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CAHIERS DE TOPOLOGIE VOL. XXXIV-4 (1993)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

COHERENT CATEGORIES WITH RESPECT TO MONADS

AND COHERENT PROHOMOTOPY THEORY
by M.A. BATANIN

RESUME. Le but de cet article est de développer une ap-
proche générale pour construire des catégories homotopi-
quement cohérentes. On présente une telle catégorie com-
me une catégorie de Kleisli pour une monade particuliére.
La méthode développée permet d'obtenir une equlvalence
entre la théorie de la forme forte de Lisica-Mardesic¢” [15]
et celle de Cathey-Segal [7].

1. Introduction.

There are different approaches for the strong shape theory
of all topological spaces [2,7,15]. According to Lisica-Marde-
sid a strong shape category is a full subcategory of some spe-
cial constructed category, CPH-Top, called the coherent proho-
motopy category of topological spaces. The goal of our work is
to give a general construction of the coherent homotopy catego-
ries. This leads us to the proof of the equivalence of the cate-
gories CPH-Top and ho(pro-Top) of Edwards-Hastings [12]. Thls
implies that the strong shape category of Lisica-Mardesid is
equivalent to that of Cathey-Segal [71.

There exists an immediate link between our work and the
theory developed by J.-M. Cordier and T. Porter in a series of
papers [8,9,10,11,25]. Some results of [10] may be obtained by
directly dualizing our construction and applying them to the
comonad Lan on F(AK) (see 8§82, 4 for notation), but in
[8,10,11]1 this is considered within the general theory of homo-
topy coherence at a purely categorical level. This allows the au-
thors to obtain deep results about the connection between dif-
ferent approaches to homotopy coherence [4,12,15,24,27]1, and
give applications to strong shape theory [9,25].

Remark, finally, that the dual construction may be useful
also in stong coshape theory [19] and, for instance, in the theo-
ry of iterated loop spaces (thus we obtain a natural structure of
a comonad on a May bar construction [22,231). It is possible
also to find other obvious generalizations, for example, one can
consider enriched Kan extensions [14]1 or the Bousfield-Kan
R-completion on a category of diagrams of spaces, but in this
paper we are not going to consider all possible applications.
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2. The basic notion and definitions.

We shall need some definitions from enriched category
theory [141. In this section we introduce some notation and pro-
ve necessary auxiliary results. Let A be a monoidal category and
K be an A-category. We denote by hom4A(X,Y) the set of mor-
phisms from X to Y in A. If A is closed [14], then HOMA(X,Y)
is an internal HOM functor in A that is a representing object
for homA(-®X,Y). Let HOMK denote an A-enrichment functor
for K. For K, one can define an underlying category Kg. It has
the same objects as K, and

hom®X0(X,Y) = homA(I,HOM(X,Y)),
where I is the unit object in A [14].

We shall say that an A-category K is complete (cocom-
plete) if the underlying category Ky has all limits (colimits). Let
A be a subcategory of A. We shall say that an A-category K
has A'-products (A'-degrees) provided there exist a functor

ExX: A'xKg » Ky (XE: (4P°PPxK, - Ky)
and a natural isomorphism
HOMK(ExX,Y) » HOM“(E,HOMK(X,Y))
(HOMK(X,YE) ~ HOM“(E,HOMK(X,Y) ).
For basic examples of symmetric monoidal categories, we
consider the category of simplicial sets S, the category of Kan
simplicial sets Kan, and the category of compactly generated

spaces K. We shall consider also the category Top of topologi-
cal spaces with the natural enrichment

HOM,°P(X,Y) = hom ToP(Xx|A(n)],Y),
where
[A(m)| = uyq,...,u) e R? | Osuys ..o su,sl)

is the geometric realization of the standard n-simplex A(n) [S1.

For a small category A and an A-category K, we define
F(AK) to be the category of functors from A to Kyg. We denote
its objects as {X,}, and consider it with a natural A-enrichment

HOMF(A‘K)(X,Y) defined to be the kernel of a pair of mor-
phisms

T HOMK(X;,,Y;) = T HOMK (X, Yy, ¢ = Te,, & = TTY,,

A-X
where ¢, with index o: A-=X' is defined as the composition

HOMI(1,0)
T HOMK(X, . Y;) — HOMK(X, \Y,) ————— HOMK(X;,Yx),
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and ¢4 as

HOM(o,1)
)\HAHOMK(XX,Y)\) - HOMK(XX',YX) _— HOMK(X)\,Y)\').

If K has A'-products or A'-degrees, then F(A,K) has them also:
Ex{X5) = {ExX;), {(X,0F = GE).

Suppose K has A'-degrees, let M: A—»A' be a functor and {X,}
be an object of F(A,K). Then we can consider a kernel of the
pair
XM)‘ e 1\'/[)\
kIe_IA . )\LI)\'XX '
We call it a realization of {X,} with respect to M and denote it
by {(X)M.

Let A be the category whose objects are finite ordered
sets, [n]l ={0,1,...,n}, and whose morphisms are the monotonic
maps. For the categories F(A,K) and F(AxA,K), the categories of
cosimplicial and of bicosimplicial objects of a category K, we
use the standard notations cK and c2K [5] correspondingly. In
cK one can consider a notion of cosimplicial homotopy [22,23].
A family of morphisms in K,

Hi: X9*1> Y9, 0<j <q, q =0,1,...,

is called a cosimplicial homotopy between cosimplicial morphisms
f,g: X=>Y provided

H%d% = f9,  HIdI! = g9

o d{H{'i when > j
Hid/ = | Hid/™t when i=j>0 .
dJ~1H1 when i j-1

For an S-category K, there is a more "geometrical” notion
of homotopy. We say that f,g < HOMX(X,Y) are homotopic if
there is a 1-simplex

h « HOMK(X,Y) such that dgh = £, d.h = g.

This relation generates an equivalence relation on homKo(X,Y).
We shall denote the corresponding factor category by =mK, and
hom™K(X,Y) by [X,Y]1. Thus, for an S-category K, we have in cK
two types of homotopy. We need a lemma to connect these
notions.

Let A be the cosimplicial simplicial set which in codimen-

sion n consists of the standard n-simplex A(n) and for which
the cofaces and codegeneracies are the standard maps between
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them. Let Al sl be the cosimplicial simplicial S-skeleton of A.
Then in these notations, for a cosimplicial simplicial set X* we
get that

(X*)ALsY ~ Tot X*

which is the Bousfield-Kan total space. Recall also that in cS
there is a structure of a cosimplicial closed model category L[S5],
and one can talk about fibrant and cofibrant objects in cS.

LEMMA 2.1. Let X*, Y* be cosimplicial objects in an S-category
K, and f*, g*: X*->Y* be cosimplicial morphisms. Assume there
exist realizations (X*)2, (Y*)2 in K, and

X** = HOMK((X*)A,X*), Y** = HOMK((X*)2,Y*)

are fibrant cosimplicial simplicial sets. If f* and g* are cosim-
plicial homotopic, then (f*)® and (g*)® are homotopic mor-
phisms in K.

PROOF. It suffices to show that f* and g* induce homotopic
morphisms of simplicial sets
f, g: HOM((X*)2,(X*)2) = Tot(HOM((X*)2,X*)
- Tot(HOM((X*)A,Y*) = HOM((X*)4,(Y*)?).

Indeed, this means that there is
h: HOM j((X*)A,(X*)4) > HOMg((X*)4, ((Y*)4) a1

such that d% = £, d'h = g. Then h(1(xx)a) is the required ho-
motopy. Further, since X*~, Y*" are fibrant, we have homotopy
equivalences

Tot X*~ ~ S(X*|'8), TotY*~ ~ S(Y*|!Al).

Therefore, we reduce the problem to the following statement.
Let X* and Y* be cosimplicial simplicial topological spaces,
f*, g*: X*->Y"* be cosimplicial maps and A* be a cosimplicial ho-
motopy between them, then (f*)!2 and (g*)!2 are homotopic.
Let us construct a homotopy H:(X*)IA - ((y¥lahlami
Consider a subdivision of
[A)x|A(m)] = {(t,uqy...,u,) | Os ¢s1, Os uy<...<uy}
into subspaces

RE = {(t,uy...,up) 1 05 uys... s up < 65 Uupyy s..0 5 upst).

There is an obvious homeomorphism ~vy&:RE-|A(n+1)]. Let
©™:|Al->X* be a cosimplicial map. Then we put

Hoe(w), = hPocp“+107nP(t,u), for (t,u) ¢ R,P.

The definition of cosimplicial homotopy implies that He, is de-
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fined correctly, and it is evident that

He(u)g= f*¢, Helu), = g¥o.

Lastly we recall the notions of a monad on a category
and of the corresponding Kleisli category [201.

Let A be a monoidal category, and K be an A-category.

DEFINITION 2.1.Let R be an A-endofunctor on an A-category K,
u:R2-5R and ¢: IR be A-natural transformations, where I is the
identity A-functor. We say that a triple (R,u,s) is an A-monad
on K, with unit ¢ and multiplication u, provided the following
diagrams are commutative:

R3S —RE_ g2 r =R R2—Re g
‘[HOR lp \”l /1
R2 —H SR R

One can associate, with any monad (R,u,s) on a category
K, a category whose objects are those of K and whose set of
morphisms from X to Y is homX(X,RY). The identity morphism
is defined by t:X-RX and the composition of f:X-RY and
g:Y-?RZ by

x £ ry R& R2z B, g7,

DEFINITION 2.2. The above category is called the Kleisli catego-
ry of the monad (R,s,u), and denote it by Klp-K.

We need finally a lemma from [5], that we call the Bous-
field-Kan Lemma.

BOUSFIELD-KAN LEMMA. Let R:K—-K be a functor, :1°R be a
natural transformation. Let there exist a natural associative pai-
ring
Hx v,z : hom(X,RY)xhom(Y,RZ) — hom(X,RZ)
and let
HX,X,Y(S'f) = f= HX,Y,Y(f’e)'

Then there is a natural transformation pu:R?->R such that (R,u,e)
is a monad on K.

PROOF. We define py as the morphism pp2yx rx x{Ir2x:1rRx)-
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3. Tensor product of cosimplicial objects and cosimplicial H-co-
monoids.

Let A be a category with finite colimits, and let X =.{XP-9}
be a bicosimplicial object in A. Let us construct a sequence
B”(X), n 20 as follows:

Bo(X) = X0:0,
B7*1(X) is the colimit of the diagram
XO,n+1

X(1xd® = d 0
XD,n
X(d%D=df ...

—_— XP,Q*'I

ptgq=n
dZD n+1
Xm0 —1__, yn+1,0
For O< ks n+2, consider a system of morphisms

(3.1 [d—f'P:XP'q - XPa*' ps<k-1, p+q=n

dX:XPd9 - xXpPLa  pefk, ptg=n

and for O < k < n+l, a system

k +1
sk.xpa > XP: 9 < k, +g =
(3.2) [ 2 P pra=n

Sik:XP+1,q_)XP,~q’ pz k+1‘ p+q_—_n

PROPOSITION 3.1. The systems (3.1), (3.2) define morphisms
dk: B"(X) » B™1(X) and s*:B"™(X) - B™(X)

correspondingly. The sequence B™(X) with the morphisms s
d* is a cosimplicial object in A.

PROOF. Immediate from the definition of B*(X).

K and

Let now A be a closed symmetric monoidal category with
tensor product ®4, unit object I and finite colimits. For two co-
simplicial objects X and Y in A, one can construct a bicosimpli-
cial object

XOY: (X®Y)P9 = XP®,YD, di = di®gl, d,i = 184d",

- 284 -



BATANIN —COHERENT CATEGORIES WITH RESPECT TO MONADS

s{ = 51®41, s = 1®45s".
We shall denote the constant cosimplicial object {17} by I. Then

we define a tensor product of cosimplicial objects X and Y by
the formula

X*®@Y* = B(X*®Y™).

PROPOSITION 3.2. There exist natural isomorphisms

X ~ X®I » X, X®(Y®Z) ~ (X®Y)®Z,
which make cA a monoidal category.

Let now A be as above and let in addition A be a com-
plete S-category with enrichment HOMA: A°PxA-S, with finite
S-products. We shall say then that A is a monoidal S-category
provided there is a natural isomorphism kx(X® 4Y) ~ (kxX)® 4Y
for each finite simplicial set k.

PROPOSITION 3.3. Let A be a monoidal S-category. Then cA and
c2A are S-categorties with finite S-products and B:c?A-cA is a
simplicial functor. Furthermore, there are natural isomorphisms

kx(X®Y) ~ (kxX)®Y ~ X®(kxY)

for each finite simplicial set k and X,Y ¢ A. Finally we have a
natural transformation

D: HOMS4 (E,F) xHOM<4(X,Y) - HOMSA(E® X,F®Y)

and a map d: A(0)>HOMSA(1,1) which make HOMS4: (cA)°PxA-S
a monoidal functor.

PROOF. We prove the last statement only, because the others
are obvious. In cA we have a natural transformation

Dg: homS4 (E,F) xhomS4(X,Y) > hom“4(E® X,F®Y).

But
HOMSA(X,Y) =hom“A(A(n)xX,Y).

Define D, by the composition

HOM S4(E,F)xHOM S4(X,Y) = homS4((A(n)xE)® (A(n)xX),F®Y)

— HOMSA(E®X,F®Y).
The last map is induced by

Sx1: A(n)x(ExF) - A(n)xA(n)x(E®F) ~ (A(n)xE)®(A(n)xF),
where §:A(n)->A(n)xA(n) is the diagonal map.

As basic monoidal S-categories, we shall consider the ca-
tegories S and K. Note that the functor of fibrewise realization
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|-]: cS=CK is simplicial and strong monoidal.

DEFINITION 3.1. Let A be a monoidal simplicial S-category, and
N a cosimplicial object in A. Let p:N->N®N, n:N-I be two
cosimplicial morphisms. We shall call a triple (N,p,n) a cosim-
plicial H-comonoid provided the following diagrams are commu-
tative up to homotopy:

NON®N —2° _ NeN N —81_ nen —18L LN
Tp@l Ip 1 p[ 1
N®N —E N N

THEOREM 3.1. For each s z-1 there is a morphism
o(s): [ALs]] ~ |ALsII®|ALs]]

in cK which, with n(s): |Alsl|- |A[-11] makes |Als]| into a co-
simplicial H-comonoid.

PROOF. The idea of the proof of this” theorem is based on the
Lisica-Mardesi€ construction of the composition of coherent
maps [15]. Consider the following subdivisions of |A(n)| [15]. For
O<t<2, p,g=2 0, ptq =n, let
PPal1] ={(uy,...,up) eR?| Osuys .. .SULST/25 UpyS...S upsih
For O<t<1, r,s,t 2 0, r+s+t =n, let
QS tlt] ={(uy...,u,) ¢R?|
Osuqs..su.sU+t)/dsu,ps... 35 U, gs2+1)/4<s upgyq s...51).
For 0<1t<2, let

P Ut (uy,...,uy) = (2/0(uy,...,u,), aP90t]: PP 9t1-|A(p)l.
For 0<1< 2, let

BP9t (uy,...,u,) = (1/2—1)(2up+1—t,...,2up+q—t),

BP:9[t]: PP9tl-|A(p)l. And finally let o7S¢tt], 7S],
nS (1] be the maps from Q7 S:t[t] to |A(r)], |A(s)], |A(¢)| defi-
ned as follows:

TSt iUy, uy) = G/ Uy, uy,),

GOSN Uy, uy) = Gy -+, du, - (14T),

TS Uy uy) = (/2= (BUp o= (24 1), Al gi e~ (241)),

correspondingly. Now we define a map ¢:[A(m)|=>B™(|AI®|AD) with
the help of the formula

e™Mu) = blaP 90U W) ,FPIUI(w)), u e PPI01], ptg = n
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where b is the canonical map to the colimit. The sequence of
maps p” defines a cosimplicial morphism p:|A|-|A|®]|A|. Consider
a cosimplicial morphism h:|A(1)|x|A]=>|A|®|A] defined by the for-
mula

h?(t,u) = b(aP"91+tNu),*), u ¢ PP 9[1].
Then A7(t,u) e B*(|A|®|AL-11]), and we have: for u ¢ PP-9[1],
h™(0,u) = b(aP 901 Nu),*) = (1®7)op(u),
for u «PP9[21, h(l,u)= b(aP'9[2]). But
|a(n)| = P®0[2] > PA~1A[2] O .. D> PY7[2] = x,

«™0[21=1:|A(n)|=|A(n)|. Then h is a homotopy between 1 and
(1®7)op. Similarly we have a homotopy between 1 and (n®1)op.
Finally the map

H(t,u) = blemSt11(u), ¢St u), n S t1l(u)), u « Qs tlrl,

O<t<1 gives us a homotopy between (p®1)op and (1®p)op. Re-
mark now that p, and the homotopies constructed above, map
the s-skeleton of |A| to itself. Thus plsl: |ALs]|=|ALs]I®|ALs]] is
defined.

4. Coherent homotopy categories.

Let A be a monoidal S-category, and K an A-category. We
can define for K an "underlying” S-category Ky by the formula

HOMKs(X,Y) = HOMA(I,LHOMK(X,Y)).

Then we can define a category nK as nKg. An A-functor bet-
ween A-categories induces an S-functor between the "under-
lying" categories, the same holds for A-natural transformations.

Let now (K,u,c) be an A-monad on the category K. Then
we have also an S-monad on K and a usual monad on nK. Let
us associate with each object Y of K a cosimplicial object R*Y.
By definition

(R*Y) - Rn+1Y, di = Rtl—i+1OEORj, Si - Rn_iO[JORi.

There is a natural augmentation morphism ¢: Y=R*Y. We obtain

also a cosimplicial object in the category A by applying

HOMK(X,-) to R*Y fibrewise. We shall denote it by

HOMK(X,R*Y). For objects X,Y and Z in K, consider the family
of morphisms

m{q , HOMK(X,RP*1Y)84 HOMK(Y,R*!Z)

HOMK(X,RP*1Y)®HOMK(RP*1Y RP*1oRI*1Z) —

1@ RP*1
—_—
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K({ RP
HOM®(LRPou OB ) oMK (X,RP9*1Z).

HOMK(X,RP*1oR9*1Z)
This family gives a morphism
My vz HOMK(X,R*Y)® HOMK(Y,R*Z) — HOMK(X,R*Z).
Define also Ey:I-HOMK(X,R*X) by the composition
HOMMN(1,R")

E£Z — HOMK(X,X) HOMK(X,R7*1X)

for n 20. It is easy to check that we thus obtain an enrichment
of K in cA.

Let now (N,p,n) be a cosimplicial H-comonoid in A.

DEFINITION 4.1. We shall call the coherent homotopy category
of the monad (R,u,¢) with respect to (N,p,n) the category, deno-
ted by CHRN-K, defined as follows:

CHRp-K has the same objects as K,

CHRp-K(X,Y) = 1ty(HOMSA(N,HOMK(X,R*Y)),

an identity morphism is the image of the point * under the
composition
o HOMS4(n,¢)

* — 10 o(HOMS4I,1)) 7 o (HOMSA(N,HOMK (X,R*X)),

a composition pyx y z is defined by the map

Tq (D)
CHRy-K(X,Y)xCHRN-KA(Y,Z) ——

7o(HOMS4(N®N ,HOMK(X,R*Y))® HOMK(Y,R*Z))
tgHOMK(p,M)

7 o (HOMSA(N,HOMK(X,R*Z)) .

The category CHRy-K admits another description.

PROPOSITION 4.1. If in the category K. there exists (R*XON for
each object X, then we have a monad (RN,uNeN) on nK, such
that CHRN-K is isomorphic to Klpn-7K.

PROOF. Define RN(X)=(R*X)N. The augmentation e: X->R*X in-
duces a natural transformation eN:I-RN. We shall use the
Bousfield-Kan Lemma for the definition of the multiplication in
RN. By construction (RN is the kernel of the pair of mor-
phisms

P .
(4.1) T (RPY)N" T—_—_) T (R*Y)N
nz=0 Lnl—=Cn]

- 288 -



BATANIN —COHERENT CATEGORIES WITH RESPECT TO MONADS

Applying my(HOMK(X,-)) to (4.1), we obtain
hom™X(X,RNY) = n HOMKs (X,RNY)
= TCDHOMA(N,HOMK(X,R*Y)) = CHRN-K(X,Y).

It is evident that for the identity functor 1 and the co-
simplicial H-comonoid I in 'cA, there is an isomorphism
CHI;-K ~ tK. Then £:I-R and n:N-I induce a canonical functor
PN: tK-CHRy-K. Assume that the condition of Proposition 4.1
holds, then we obtain immediately that PN has a right adjoint
QN: CHRy-K~7K, and QN oPN = RN,

The case A =S will play an important role in our work.
Unfortunately the cosimplicial simplicial set A is not a cosimpli-
cial H-comonoid. To rectify this kind of difficulty we introduce
some additional notions.

DEFINITION 4.2. We say that the S-monad (R,u,e) on an S-cate-
gory K is fibrant provided HOMK(X,R*Y) is a fibrant object in
cS for every objects X and Y in K.

DEFINITION 4.3. Let (N,p,n) be a cosimplicial object in S. We
say that N is a cofibrant cosimplicial H-comonoid provided that

N is a cofibrant object in cS and IN| is a cosimplicial H-como-
noid in K.

Finally remark that for N cofibrant and X fibrant objects
in ¢S, there is a natural homotopy equivalence

HOMSS(N,X) ~ 1o(HOMSK(NJ,|X]).
Therefore we can now give a definition of the category CHRy-K
putting
CHRyN-K(X,Y) = mtg(HOMSS(N,HOMK(X,R*Y))),

where R is a fibrant monad and N is a cofibrant cosimplicial
H-comonoid.

EXAMPLES. 1. As shown in [5], the cosimplicial simplicial sets
Als], O s s< o are cofibrant cosimplicial simplicial objects in cS.

2. Let R be a commutative ring with unit. For a simplicial set
X, let R®X denote the simplicial R-module freely generated by
the simplices of X. Then RX CR®X is the subset consisting of
the simplices Zr;x; with 2r;=1. There are maps ¢:I»R and
¢: R%2->R, which make R into a fibrant S-monad on S [5]. We
shall call it a Bousfield-Kan monad.

3. Let A be a small category, and K an S-category. As was
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remarked above, F(A,K) has a natural S-enrichment. If in addition
K has products, then on F(A,K) the following S-monad (Ran,pu,s)
can be defined:

Let Ag be a maximum discrete subcategory of A. The inclu-
sion i:Ag—A induces a functor i*: F(A,K)>F(Ag,K). Then i* has a
right adjoint Ran; (a right Kan extension along i ) [20]. The pair
(i*,Ran;) induces a monad Ran=Ran;oi* on F(A,K). More explici-
tly, (Ran,u,c) may be described by the formulas:

(RanX)5 = IT Xog ea:Xo= T Xog #n 1T Xag = 1 Xy

Ager X g Agerger AgeA
where &5 =[[;ex 4, €5 With index o:X—=Xg is the morphism
X(o): X5 =Xy, and py is the projection on the factor with index
AEAge .

DEFINITION 4.3. An S-category K is called a locally Kan cate-
gory provided for any object X and Y in K, HOMK(X,Y) is a
Kan simplicial set.

PROPOSITION 4.2. Let A be a small category, and K a locally
Kan category. Then the monad (Ran,u,s) on F(AK) is fibrant.

PROOF. Let A, }De the nerve of A. Let ipeﬂp, ip=()\0<—...<—)\p).
Then we can write

HOMFAK(X, RanP*lY) ~ [T HOMK(X, Y, ).
Xpe Ap P
The codegeneracy s’ for the factor with index

~

>\p+1 = ()\09'...(—)\P+1)
is defined as the composition
K K
XPECKPHOMXPQ(Y)\P’Y)“U) - HOMs,-(XPH)(YXpH’YXU)

hd HOM§p+1(Xxp*1,X>\0).
We recall now the condition for a cosimplicial simplicial

set X* to be fibrant [S].
For n=0 let M™ denote the limit of the following diagram

n Fed n n
SRR XP oo X i X1

X n-t 0<i<jsn.

For n =-1, one puts M™XX) = A(0). The maps s’: X"*1-5X" induce
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r: X?*15M?2(X). Then, according to [5], X* is fibrant iff all r?,
n 2 -1 are Kan fibrations. We prove the following lemma for
application to HOMF“K)(X Ran*Y).

LEMMA 4.1. Let A, be a simplicial set, {F,} a family of sets
with index from A= UnzOA . Let C be a category whose objects
are subsets of A and whose morphisms are their inclusions.
Consider the following cofunctor F from C to the category of
sets: F(U) = [, yF,, and for UCV, the map F(V)->F(U) is the
obvious projection. Since in A, all degeneracies are inclusions,
we can consider the following diagram

F(AD) ..o, F(AD ..o, F(AD) ..o, F(A D)
(4.2) F(sj_i\ ﬁsi)
F(A))

The degeneracies s; :Ki-> Ki,,, 0 < i < n induce a map from
F(K,+y to the limit of the diagram (4.2). Then this map is a
projection on a factor.

PROOF. Let D,(A) be a colimit of the diagram of sets

~ ~ ~ . ~

AS......... KL o, Ao, An

Then we have a map ¢:D (A=A ., induced by the degeneracy
maps s;: AL - An+1, O < i< n Let us prove that ¢ is an inclu-
sion. Indeed if X,, )\ eA are such that sj()\) = s (k :), then
j = disj()‘j) = Sj"‘l(di ]
Thus we obtain
dj—l ii = dj“l S"‘l(diij) = dii]

If j=i+1, then ij = djsi(ij) = X;, and if j> i+l then

j:j = dj‘sl(il) = Si(dj"‘l(ii)) = Si(diij)‘
The subsequent part of the proof is evident.

Now Lemma 4.1 implies the conclusion of Proposition 4.2
because K is a locally Kan category.

Finally we remark that the above theory may be easy to
develop for the pointed S,-categories. Instead of Als] we may

use in this case the pointed cofibrant cosimplicial H-comonoids
ALs]=AlsTUA(O).

- 291 -



BATANIN —COHERENT CATEGORIES WITH RESPECT TO MONADS

5. Coherent homotopy categories and localization.

Here we consider S-categories and fibrant S-monads. As a
cosimplicial H-comonoid, we shall use one of the cosimplicial
simplicial sets Als]. For the category CHR,[ 3-K, we shall write
simply CHRg-K, the monad RALST will be denoted by Rg, the ca-
nonical functor from nK to CHR K will be denoted P, and the
adjoint to P4 by Qg. Then we have a commutative diagram

ntK

(5.1) V 11:, Pg

CHR_-K — ... — CHR,-K — ... — CHRy-K = Klg-nK

Let Zg be the class of morphisms f in nK such that Pgf
is an invertible morphism, and let Xg be the class of morphisms
f in K such that Rf:RX-RY is invertible in K.

PROPOSITION 8.1. 2 = ... =2, = ... = £ = 2.

PROOF. Make one useful remark. Let (R,u,s) be a monad on K
and let EMp-K be the category of R-algebras of this monad
[20]. If G:K-M is a functor with a right adjoint D, then it
yields a monad (DoG,p,9) on K. Assume (R,u,s)=(DoG,p,¢).
Then the following diagram is commutative [20]

K

k lG e
Klg-K ——————— M ——— EMp-K

where k and e are canonical functors. Let X, Xg, Z. be the
classes of morphisms f in K such that the morphisms k(f),
G(f), e(f) are invertible correspondingly. From the above dia-
gram, we see that 2 CZ5C2Z,. Let f: XY be a morphism with

feZ,. Then there exists g: RY-RX such that the diagram

R2Y Re R2X
uj ly
RY g RX

commutes and Rfog =1y, goRf =1px. Consider the morphism
g in KIx-K, defined by the composition
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Yy —& 5 Ry —& 5 RX.

It is easy to see that g is the inverse to k(f) in Klg-K. Conse-
quently Z, = Zg=2,.

Let us return to the proof of the proposition. From the
remark above and the diagram (5.1), we see that

$,C...CS_C..C3%5C3p.

e =)

Let f: X=Y with f ¢Zg. Then for each object Z in K, and p 20,
f induces a homotopy equivalence of simplicial sets:
HOM(1,RP*1f) : HOMK(Z, R P*1X) — HOMK(Z, RP*1Y).

This means that we have a weak equivalence of fibrant cosim-
plicial simplicial sets:

Hom(1,R*f): HOMK(Z,R*X) — HOMK(Z,R*Y).
Therefore for each Z, the morphism f induces a bijection
CHR_-K(Z,X) — CHR_-K(Z,Y).

EXAMPLES. 1. Let (R,u,s) be the Bousfield-Kan monad. Then the
class X consists of such f: X-Y that Rf: RX->RY is a homoto-
py equivalence. The last condition is equivalent to

H, f: H.(X,R) — H,(Y,R)
being an isomorphism.

2. Let A be a small category and Ay CA be its maximum dis-
crete subcategory. Since Ran=Ran;oli*], we have Zp.,= Z;%],
so it is a class of levelwise homotopy equivalences.

If G:K-M is a functor, with a right adjoint, then the
class Xy satisfies the Gabriel-Zisman axioms for a calculus of
left fractions and one can define a category K[Zg' [13]. By
Proposition 5.1, we have the following commutative diagram of
categories and functors

P
K ——=R  nKIzZg!

Poo‘ V jLs N}u
CHR_-K — ... — CHR,K — ... — CHRy-K

where PZR, L., O0<s<o are the canonical functors [13].

THEOREM S5.1. Let (R,u,e) be a fibrant S-monad on a S-category
K, and suppose for some s there exists a monad (Rgpugzeg).
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Then the functor Lg: mnKI[Zg'l-» CHR.-K is an equivalence of
categories iff for each object X in K, the morphism eg: X->RK
belongs to Zy.

PROOF. Assume L is an equivalence of categories. Then Qg is
fully faithful, and the morphism of adjunction, ®:P,Q.~I, is an
isomorphism [13], but the composition

Poeg DP,
P. X — P_.Q,P.X —— P_X

is an identity morphism, hence P_eg is invertible in CHR,-K and
by Proposition 5.1, e5¢2g.

Let now egeZp. We shall show that Qg is fully faithful.
This will be sufficient for the proof of Theorem S.1. Let
f: X->R,Y be a morphism in nK, that is a morphism from X to
Y in Klg p,—mK. The functor Qg maps it to the composition

R.f
R.X —= R2Y £ R_Y.

The map q: tK(X,R.Y)=>nK(R_X,R.Y) induced by Qg has a right
inverse p, which is defined as follows: for g:R ., X—-R.Y, p asso-
ciates the composition

X R.X —£— R_Y.

It is evident that pog =1. To show that gop =1, it is sufficient
to show that the following diagram is commutative in nK:

€s

R

R2X ——=&  p2y

(5.2) Rgeg lus
R.X f R.Y

By Proposition 5.1, we have Rss:RsX—>R52X is an invertible mor-
phism, therefore ¢ Rg;=Rse = p2'. Now the commutative diagram

R f
R2X = R2Y
e Ry e Ry
R X f R.Y

yields the commutativity of (5.2).
EXAMPLE. As was shown in [5] for the Bousfield-Kan monad

on S,, the unit ¢ : X->R_X does not necessarily induce an iso-
morphism in R-homology. However on the category of nilpotent
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spaces we have an isomorphism [5]
(e0)x: Hye(X,R) — H,(R__X,R).

THEOREM 5.2, Let (R,u,s) be a fibrant S-monad on the S-cate-
gory K, and suppose R preserves limits and S-degrees. If there
exists a monad (R ,u.,.c..), then  the  functor L
CHR_-K-nKI[ZR'] is an equivalence of categories.

<o

PROOF. From the conditions of the theorem, we have a homoto-
py equivalence of RR_(X) and (R(R*X))4, where R(R*X) is a co-
simplicial object obtained by fibrewise application of R to R*X.
Let (RX)* be the constant cosimplicial object with (RX)”=RX.
Then ¢ induces a cosimplicial morphism Re: (RX)*-=R(R*X). Thus
there exists a cosimplicial morphism ¢: R(R*X)=>(RX)* such that
poRez=1 and there exists a cosimplicial homotopy between Rgop
and 1 [22). Then for any object Z in K, we have a bijection

[1,Re_1: [Z,RX] = mg(Tot(HOMK(Z,(RX)*))) —
7 g(Tot(HOMK(Z R(R*X))) = [Z,RR_XI,

and hence g ¢ 2.

COROLLARY 1. Let K be a locally Kan S-category, and A a
small category. If there exists a monad (Ran., ., ,c.,) on F(AK),
then CHRan_ -F(AK) is the localization of mF(AK) with respect
to levelwise homotopy equivalences.

COROLLARY 2. Let K be a simplicial closed model category, K¢
be its full subcategory of fibrant objects, and suppose each ob-
ject of K is cofibrant. If there exists Ran_, on F(A,Kg), then the
categories CHRan_-F(A,Kp and ho(K*) of Edwards-Hastings [12]
are equivalent.

COROLLARY 3. CHRan_ -F(A,Top) is equivalent to the category
xA of Vogt [27].

Consider now the category naturally associated with a co-
herent category. This category has the same objects as K. As
set of morphisms, we take the kernel of the pair of morphisms

[1,d°]
[X,RY] [X,R?Y].
[1,d ']
We shall denote this category by Wp-K. By construction we ha-
ve a natural functor Wg: Wp-K- CHR4-K. We can also con-
struct functors Wg: CHR -K— Wg-K for each s <. Indeed, if
X* is a cosimplicial simplicial set, then we have a map p:
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ngTot; X*=>mgTotgX*. From the definition of Totg we obtain
d%p = d'p, where d9,d%:ngX%>nyX? are induced by the coface
maps. The remark above applied to HOM(X,R*Y) yields a com-
mutative diagram of categories and functors

7K W Wg-K

(5.3) A Ps[ M JWu

CHR;-K — ... — CHR4-K

Let =Y denote the class of morphisms f in wK such that W(f)
is invertible. From (5,3) we see that

S,=..=2%,=..=3=3g=2W.

[==) S

PROPOSITION 5.2. A morphism f: X-Y in CHR,-K is invertible
iff W f is invertible in Wg~-K.

PROOF. As above, let Qg be adjoint to Pg. Then P,Q f=Ff, but
WI(Q.f) = W(P.Q.f) = W(f)

is invertible by assumption. This means that Q.f ¢I§Y=3_, and
consequently P,Q.f = f is invertible.

EXAMPLES. 1. For the Bousfield-Kan monad on S,, we have
that Wgp-S,(X,Y) is EJ'® term of the unstable Adams spectral
sequence [6].

2. Wgan-F(AK) ~ F(A,mK).

Finally remark that in any S,-category, we have a spectral
sequence of Bousfield-Kan type

P(Z9X,R*Y) = CHR_-K(Z97PX,Y).

Here X is the suspension functor.

6. Coherent prohomotpy categories.

Now we shall expand the above constructions on a cate-
gory pro-K. Let us recall some definitions. As usually we can
consider an ordered set A as a small category. Then an inverse
system over A in a category K is defined as a functor on A to
K. We shall denote an inverse system by X={X;}y. or simply
{Xy+}, and the morphism corresponding to X=<X'" by Py,
X5~ X5. A directed set A is called cofinite if each element of A
has only finitely many predecessors.
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Let A,M be directed cofinite sets and let ¢: M—->A be an
increasing function. Then we have a functor ¢™:F(A,K)=>F(M,K).
We define then a morphism from the inverse system {X,}, .o to
Y, luem as a pair (¢,f), where f is a morphism ¢*{X,}=(Y,} in
F(IM,K). A morphism (¢,f) is called a level morphism provided
A=M and ¢@=1,:A>A. We have thus a category inv-K, whose
objects are all inverse systems in K and whose morphisms are
morphisms of inverse systems.

Let (¢,f), (QJ,g):{Xx)*{Yu} be two morphisms of inverse
systems. The morphism (§,g) is said to be congruent to ({(¢,f)
provided ¢ 2 ¢ and for for each p<M the following diagram com-
mutes

X
Powew Eu
_fe
X‘P(l-l) Yu

The category pro-K will be the following category. The
objects of pro-K are all inverse systems in K over cofinite di-
rected sets. A morphism f:X-Y is an equivalence class of mor-
phisms of inverse systems with respect to the equivalence rela-
tion generated by the relation of congruence above. As is proved
in [21], this definition of pro-K is equivalent to the usual defi-
nition of

pro-KU{X, 1,{Y}) = lim,colim; hom®(X;,Y ).

A last formula prompts the definition of S-enrichment for

pro-K, provided K is an S-category [12] :
HOMPTo K (X, },{Y,}) = lim,colim, HOMK(X,,Y,).

If K has S-degrees, then pro-K also has S-degrees:
(X 3E = (XF) and HOMPT® ™K ({X;),{Y,,)) = pro-KU{X;},(Y2™)).

We are going to construct now a monad (Ran_,p_ ,s.,) on
n(pro-K). Notice that we have a monad (Ran,u,s) on inv-K. As
above, for X=(X;?}, let (RanX)y =Il55<3X5,- For a morphism
(<p,f):{X>\}—>{Yu}, as Ran(e,f) we take (¢,Raf f), where Raf f is
the composition of ¢™: RanX—=Ran¢*X and Ranf:Ran¢*X—->RanY.
A multiplication yg, and a unit ¢ are induced by the multiplica-
tion and the unit of the monad (Ran,u,s) on F(A,K). It is easy
to see that we cannot consider (Ran,u,e) as a monad on pro-K,
because Ran does not preserve the congruence relation on mor-

phisms. Nevertheless we can define a monad (Ran_,u.,s.) on
m(pro-K).

Let A, be the nerve of a directed set A. We shall denote
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by the symbol X, a m-simplex of A,, that is a chain
Xgs...sx,. If : M>A is an increasing function, then ({,) will
be the n-simplex ¢(ug)<... <¢(u,). The notation X,sXx will
mean that Ags<... <X,<X, and Xy, for X, = (Ags... <d,) will
mean the object X o With these notations, we can write
Ran™ Y{X,} as an inverse system over A of the type
n+1 = ~
(Ran™*1X) X,I,—stxk"'

Now assume that, for each directed set A, there exists
the monad Ran_ on F(A,K). Then we define a functor Ran_ on
inv-K by the formula

Ran_ (X5} = (Ran*{X, )A.

PROPOSITION 6.1. Let (¢,f), ($,g): {X;}={Y,} be two morphisms
in inv-K, and let ({,g) be congruent to (¢,f). Then there is a
morphism F in inv-K such that:

1. F is congruent to Ran_f.

2. F is homotopic to Ran_g.

PROOEF. We define F by the composition

Ran__ f
$*Ran_X — ¢*Ran_X ——=— Ran_)Y.

Then F is congruent to Ran_ f by construction. On the other
hand, F is a realization of the following morphism of cosimpli-
cial inverse systems:

F?: ¢*(Ran™*¥X) — Ran”*1Y,
for @, =<y, defined by the composition

T (T f

5 <¢([_L)X‘Xn Bl X<P(f1n) = Y(In

n=
where 7,y is a projection to the corresponding factor, but
Ran™ g, for {, <y, is defined by the composition

TC ~
T Xy, —290, % o L TT BNV
R =) n Hn Hn

Then we can construct a family of morphisms
H9: *Ran*2X — Ran“*'Y, for 0< q < n,
with the help of the composites
(Ran™*2X) G _T%_Q(_l'lg_)_) Xna ({T1) _f_&g__) Y(In ’
where
19 s...sy,) = ((p([lo)s...5<p((1q)s q)([lq)S...SL[)([l)).
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It is easy to show that the family HY is a cosimplicial homoto-
py between F* and Ran™g. Then the realizations are homotopic
in inv-K.

According to Proposition 6.1, we have a functor
Ran_,: m(pro-K) — m(pro-K).

The unit and the multiplication of the monad (Ran_,,pu.,,e,) on

nF(A,K) induce natural transformations on mw(pro-K), namely
Ho:Ran2-Ran_ and ¢_:I-Ran_. Thus we have obtained a mo-

nad (Ran_,,u_ .,e.) on m(pro-K).

THBOREM 6.1. The category Klg,, -m(pro-Top) and the cohe-
rent prohomotopy category (CPH-Top) of Lisica-Mardesic” are
equivalent.

PROOF. Let f:{X5} ={Y,} be a morphism in Klg,,_-n(pro-Top),
defined by ¢: M—=A and f,+ Xoq™ (RanY),. From the defini-
tion, Ran_Y is a subspace of the space anoH Y'A(”)l Thus,
for each {I,<p, we have a morphism

. |A(n) |
f@nS“.X y — Yo' ™l

Tnsy

p(p
The exponential law gives a map

F st Xo x 18n)] — Y,

For {,= (ugs...su,), we define

(Gf)a |A(H l —_> Yliﬂ

LLnSll ‘P(U)X

It is easy to verify that the function Ge({,) =¢({,) and the family
(Gf)g,,» EneMp, produce a special coherent morphism in the sense
of [151. It is clear in addition that G may be expanded to the map

G: mpro-Top({X, },Ran{Y,}) — CPH-Top(X; },{Y D).

Now we shall construct a map H inverse to G. Let f:{X;}=>{Y}
be a special coherent morphism defined by

fr X

Tnt Xeq X 1A — Y, 4, for §,= (pg<...<y,).

For (I, su, we can consider the composition

P f.

KACTAACY —_Hn | A ()|
—_—

Xeo(w) X ) Yoo ™

Hf) z

Tp=up’ e{en

where Fg correspond‘s to f; by the exponential law. Thus we
have a map

(HF)y; Xgq — [ JT_ viaiml

@) nz0 ttn=y ®o
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The coherent conditions [15]1 show that it is a morphism with
codomain (Ran_,Y),. It is easy to check that we have HoG=1
and GoH=1. Thus the conditions of the Bousfield-Kan Lemma
hold and we obtain a monad (Ran_,u_,e.) on m(pro-Top) such
that CPH-Top is equivalent to Klg,,:-m(pro-Top). In addition
(Ran_,, i ,eo) can differ from (Ran_,,u_ ,te,,) by multiplication
only, but the multiplication in Ran_, is defined by a composition
of level morphisms in CPH-Top. Therefore it suffices to prove
that the composition of level morphisms in CPH-Top and that in
CHRan_-F(A, Top) coincide. By definition a morphism in
CHRan_ -F(A,Top) is determined by the cosimplicial map f:
A->Hom({X,},Ran™{Y;}). Hence, for each X =(\gs...sX;), we have
a map
fxp: X)\PXIA(p)l — Yago

and for the family {f;;p}, the coherent conditions hold. If now a
morphism g: ASHOM({Y, },Ran™{Z,}) is defined by the family

g(ng...sxq)l Y>\q><|A(q )| — an,
then gof is defined by the composition:

lal £ |a®a fogl, I[HOM({X; },Ran*{Y,, h® HOM({Y },Ran*{Z, })|

M, [HOM({X5 },Ran™{(Z, D,

or
(gof) (kus“.skp+q))(1\’, t) =
Eovo=ong) Fngs...snpre (P A011(2),BPAT1I(L)),

for t «ePP9[1], but this is the formula for the composition of
coherent level morphisms [15].

This theorem justifies the following definition.

DEFINITION 6.1. Let K be a locally Kan S-category, and suppose
that for each directed ordered set A and for each inverse system
{X,} in K, there exists Ran_{X,;}. We now define the coherent
prohomotopy category for the category K as the category
Klgan,~m(pro-K). We shall denote it by CPH-K. If K' is a full
S-subcategory of K, then we can consider the full subcategory
of CPH-K generated by the objects of K'. We shall denote it by
CPH-K'.

THEOREM 6.2, The category CPH-K is the localization of the
category m(pro-K) with respect to levelwise homotopy equivalen-
ces.

PROOF. It is clear that P_ :m(pro-K)—CPH-K inverts the level-
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wise homotopy equivalences. In addition ¢_:X—-RanX is a le-
velwise homotopy equivalence too. Let F:m(pro-K)-L be a func-
tor inverting the levelwise homotopy equivalences. We define
F:CPH-K—-L as follows: on objects, F(X)=F(X), and for
f: X-Ran_Y, the morphism F(f) is F(s_))”ToF(f): F(X)=>F(Y).

As in Theorem 5.1, one can prove that the functor Q_, ad-
joint to P is fully faithful, and therefore the counit of the ad-
junction ®:P_Q_— I is an isomorphism [13]. Now for the func-

tor G: CPH-K-L such that GoP_ =F, and for f: X-Y in CPH-K
we have a commutative diagram

G(x) —2X) G(P_QX) = F(Q_X)
G(f)j G(P_Q.F l J F(Qf)
G(Y) oY) G(P_Q_Y)=F(Q_Y)

If for another functor G': CPH-K-L, we have G'oP_ =F, then
G'(®)oG™{®d): GG’ is an isomorphism of functors.

COROLLARY 1. Let K be a simplicial closed model category, K¢
be its full subcategory of fibrant objects, let each object of K
be cofibrant and let the FEdwards-Hastings conditions for the
existence of ho(pro-K) hold [12]. Then CPH-Kg and ho(pro-K)
are equivalent categories.

COROLLARY 2. The strong shape category of all topological
spaces of Lisica-Mardesic’ [15] and that of Cathey-Segal [7] are
equivalent.

Finally we make some remarks about homology theories
on the strong shape category of pointed topological spaces. Let
E be a cofibrant simplicial spectrum in the sense of Thomason
[26]. For an inverse system {X,} of pointed topological spaces,
we define the homology with coefficients in E by the formula

E,.({X5} = myholim{Q(SX,AE)},

where S is the singular complex functor, for each spectrum E,
Q gives an equivalent fibrant spectrum (it may be defined by the
formula Q™= colimQXEx®X, 4, [26]1). Now we can define the
E-homology of a topological space X as the E-homology of its
ANR-resolution. The resulting theory on the strong shape cate-
gory has the following properties:

1. If X is a paracompact Hausdorff space, and A is a closed
subspace, then there is an exact sequence

= E, . (X/A) = E(A) = E(X) » E,(X/A) > E,_4(A) = E,_{(X) -
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2. If p: X-{X,} is the Mardesi¢ resolution such that all X,
are normal topological spaces, then there is the spectral se-
quence of Thomason [26]

lim‘PE (X5} = Eg_,(X).

In particular on the category of compact Hausdorff spaces, we
have a homology theory for which all Steenrod-Sitnikov axioms
hold [3,12]. The details are in the author's preprint [1]. Remark
that the relations between our homology and that of Lisica-
Mardesi& [16,17,18] are not clear.
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