoid. Mackenzie [16] (pp. 84-86) discusses the utility of various
definitions of differentiable groupoid.

A Lie groupoid is a topological groupoid G such that
(i) the space of arrows is a smooth manifold, and the space of objects
is a smooth submanifold of G,
(ii) the source and .target maps a,B, a,re smooth maps and are submer-
sions,
(iii) the domain G X a G of the difference map is a smooth submanifold
of G x G, and
(iv) the difference map 6 is a smooth map.
The term locally Lie groupoid (G, flV) is defined later.

The following definition is due to Ehresmann [11].
Definition 5.1 Let G be a groupoid and let X = Oc be a, smooth

manifold. An admissible local section of G is a function s : U - G from
an open set in X such that

1. as (x) = x for all x E U;
2. Bs(U) is open in X , and
3. Bs maps U diffeomorphically to Bs(U).
Let W be a subset of G and let W have the structure of a smooth

manifold such that X is a submanifold. We say that (a, B, W ) is locally
sectionable if for each w E W there is an admissible local section s : U -&#x3E;

G of G such that (i) sa(w) = w, (ii) s(U) C W and (iii) s is smooth as
a function from U to W. Such an s is called a smooth admissible local
section.
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The following definition is due to Pradines [20] under the name
"morceau de groupoide différentiables". Recall tha.t if G is a groupoid
then the difference map 8 is 8 : G XQ G -t G, (g, h) -&#x3E; gh-1.
Definition 5.2 A locally Lie groupoid is a pair (G, W) consisting of a
groupoid G and a smooth manifold Hf such that:
G1) OG C W C G;
G2) W = W-1;
G3) the set vV(8) = (W Xa vff) n 8-1(T;V) is open in W xa W and the
restriction of 6 to W(d) is smooth;
G4) the restrictions to W of the source and target maps a and (3 are
smooth and the triple (a, B, W) is locally sectionable;
G5) W generates G as a. groupoid.

Note that, in this definition, G is a groupoid but does not need to
have a topology. The locally Lie groupoid (G, Hf) is said to be extend2:bl.e
if there can be found a topology on G making it a Lie groupoid and for
which W is an open submanifold. The main result of Aof and Brown

[2] is a version of Th6or6me 1 of Pradines [20] and was stated in the
topological ca.se. In the smooth case it states:

Theorem 5.3 (Pradines [20], Aof and Brown [2]) (Globalisability the-
orem) Let (G, W) be a locally Lie groupoid. Then there is a Lie groupoid
H, a morphism 0 : H - G of groupoids and an e-mbedding i : : W -&#x3E; H

of W to an open neighborhood of OH such that the following conditions
are satisfied.
i) 0 is the identity on objects, ’oi = idw, 0-’(W) is open in H,and the
restriction Ow : Ø-1(W) --+ W of 0 is smooth;
ii) if A is a Lie groupoid and A - G is a morphism of groupoids
such that:

a) E is the identity on objects;
b) the restriction EW : E-1(W) -&#x3E; W of E is smooth and E-1(W) is

open in A and generates A;
c) the triple (aA, (3 A, A) is locally sectionable,

then there is a unique morphism E’: A -&#x3E; H of Lie groupoids such that
OE’ =E and E’a = iEa for a E E-1(W).

The groupoid H is called the holonomy groupoid Hod(G,W) of the
locally Lie groupoid (G,W).
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Outline proof: Some details of part of the construction are needed
for Proposition 5.5.

Let T(G) be the set of all admissible local sections of G. Define a

product on r(G) by

for two admissible local sections s and t. If s is an admissible local sec-
tion then write s-1 for the admissible local section BsD(s) -&#x3E; G, Bsx -&#x3E;
(sx)-1. With this product F(G) becomes a.n inverse semigroup. Let

Tr(W) be the subset of T(G) consisting of admissible local sections
which have values in W and are smooth. Let f1’( G, 1/1/) be the subsemi-
group of T(G) generated by Tr(W). Then r1’(G, W) is again a,n inverse
semigroup. Intuitively, it contains information on the iteration of local
procedures.

Let J(G) be the sheaf of germs of admissible local sections of G.
Thus the elements of J(G) are the equivalence classes of pairs (x, s)
such that s E f(G),x E Ð(s), a.nd (x, s) is equivalent to (y, t) if and

only if x = y and s and t agree on a neighbourhood of ,r . The equivalence
class of (x, s) is written [s]x. The product structure on h(G) induces
a groupoid structure on J(G) with X a.s the set of objects, and source
and target maps [s]x -&#x3E; x, [s]x -&#x3E; /3sx. Let Jr(G,W) be the subsheaf
of J(G) of germs of elements of Tr(G, W). Then Jr(G, 1-11) is generated
as a subgroupoid of J(G) by the sheaf Jr(W) of germs of elements of
Tr(W). Thus an element of J’’(G, W) is of the form

where s = sn ... sl with [si]xi E JT(f;fl), Xi+1 = (38ixi, i = 1,..., n and
xl = x E D(s).

Let v : J(G) -&#x3E; G be the fina.l map defined by 0([s]x) = s(x),
where s is an admissible local section. Then ’lÍ,(JT(G, W)) = G. Let

Jo = J’’(W) n ker v. Then Jo is a normal subgroupoid of JT(G, lV);
the proof is the same as in [2] Lemma 2.2. The holonomy groupoid
H = Hol(G,W) is defined to be the quotient Jr(G,W)/J0. Let p :

J’’(G, W) - H be the quotient morphism and let p([s]x) be denoted by
 s &#x3E;x. Since Jo g ker1/’ there is a surjective morphism 0 : H --i G
such that Op = 0.
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The topology on the holonomy groupoid H such that H with this
topology is a Lie groupoid is constructed as follows. Let s E rr(G, W).
A partial function os : W -&#x3E; H is defined as follows. The domain of O’s
is the set of w E W such that Qw E D(s ) . A smooth admissible local
section f through w is chosen and the value O"sW is defined to be

It is proven that astv is independent of the choice of the local section
f and that these os form a set of charts. Then the initial topology
with respect to the charts as is imposed on H. With this topology H
becomes a Lie groupoid. Again the proof is essentially the same as in
Aof-Brown [2].

Remark 5.4 The above construction shows that the holonomy grou-
poid if ol( G, VII) depends on the class C’’ chosen, and so should strictly
be written H olr (G, W). An example of this dependence is given in
Aof-Brown [2].

From the construction of the holonomy groupoid we easily obtain
the following extendibility condition.

Proposition 5.5 The locally Lie 9’roupoid ( G, Tiff) is extendible to a Lie

groupoid structure on G if and onlg if the following condition holds:
(1): if x E OG, and s is a product sn ... s1 of local sections about x such
that each si lies in Tr(W) and s(x) = lx, then there is a restriction s’
of s to a neighbourhood of x such that s’ has image in W and is smooth,
i. e. s’ E Tr (W).

Proof The canonical morphism O : H -&#x3E; G is an isomorphism if and
only if ker v n Jr(W) = kerv’. This is equivalent to ker7j) C J’(W).
We now show that ker 1/) C Jr(W) if a,nd only if the condition (1) is

satisfied.

Suppose ker C Jr(W). Let s = sn ...81 be a product of admissible
local sections ahout x E OG with si E Tr (W) and x E DS such that
8(X) = lx. Then [s]x E Jr(G, TIV) and 0([s]x) = s(x) = Ix. So [s]x E
ker 0, so that [8]x E Jr (W). So there is a neighbourhood U of x such
that the restriction s U e Tr (W).
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Suppose the condition (1) is satisfied. Let [s]x E ker v. Since [s]x E
JT( G, W), then [s]x = [sn]xn... [s1]x1 where s = sn ... s, and [si]x2 E
Jr(W), X,+, = Bsixi, i = 1,...,n and x1 = x E T(s). Since s(x) == 1x,
then by (1), [s]x E J’’(W). 0

In effect, Proposition 5.5 states that the non-extendibility of (G, W)
arises from the holonomically non trivial elements of Jr(G, W). Intu-

itively, such an element h is an iteration of local procedures (i.e. of ele-
ments of Jr(W)) such that h returns to the starting point (i.e. cxh = Bh)
but h does not return to the starting value (i.e. ’1,h # 1).

The following gives a circumstance in which this extendibility con-
dition is easily seen to apply.

Corollary 5.6 Let G be a Lie groupoid and let p : M - G be a m.or-
phism of groupoids such that p : OM -&#x3E; OG is the identity. Let W. be a.n
open subset of G such that

a) Oc ç vV;
b) W = W-1;
c) W generates G;
d) (aw, Bw, W) is smoothly locally sect2onable;

and suppose that i : W -&#x3E; 1B11 is given sllch that pi = i : ltl - CT is the

inclusion and W’ = i(W ) generates M.
Then M admits a unique structure qf Lie groupoid such that 1;V’ is

an open subset and p : M - G is a morphism, of Lie groupoid.s mapping
W’ diffeomorphically to W .

Proof It is easy to check that (M, 1;T/’) is a locally Lie groupoid. We
prove that condition (1) in Proposition 5.5 is satisfied (with (G, W)
replaced by ( M, W’)).

Suppose given the data of (1). Clearly, 1),s = psn ... ps1, and so ps is
smooth, since G is a Lie groupoid. Since s(x) = Ix, there is a restriction
s’ of s to a neighbourhood of x such tha.t Im(ps) C 14,". Since p maps
W’ diffeomorphica.lly to W, then s’ is smooth and has image contained
in W . So (1) holds, and by Proposition 5. 5, the topology on W’ is

extendible to make M a Lie groupoid. n
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Remark 5.7 It may seem unnecessary to construct the holonomy grou-
poid in order to verify extendibility under condition (1) of Proposition
5.5. However the construction of the smooth structure on M in the last

corollary, a.nd the proof that this yields a Lie groupoid, would have to
follow more or less the steps given in Aof and Brown [2] as sketched
above. Thus it is more sensible to rely on the general result. As Coroll-
ary 5.6 shows, the utility of (1) is that it is a checkable condition, both
positively or negatively, and so gives clear proofs of the non-existence or
existence of non-trivial holonomy. We apply Corollary 5.6 in the next
section to obtain a Lie structure on the monodromy groupoid of a Lie
groupoid.

We need one more result which refines Proposition 5.3 of [2], and
which will be useful in section 6 to relate the monodromy and holonomy
groupoids.

Proposition 5.8 Let (G, W) be a locally Lie groupoid. Let W’ be
the space ztyith underlying set Ir, retopologised as the sum of the stars
Wx, x E OG. Then (G, W’) has the structure of locally star Lie grou-
poid. Further, the associated star Lie groupoid structure on G makes
the associated holonorrzy rnoTphis7n O: H ol(G, W) -&#x3E; G a star covering
map.

Proof The verification of the first two properties of a locally star Lie
groupoid is trivial. For the third, let g E G and suppose Wg-1 n 1ifl
is non-empty, containing an element u say. Then there is an element
v E W such that u = vg-1, a.nd so g = u-1 v. Hence Rg = RvRu-i .
Now Ru-1 is smooth at ti and maps u to 1, while Ru maps 1 to v and
is smooth a.t 1. Hence Rg is slnooth at 2c, a,nd similarly so is its inverse.
Hence Rg is a diffeomorphism.

The final part of the proposition now follows from Proposition 2.3,
with (M, W) replaced by (Hol(G, TIll), i(W)). D
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6 Lie groupoid structure on the
monodromy groupoid:
the Strong Monodromy Principle

We can now state and prove our main results. These imply Theorem 6.3
which we call the Strong 1B10nodromy Principle, na,melv the glohalisation
of smooth local morphisms to smooth mor phisms on the monodromy
groupoid.

Theorem 6.1 Let G be a locally sectionable Lie giozipoid and let W
be an open .subset of G containing Oc, .such that W = W-1, and W
generates G. Then the rnol1odro’m,y groupoid Al = M(G, T;11) admits the
structzere o f Lie groupoid such that i(W) i.s an open subspace of M and
any smooth local morphism on W globalists to a smooth rnorphism on
M.

Proof The Lie groupoid structure on Al follows from Corollary 5.6.
Let f : W -&#x3E; H be a smooth local morphism to a Lie groupoid H. By
construction of M, f determines uniquely a morphism f’: M -&#x3E; H of
groupoids such that f’i = f . To prove that f’ is C’’, it is enough, by
local sectionability, to prove f’ is smooth at the identities of hl. This
follows since p: Af -&#x3E; G maps i(W) diffeomorphically to W. 0

Theorem 6.2 Suppose further to the assumptions of TheOl’e1n 6.1 that
G is star path-conn-ected, that each of its stars has a simply connected
covering, and that W2 is contained in an open neighbourhood V of OG
such that each star Vx in Gx is liftable. Then the projection p: AI(G, W) -&#x3E;
G is the universal covering map on each st.ar, and so flrf(G, W) is iso-
morphic to the star universal cover IIG of G.

Proof The assumptions allow us to construct the star Lie groupoid
TIG. They also imply that we have an isomor phism of underlying star
Lie groupoids M(G, W) -&#x3E; IIG. This gives the result. D

This result is new even in the group case considered in Douady-
Lazard [10].

As a corollary of the previous results we obtain the following:
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Theorem 6.3 (Strong monodromy principle) Let G be a locally sec-
tionable star path-connected Lie groupoid and let W be a neighbourhood
of OG in C such that W satisfies the condition:
(*) W is path-connected and W2 is contained in a star path- connected
neighbourhood V of OG such that for all x E OG, Vx i.s liftable.
Let f : W -&#x3E; H be a smooth pregroupoid morphism from W to the Lie
groupoid H. Then f determines uniquely a morphism f’ : IIG -&#x3E; H of
Lie groupoids such that f’ j’ = f . 0

We end this section by giving a result of Pra.dines which is taken
from the Appendix to [1], a,nd which enables the construction of the set
W as in Theorem 6.2.

Theorem 6.4 Let (G, V) be a locally Lie groupoid whose space .4Y of
objects is paracompact. Th en there is an open subset lfl of CT containing
X and such that W = W-1 and T’112 C V.

Proof A subset F C G is said to be anchored (at Y C X) if F rl X =
a (F) = B(F) (= Y).
Lemma 6.5 There exist families (Pi), (Qi) (i E I) such that :

(Pi ) is a point finite open covering of X;

Qi is open in V an d anchored at Pi;

6(Qi X a Qi) C v.

Proof For every x E X, there exists, by continuity of 6 at (x, x), an
open neighbourhood R(x) of x in V such that 6(R(x) Xa R(x)) 9 V.
Set S(x) = R(x) n X .

By paracompactness (more precisely metacompactness) of X, there
exists an open covering (Pi)iEI of X refining (S(x))xEX and point finite.

Take Qi = (a, B)-1(Pi x Pi) n R(x(i)) with x(i) chosen in order to
have Pi C S(x(i)), and where (a, B) : G - X x X. M

Now let us start with (Pi), (Qi) as in the lemma, and denote by Ix
(for x E X) the (finite) subset of I consisting of those i’s such that
x E Pi.
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Set N(x) = niElx Qi, which is anchored at S(x) = niEIx pi .
The paracompactness of X implies the existence of a star refinement

(Tj)jEJ of (Pi), i.e. a.n open covering such that the union of the Tk’s
meeting Tj is contained in some Pi(j).

For every x E X, choose j(x) such that x belongs to Y(x) = T(j(x)).
Set U(x) = N(x) n (a, B)-1(Y(x) X Y(x)), which is anchored a.t

S(x) n Y(x). Finally, take (T = UXEX U(x)’ We claim tha,t b(U x, U) C
V (then taking 111 = (T fl U-1, one gets lV2 C jl as desired).

To prove this, take u, u’ E U with the same source y E X. One has
u E U(x ), 2c’ E U( x’), and y E Y(x) n Y(x’), so that there exists an i

such that Pi contains both Y(x) and Y(x’). Therefore i belongs to both
Ix and Ix’, and Qi contains both U(x) and U(x’). Then one has

and we are done. D

7 Relations between monodromy
and holonomy

Let (G,W) be a, locally Lie groupoid. Form the holonomy groupoid
H = Hol (G, W ), as explained in Aof and Brown [2] and section 5. So
we have a projection O : H -&#x3E; Cr, and imbedding i: 1;11 -&#x3E; H. Then the
Lie structure on H is determined by the copy W’ = i(W) of W and the
smooth local admissible sections of vI1’.

Now we can form the monodromy groupoid Af = M(H, W’), and a
morphism

ç : M(H, W’) - H ol( G;, lil)
which is the identity on objects. This shows that the holonomy groupoid
is a quotient of the monodromy groupoid. Our earlier results show hovel
to construct this monodromy groupoid as a sta,r Lie groupoid, namely by
giving G the structure of star Lie groupoid induced from the star topol-
ogy on Vf1, a.nd then forming lIG. Under assumptions given earlier, the
composition of E with O : H ol(G, 111) - G is a star universal covering
map, and hence E is a star universal covering ma.p. This suggests that
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a direct construction of the holonomy groupoid might be possible as a
quotient of IIG, in the spirit of the method of [19] for the foliation case.

We deal with the relationship of these results to the standard holon-
omy groupoid of a foliation in the companion paper [7]. Holonomy and
monodromy groupoids of the more general local equivalence relations
are studied in [15], by topos theoretic methods.
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