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SIMULTANEOUS REPRESENTATIONS
IN UNIFORM SPACES

by M. HU0160EK and V. TRNKOVÁ

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume ..BXXJ/..2 (1994)

In memory of Jan REITERMAN

Resume. Pour chaque monoide S et sous-monoide S’, il existe un espace
uniforme X tel que le monoide form6 de toutes les applications uniform6ment
continues non-constantes X P X soit isomorphe a S’ et que le monoide form6 de
toutes les applications uniform6ment continues non-constantes MX P MX soit
isomorphe a S (ou M est une modification localement fine, coz-fine,

pr6compacte, K-precompacte...). Tous ces r6sultats et d’autres analogues rdsultent
de considdrations assez g6n6rales sur les repr6sentations de foncteurs fid6les vers
les espaces uniformes, par exemple: pour chaque cardinal K, il existe un espace

topologique admettant un nombre K d’espaces uniformes avec la même

compactification, formant de plus un ensemble rigide pour les applications
uniform6ment continues.

1. Introduction

Representations of small faithful functors by modification fiinctors in topological
spaces were investigated in [Trnkovi, Ilusek, 1988], where historical remarks can
be found. For convenience of readers, we will repeat the main scheme. 1Blost of

the concepts used in this paper are defined in [Ad£inek, Ilerrlich, Strecker, 1990],
[Engelking, 1989], and [Isbell, 1964].

A functor F from a category into a construct C (like Top or Unif ) is said to
be an almost f,dl embedding (see e.g. [Pultr, Trnkovi, 1980]) if it is faithful and F
maps the set K(l(, L) onto the set of nonconstant morphisms in C(FK, FL), for
every pair of objects K, L of ll".

Let C1, C2 be constructs and M be a faithful functor from C1 into C2. We say
that a faithful functor G : A§1 - K2 has a simultaneous representation by M if
there exist almost full einbeddings Fi : ki- Ci such that F2 o G = M o Fi , i.e.,
the following square commutes:
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It was proved in (Trnkova, 1986] that every faithful functors between small cate-
gories has a simultaneous representation by the functor r : C1 - C2, where C1 = G
is the construct of all directed connected graphs without loops: the objects are
pairs (V, R) of a set V and a relation R C V x V disjoint with the diagonal and such
that the only transitive relation on V containing R U R-1 is V x V; the morphisms
(V, R) - (V’, R’) are graph homomorphisms, i.e., the mappings f : V - V’ such
that ( f x f )(R) C R’.

The construct C2 = 1l has for objects t,riples (V, R, S), where (V, R) is an

object of G and S C R; morphisms (V, R, S) - (V’, R’, S’) are those morpliisms
f : (V, R) - (V’, R’) of G with ( f x f)(S) C ,S’’.

The functor r is the forgetful one that forgets S, i.e., r(V, R, S) = (V, R).

An endofunctor Al of a construct C is said to be a modification if it is ideln-

potent (i.e., M o Af = Af) and preserves underlying sets.
A modification Af in a construct C is called comprehensive if every faithful

functor between srmall categories has a simultaneous representation by m.
To show that a modification Af is comprehensive it, suffices to prove that the

above functor r has a simultaneous representat,ion by AI. That was the procedure
in [Trnková, IIusek, 1988] and it will be our procedure in the present paper, too.

Our main concern will be to find comprehensive modifications in the category
Unif of uniform spaces and uniformly continuous maps. Mostly we shall be inter-
ested in upper or lower modifications Af, i.e., when X is always finer (or coarser,
resp.) than MX . In other words, upper modifications are bireflections, and lower
modifications are bicoreflections (i.e., coreflections witli the exception of that one
corresponding to the coreflective subcategory consisting of the empty space only).
Upper modifications in Unit form a "large" complete lattice with the identity
functor as the smallest element and the indiscrete fiinctor as the greatest element.
Similarly for lower modifications (discrete functor, identity functor).

We restrict our consideration to modifications preserving topology. (The gen-
eral case will be considered in a forthcoming paper.) It follows that we must
consider upper modifications smaller than the precompact (or totally bounded)
modification, and lower modifications that are greater than the (topologically)
fine modification.

Our method requires that for upper modifications M (preserving topology)
there exists a separated uniform space X not containing a metrizable continuum
and such that M X # X. We shall call such modifications (in agreement with
(Trnkova, Ilusek, 1988]) essentially nonidentical. Which upper modifications are
essentially nonidentical? If we denote by C the class of uniform spaces which are
either precompact or do not contain a continuum, and by Mu the modification
corresponding to the bireflective hull in Unif of C, then it is easy to see that

essentially nonidentical modifications are preciselly those upper modifications that
are finer than the precompact modification and not finer than Mu .

As to lower modifications M, we shall need more. Take an infinite set Z and
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a free ultrafilter F on Z; the space Z x {0, 1} with the base of covers of the form
{{(z, i): z E Z, i = 0, 1) U { {(z, 0), (z, 1 )} : z E F) for F E F, is an atom

(i.e., a space that is not uniformly discrete but the only strictly finer uniformity is
uniformly discrete). Let A be the class of all atoms of this form. It is well-known
that the coreflective hull in Unif of A is the whole Unif. We say that a lower
modification is decent if it is coarser than the fine modification and there exist,s
X E A such that the restriction of M(K(X)) to the base of K (X) is uniformly
discrete (where K(X) and its base is defined in the next section).

We shall prove the following results:

Theorein 1 Every essentially nonidentical upper modification in Unif is

comprehensive.

Theorem 2 Every decent lotver modification of Unif is comprehensive.

Proofs will be given in Section 3, several applications and examples in Sec-
tion 4. We do not know whether Theorem 2 holds for essentially nonidentical
lower modifications.

2. Constructions

We shall now describe several constructions in Unif needed later:

Glueing. Let P be a uniform space with a uniformly discrete subspace A, and
let X be a uniform space with IXI = IAI. Suppose a bijection 0,: A -X is given.
Then PAX will denote the quotient of the stim (coproduct) of P and of X sewing
together A and .Y along the bijection 0 (i.e., along the eqiiivalence on the disjoint
sum P + X equal to the union of the identity of P +X and of 0 U o-1).
Cones. Let H be the metrizable hedgehog with K spines, i.e., as a set, If is the
quotient of the sum of ic copies of the unit interval, sewing together the top (all
the points 1). The metric p on H gives the usual metric when restricted to the
spines, and p(x, y) = I 1 - x I + 11 - yl when r, y belong to different spines. Let A be
the subspace of H formed by all the points 0; then A is uniformly discrete. For a
uniform space X of cardinality K let K (X ) be the space HAX from the preceding
paragraph. We may regard the points of K(X) as the top point 1 and the points
(x, 1) for t E [0, 1[; to simplify the procedure, we shall also consider points (x,1)
that are all eqnal to the top point 1.

It is easy to see that the map assigning (x., 0) to x E X is an embedding of X
into K (X), denote it by 11; the image h(X ) is called a base of K(X).
Mapping from PAX iiito K (X ). We shall now describe a canonical mapping of
PAX into K (X). Let d be a uniformly continuous pseadometric on P such that
d(a, a’) &#x3E; 4 for different points a, a’ E A. For each a E A and x E P let
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where BS,r. denotes the d-ball around the set or point 5’ having the radius r. Thus
pa is a uniformly continuous function on P into [0, 1] having value 0 at the points
of Ba,l and the value 1 at the points of P - BA,2. Define the mapping p’ from P
into K(X ) in the following way:

(observe that for x E BA,2 there is a unique a E A with x E Ba,2) Now, the
requested mapping p : PAX ---&#x3E; K (X ) is generated hy the nlappings pi : P - K(X)
and h : X - K(X), giving a mapping from P + X - K(X) which factors via the
quotient P+X - PAX, hence giving a miforrnly cont,iniioiis Inapping from PAX
into K(X).
Spaces F(V,R,S). Let X,Y be uniform spaces with t,he same underlying set,
where we choose three points P1, P2, P3; let V he a set., and S C R C V x V. We
define

obtained by identifying

for every (u, v), (u, v’), (u’, v), (u/, it), (u’, v’) from R.
We can endow the sets F(V, R, S) with various uniformities. If S, R B S bear

the uniformly discrete uniformities and we take the above quotient of the sum
of two products, the resulting space will be denoted by Fu (V, R, ,S)X,Y. Instead
of the product uniformities on X x S and on V x (R B S) we may take the sum
(coproduct) uniformities, i.e.. we can regard the set as the coproduct of S-copies
of the space X and of R B S-copies of the space Y. Then we take the quotient
uniformity again and denote the result as F, (V, R, S)X,Y . We have thus obtained
two uniformities on F(V, R, S) and any other between them can be used in our
construction.

Since the equivalence used to obtain the spaces F(V, R, S) is not too com-

plicated, it is not difficult to describe the uniformities on e.g. Fu(V, R, S)X,y .
Take uniform covers 11, V of X,Y resp., take their product with the finest cover of
S, R B S, resp. (covers by singletons), and the quotient image W of the resulting
cover on (S x ,) U ((R B S) x Y). If a point p is an image of more than one point
by the quotient map, we must add Starw(p) to YV. The resulting cover is said to
be determined by the covers 11, V and such covers form a base of Fu (V, R, S)x,y.
If we want to describe the uniformity on spaces of the type F,, the only difference
is that we must start with choosing uniform covers ur for every r E R.
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3. Proofs of Theorems

In (Trnkova, Ilusek, 1988], for every infinite cardinal a complete metric
space P was constructed that has a uniformly discrete subset A U (p1, p2, p3
of cardinality K and that is convenient for the construction needed. The main

property is that if one uses the spaces PAX or their modifications mPAX as
X, Y in the construction of F(V, R, S)X,Y, then nonconstant continuous mappings
F(V, R, S)X,1’ --+ F(V’, R’, S’)X,Y must map identically every copy of X or Y onto
the corresponding copy in the ot,her space. This assertion was proved in [Trnková,
Ilusek, 1988, Lemma IV. 13] for the topologies on Fu, but the proof for Fs or for
other topologies between those two is the same.

From now on, a space P means just. the above space for some cardinal K, where
K is determined by the cardinality of the chosen space X.

PROOF of Theorem 1. Let Af be an essentially noniclentical upper modification
in Unif. We are going to prove that r has a simultaneous representation by M.
By our assumption, there is a uniform space X cont.aining no continuum and such
that MX is strictly coarser t,han X. Then also Af PAX is strictly coarser than
PAX : since X emheds canonically into PAX there is a one-to-one mapping of MX
into MPAX; consequently, AfPAX must be strictly coarser than PAX. Clearly,
the topologies of PAX and of M PAX coincide.

Define the functors G1 : H- Unit, G2 : C - Unif as follows:

Images of morphisms are defined in a canonical way - see [Trnková, Husek, 1988,
p.758] for details. We shall show that G1, G2 are almost full embeddings.

Our construction is such that T o G2 :G- Top (by T we denote the canonical
functor from Unif to Top) is an almost full embedding, as proved in [Trnkovi,
Husek, 1988] in the second Observation on p. 758. So if (V, R), (V’, R’) are
objects of G and g : TG2(V, R) - TG2(V’, R’) is a continuous map, then either g is
constant or there exists f : (V, R) - (V’, R’) in 9 such that g = TG2(f). Ilowever
in the last case, G2( f ) is uniformly continuous. This implies that G2 : G- Unif
is an almost full embedding.

Now, we prove that At o G1 = G2 o r, which means that M(G(V, R)) =
A’f(G1(V, R, S)) for every object (V, R, S) of n. To prove the last equalit.y it suf
fices to show that F,(V, R,O) MPAX, MPAX is finer than M(F3 (V, R,S)MPAX,PAX),
which follows from the following more general reasoning. Denote by / 2 an equiv-
alence, and by &#x3E; the relation to be coarser than. For every uniform space Z we
have
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Now, using our special quotient equivalence from the description of F3-spaces for
/ 2, and PAX for Z, we get that F, (V, R, 0)AfPAX,MPAX is finer than the space
M(F3(V, R, S)MPAX, PAX).

It remains to prove that G1 is an almost full embedding.Let (V, R, S), (V’, R’, S’)
be objects in H, let h : G1(V, R, S) - G1 (V’, R’, S’) be a nonconstant uniformly
continuous mapping. Then Mh : G2(V, R) - G2(V’, R’) is a nonconstant uni-

formly continuous map, hence there exists f : (V, R) - (V’, R’) in g such that
G2(f) = Mh. Since h is uniformly continuous and the uniformity of M PAX
(replacing arrows in S) is strictly coarser than the uniformity of PAX (replacing
arrows in RBS), f necessarily sends arrows in S into arrows in S’, thus f = r f for
f : (V, R, S) - (V’, R’, S’) in 1f, i.e. h = G1 ( f ), which means that GI :71 -+ Unif
is an almost full embedding. 0

The last but one paragraph of the above proof is easy because we used sums
(and quotients) in the definitions of Gi (since we used spaces of the type Fs). That
has one disadvantage, namely if we start with nice spaces P, ,Y, the representing
spaces Gi(V) may lose t,hose nice properties that are not preserved by sums and
quotients. We must use quotients anyway; fortunately, our quotients are not
"too wild" and preserve many properties. Unlike in Top, the sums in Unit may
kill some nice properties, e.g., metrizability. For that reason it may be more
convenient to use the spaces of the type F,,; but we are not able to use the same
procedure. One needs that for a uniformly discrete space D and a space Z, the
space (D x MZ)/ - is finer than the space Af((D x Z)/ 2), which need not be
true in general. But whenever that holds, the spaces of the type Fu, may be used
for the above construction.

PROOF of Theorem 2. The idea of this proof is the same as that of the proof
of Theorem 1. Let X be an atom witnessing the fact that our modification M is
decent; thus X is a discrete space (biit not, uniformly discrete) and the modification
MK(X ) is strictly finer than K (X), Af X is unifornlly discrete. We sliall use the
metric space P as before but now endowed with its fine uniformity. The definitions
of Gi are modified as follows:

The proof that (G1, G2 are almost full embeddings is the same as in the proof
of Theorem 1. It remains to show that AI o C1 (V, R, S) = Af o G(V, R) for every
object (V, R, S) of 1l. Since G(V, R) is finer than G1(V, R, S), it suffices to show
that MG1(V, R, S) is finer than G(V, R).

First, notice that there is no uniformity strictly between PAX and the fine
modification of PAX = P; this follows directly from the fact that atoms are deter-
mined by ultrafilters. Consequently, MPAX coincides with the fine modification
of PAX = P. Notice also that if = is an equivalence on PAX identifying only two
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points, then AI(PAXI =) = (AI PAX)! =. If we denote hy D a uniformly discrete
space and by - an equivalence of our type, then we must show that

M((D x PAX)! 2) is finer than (D x MPAX)L - 

Take a uniform cover li of (D x MPAX)/2 determined by a uniform cover li of
MPAX as described at the end of Section 2. We show that 11 is a uniform cover
of M((D x PAX)/ 2). Take the uniform cover W on (D x PAX )/2 determined
by the cover YV on PA X that is obtained from u by glueing the canonical two-
point-set cover of X. Let be the equivalence on PAX sewing together the points
pi , p2. Then there is a canonical mapping q : (D x PAX)/ 2- PAX/= (roughly
described by q(d, [y]) = [y]), and we get that q : Af«Dx PAX)/ -) - M(PAX/ =)
is uniformly continuous. Since the last range coincides with (MPAX)/ we can
take a uniform cover V on M((D x PAX)L 2) to be q-’(V’), where V’ is the
uniform cover of (MPAX)/ = determined by t,he cover 11. Now it is easy to see
that our original cover 11 is refined by the joint refinement of V and of W which
are uniform covers of M((D x PAX )/ 2). 0

It is convenient to use atoms for our space X because of t,he proof becomes
easier, but we are loosing some nice properties of the resulting spaces. If we start
with countable small categories, and can use a metric spaces X then there is a
chance that the representation by Gt will use metrizable spaces only. To use a
metric space X instead of an atom (and the metric uniformity on P) means to
show that lli((D x PA,,B)/ 2) is finer than (D x MPAX)/ This works for
some specific modification Af, e.g. for the fine modification.

4. Special modifications

Upper modifications. We have proved that every upper modification that is
finer than the precompact modification and not finer than the modification Mu
is comprehensive. Practically all used upper modifications in Unif preserving
topology have the above property, i.e., they are not finer than All. For instance,
all ic-precompact modifications are of this kind, where r,, is any infinite cardinal.
These modifications have a base of uniform covers of cardinality less than K and
the corresponding bireflective sitbcategories do not contain all uniformly discrete
spaces, so that we may choose .Y to be a uniformly discrete space. In fact, every
upper modification- which is not fixed on uniformly discrete spaces and preserves
topology is comprehensive. An example different from the above cardinal reflec-
tions is the modification c generated by the reals (i.e., the bireflective lrull of the
reals in Unit).

Among bireflective classes containing all precompact and all uniformly discrete
spaces we have for instance point-K-spaces or star-K-spaces, where again te is an
infinite cardinal. The first class is composed of all uniform spaces having a base
of uniform covers with the property that every point is contained in less than r.
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members of the cover. The latter class consists of uniform spaces having a base of
uniform covers with the property that every member of the cowr meets less than
tc members of the cover. The classes of the first type do not contain all the spaces
Uu(D, Q) of uniformly continuous mappings from iiiiifornily discret,e spaces D into
rationals Q, endowed with the sup-norm metric. The classes of the second type
do not contain all the hedgehogs made of rationals in [0,1].

A class C of uniform spaces is said to be rigid if the only nonconstant uniformly
continuous maps between members of C are the identity-selfmaps.
Summary: (a) For any infinite cardinal Ie, the following upper modifications are
comprehensive:

K-precompact, star-K-modification, point-K-modification, the modification c.

(b) Every bireflective class itt Unif that contains all precompact spaces and does
not contain all uniformly discrete spaces is c07uprehensive.

The second assertion of Abstract follows from the following statement (a) (re-
call that proximities and compactifications on a given topological space are in a
one-to-one correspondence).
Applications: (a) For any cardinal K, and any tnonoid .S there exists a proxim-
ity space X for tvhich the set of nonconstant prorinially continuous selfinnps is

isomorphic to S, and a rigid set of tlniforfu spaces of cardinality K, inducing the
prozimity space X.

(b) For every pair of tnonoids 81 C S2 there exists a prorititity space X for
which the set of nonconstant proximally continuous selfirtaps i.s ismorphic to S2
and tvhich is induced by a uniform space Y for 1vhich the set of nonconstant
uniformly continuous selfnlaps is isomorphic to .)1.

Lower modifications. To find out whether a lower modifications M preserving
topology is decent, one must find an atom X such that the restrict,ion of M(K(X))
to the base of K (X) is uniforrnly discret,e. It is easy to see that it suffices to find
a uniform space ,Y such that the restrict,ion of M (K(X)) to the base of K (X ) is

strictly finer than X.
Observe that if a lower modification M is decent then so are all finer lower

modifications preserving topology.
The proximally fine modification M is compreliensive. If one takes for X

an infinite discrete topological space endowed with the Cech uniformity (the finest
precompact uniformity), then M,Y is the uniformly discrete space and M(K (X)) is
also strictly finer than K(X). Consequently, the coz-fine and the fine modifications
are comprehensive (the coz-filie modification is positioned between the proximally
fine and the fine modifications).

The modification corresponding to the coreflective class of uniform spaces Z
such that the set U(Z) of uniformly continuous real-valued functions is closed
under taking 1// for f = 0, is comprehensive. Itideed, take for X tlle rationals in
the open interval ]0,1[; it is not inversion closed and neither is K (X).

Using Kat6tov extension theorem for uniform spaces other lower modifications
can be described by bounded uniformly continuous real-valued mappings (as the
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inversion-closed modification). If the property is described by unbounded map-
pings, we need not get a decent modification. This is the case for the coreflec-
tive subcategory of Unit defined by the property that LI(Z) is algebra, i.e., that
products of uniformly continuous real-valued mappings are uniformly continuous,;
the reason is that every uniformly continuous real-valued mapping on a cone is
bounded and, hence, every cone belongs to the coreflective subcategory.

Since the following modifications are positioned between t,he above inversion-
closed coreflection and the topologically fine coreflection, they are compreliensive:
locally fine modification; the coreflection corresponding to the coreflective sub-
category consisting of spaces having the property that inverse of every uniformly
continuous function bounded from zero is uniformly continuous (call it bounded-
inversion-closed modification).
Summary: The following lotver modifications of Unif are comprehensive:

fine, locally fine, bounded-inversion-closed, inversion-closed, proxi1nally fine,
coz-fine.

Applications: (a) For every pair of 711 onoids S, C 82 there exists a uniform space
X for which the set of nonconstant unifornlly continuous selfmaps is isomorphic
to Sl and the set of nonconstant coz-continuolis selfmaps is isomorphic to S2.

Using the remark following the proof of Tlieorein 2 we can show:
(b) For every pair of count able fllonoids 51 C S2 there exists a topological space
X for which the set of nonconstant continuoits selfmaps is is07norphic to S2 and
which is induced by a fnetrizable uniform space Y for which the set of nonconstant
uniformly continuous self7uaps is isomorphic to SI.

We could formulate the same assertion for lower modifications as Application
(a) in the previous part for upper modifications. Or, instead of taking a "discrete"
small category we may take a poset and get a representation of the poset in the
set of uniformities on some topological space (the order in the set of uniformities
is "finer"). 

In the above assertions (a), (h) one may take more monoids than just two.

Other modifications. If M is a modification preserving topology that is neither
lower or upper modification but can be written as Af =M1 o Af2 wliere M2
is an upper or a lower Inodification satisfying the assumption of Theorem 1 or

of Theorem 2, resp. then M is comprehensive. Indeed, our construction yields
functors G1, G int,o Unif such that M2 o G = Af2 o G1. Consequently, M o G =
M o Gl and we may define G2 = M o G to get what is needed.

An example is Af = Af1 o M2 where, say, M1 is a lower modification and M2 is
an upper modification which commute. If M2 is essentially nonidentical then M
is comprehensive. 

It remains to look at modifications that do not preserve topology. The situation is
more complicated. The same example as in Top shows that the zero-dimensional
modification is not comprehensive, and similarly for lower modifications corre-
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sponding to coreflective subcategories containing with any its connected member
every coarser space.
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