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SHEAVES ON A QUANTALE
by Francis BORCEUX and Rosanna CRUCIANI

CAHIERS DE TOPOLOGIE

ET GitOMItTRIE DIFFÉRENTIELLE
CATÉGORIQUES

VOL. XXXIV-3 (1993)

Résumé. La notion de faisceau sur un locale est bien connue et donne lieu
a diverses pr6sentations équivalentes: pr6faisceaux sur le locale poss6dant
une propri6t6 de recollement, ensembles munis d’une 6galit6 k valeurs dans
le locale, locales dales sur le locale de base. La notion de quantales est
apparue ces dernibres annees en se pr6sentant comme une généralisation de
la notion de locale, particulibrement bien adapt6e aux besoins de I’algebre
non commutative. Diverses notions de faisceau sur un quantale ont deja
6t6 propos6es, sans pour autant pouvoir g6n6raliser les situations connues
dans le cas d’un locale. Dans le présent travail, nous aflinons ces tentatives
et proposons, comme dans le cas des locales, trois notions donnant lieu
a des catégories equivalentes: faisceau sur un quantale, ensemble muni
d’une égalité à valeurs dans un quantale et quantale 6tal6 au-dessus d’un
quantale de base.

It is a common practice, when studying some rings or algebras, to define a

topological space called the "spectrum" of the algebraic gadget and recapturing
some essential properties of it. Most often, the original ring or algebra can be
seen as the set of global sections of some "good" sheaf on the spectrum. It is a
matter’of fact that such processes are often less adequate in the non commutative
case. A general explanation can be given to this: the open subsets of the spectrum
correspond generally to some suitable ideals of the original algebraic gadget,, the
union of open subsets being related to the sum of ideals and the intersection of
open subsets to the product of ideals. And the intersection of open subsets is by
nature commutative, a property which is generally not shared by the multiplication
of ideals in a non commutative context.

It is an obvious observation that when defining sheaves on a topological space,
just the lattice of open subsets plays a role. This is a complete lattice where arbi-
trary joins distribute over finite meets, i.e. what has been called a locale (cf. [7]).
C.J. Mulvey suggested that in the non-commutative case, the good notion of spec-
trum should be obtained from that of a locale by replacing the (of course commu-
tative) binary meet operation with an arbitrary non commutative multiplication.
This is what we call a quantale.

One of the most famous spectral constructions is that leading to the Gelfand
duality for commutative C*-algebras. The lattice of open subsets of the spectrum is
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isomorphic to that of closed right ideals of the C*-algebra, the intersection of open
subsets corresponding to the closure of the multiplication of ideals. Therefore the
original definition of a (right) quantale has been designed with in mind the lattice
of closed right ideals of a non commutative C*-algebra (cf. [4J, [9]).

The notion of a sheaf on a locale £ admits several equivalent presentations:
a contravariant functor F: G -&#x3E; SET with suitable glueing conditions; a locale
f -&#x3E; G 6tal6 over £ (i.e. locally isomorphic to G); a set A provided with an
equality [. = .J: A x A -&#x3E; L with values in G. Those various approaches have
been generalized to the case of a quantale (cf [4], [2], [1]), but unfortunately the
categories obtained in this way are no longer equivalent.

The definition of a right quantale Q, used in the previous papers, was of course
unsymmetric since the top element was a unit on the right, but not on the left.
The second author made the observation that most of what had been done in those

papers could be performed dropping as well the distributy on the left of arbitrary
suprema over the multiplication. This slight weakening has the striking effect to
force a lot of stability conditions for the new notion of a quantale Q, yielding in
particular the equivalence of the various categories of sheaves over Q, quantales
6tal6 over Q and sets provided with a Q-equality. Moreover the intrinsic properties
of this category induce the structure of a quantale on each poset of subobjects, the
original quantale b6ing recaptured as that of subobjects of the terminal object 1.

1 Quantales
Definition 1.1. A right quantale is a complete lattice (Q, ) provided with a
binary multiplication &#x26; : Q x Q -&#x3E; Q which preserves the partial order  in each
variable and satisfies the following axioms:

(Ql) a&#x26;(b&#x26;c) = (a&#x26;b)&#x26;c

(Q2) a&#x26;a = a

(Q3) a&#x26;1= a

(Q4) a &#x26; ViEI bi = ViEI(a&#x26;bi)
where I is an arbitrary indexing set, a, b, c are elements of Q and 1 is the top
element of Q.

We recall (cf. [4]) that the notion of a quantale has been specially designed
to study the case of the quantale of closed right ideals of a C*-algebra, where the
multiplication is then the closure of the algebraic multiplication of ideals. We recall
also that a locale is a complete lattice where arbitrary joins distribute over binary
meets; in other words, a locale is a right quantale where the meet operation is the
multiplication. It is also proved in [4] that a locale is just a left-right quantale.

Our definition of a right quantale is slightly weaker than the one in [4], [1] or [2]:
we do not require that arbitrary joins distribute on the left over the multiplication.
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Nevertheless a right quantale has some amount of left distributivity, left unity
and even commutativity: our first proposition indicates that all those properties
hold as soon as the first factor is fixed.

Proposition 1.2. In a right quantale, the following relations hold:

where the notations are as in 1.1.

Proof: The first statement is obvious by associativity. The last one follows imme-
diately from the idempotency

The second statement is then an immediate consequence of the right distributivity,
via the third statement.

Next observe a first important stability condition:

Proposition 1.3. If a is an element of a right quantale Q, the down-segment of a

is again a quantale, for the induced multiplication.

Proof: If b  a and c  a, then b&#x26;c  a&#x26;a = a; moreover b&#x26;a  b&#x26;l = b while
b &#x26; a &#x3E; b&#x26;b = b.

Using a classical terminology for lattices of ideals, every element a of a right
quantale is right-sided since a &#x26; 1 = a. When moreover 1 &#x26;a = a, the element is
said to be 2-sided. We shall denote by 2-Q the sub-poset of 2-sided elements of a
quantale Q.

Proposition 1.4. Given a right quantale Q and elements a, b of Q:

I. ’a = 1 &#x26;a is the smallest 2-sided element greater than a;

2. a&#x26;b=anb;

3. when b is 2-sided, a &#x26;b = a A b;

4. the 2-sided elements of Q constitute a locale where the meet operation coin-
cides with multiplication in Q;

5. the locale of 2-sided elements of Q is stable in Q under arbitrary meets and
arbi trary joins;
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6. the mappings 2-id = 2-la applying b  i on a &#x26; b and c  a on i&#x26;c are

isomorphisms of locales.

Proof: Everything follows easily from the second statement. First a &#x26; b  a&#x26; a = a
and a &#x26; b  1 &#x26; b = 6; next

Observe that the first statement implies the existence of a left adjoint to the inclu-
sion of 2-Q in Q, thus the stability of 2-Q under arbitaray meets.

Since not all elements are 2-sided in general in a right quantale Q, we shall pay
a special attention to the case where b  a, with b a 2-sided element of the quantale
la; we shall use the notation b « a to indicate this fact and read this "b is 2-sided
in a" . Observe that for arbitrary elements a, b in Q, the relation a &#x26; b = b implies
b = a&#x26;b  a&#x26; 1 = a, so that b « a if and only if a&#x26;b = b. Obviously, the relation
« is a poset structure on Q.

One could also consider, in a right quantale Q, the relation b « a, meaning that
b = b&#x26;a, thus b a. This is just a preorder on Q since, for example, a  3 and
X % a for every element a.

When necessary, we shall use the notations ( Q, ), ( Q, «) or (Q, ) to distin-
guish the three partial order or preorder structures on a right quantale Q. Observe
that

Proposition 1.5. Given a right quantale Q, the quotient poset associated with
the preordered set (Q, ) is isomorphic to the locale 2-Q.

Proof: The quotient, identifies a and b when a  b and b  a; this is indeed equivalent
to a=b.

2 Q-sets

Throughout this section, Q is a fixed right quantale. The first way of defining a
sheaf on Q is via generators and relations: a sheaf is a set (the set of generators)
together with an equality which takes values in Q (the Q-equality of a and b is the
biggest level where the generators a and b become equal).
Definition 2.1. Let Q be a right quantale. A Q-set is a pair (A, [.,.]) where A is
a set and [-,-]: A x A -&#x3E; Q is a mapping satisfying the following axioms:

where a, a’, a" are elements of A.

Most often, we shall just write A for the Q-set (A, [., .1). For a E A, the element
[a = a] E Q should be thought as the biggest level of Q where a is defined. In this
spirit, the element E(A) = B/aEA[a = a] should be thought as the level where A is
inhabited or in other words, the support of A.
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Proposition 2.2. Let Q be a right quantale and A a Q-set. The following relations
hold

for elements a, a’ in A.

Proof:

from which

and thus the equality. The second statement is analogous.

In the same spirit as definition 2.1, a morphism of Q-sets f:A -- B consists
in precising the biggest level where f (a) becomes equal to b, for a E A and b E B;
axiom (M4) imposes the functionality of this relation and axiom (M5), the fact it
is defined everywhere.

Definition 2.3. Let Q be a right quantale and A, B Q-sets. A morphism of Q-sets
f : A -&#x3E; B is a mapping f : A x B -&#x3E; Q satisfying

for elements a, a’ in A and b, b’ in B.

Straightforward computations, analogous to those developed to prove proposi-
tion 2.2, yield the the following results:

Proposition 2.4. Let Q be a right quantale and f : A -&#x3E;B a morphism of Q-sets.
The following relations hold:

for elements a E A and b E B.
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Proposition 2.5. Let Q be a right quantales. Given two morphims of Q-sets
f : A -&#x3E; B and g: B -&#x3E; C, the formula

defines a composite morphism of Q-sets g o f : A -&#x3E; C, where a E A, b E B, c E C.
Fbr this composition, the Q-sets and their morphisms become a category where the
identity on the Q-set A is just the Q-equality on A.

We write Q-S£T for the category of Q-sets on the right quantale Q.

3 Sub- Q-sets

Again Q is a fixed right quantale. Giving a sub-Q-set of a Q-set A is, intuitively,
precising to what extent an element a E A belongs to the sub-Q-set.
Definition 3.1. Let Q be a right quantale and A a Q-set. A subQ-set of A is a

mapping s: A -&#x3E; Q satisfying

(sl) sa  E(A)

(s2) sa&#x26;[a = a’]  sa’

(s3) (VaeA sa) &#x26; sa’  sa’

(s4) sa  sa&#x26;[a = a]
where a, a’ are elements of A.

Again the element e(s) = VaEA sa appearing in (s3) can be thought as the
extent to which the sub-Q-set s is inhabited or, in other words, the support of s.
It is immediate from the axioms for a sub-Q-set that in fact equality holds in (s3)
and (s4). We write S(A) for the set of sub-Q-sets of the Q-set A.

Proposition 3.2. Let A be a Q-set on the right quantale Q. The set S(A) of
sub-Q-sets of A becomes a quantale when equipped with the preorder

and the multiplication

where sl, S2 are sub-Q-sets of A and a E A.

Proof: If (Si)iEI is a family of sub-Q-sets of A, one observes first that the formula

where a E A defines the supremum of this family. The rest is straightforward
computations. ,
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Corollary 3.3. With the notations of the previous proposition

1. sl A 32 is given by (si A s2 )a = si(a) A s2 (a);

2. the top element of S(A) applies a e A on c(A) &#x26;[a = a];
3. an element s of the quantale S(A) is 2-sided when for every a E A, s(a) is

, 2-sid ed in E (A) 0

Sub-Q-sets are very easy to handle in computations. Let us now prove they
correspond exactly to the usual notion of subobject in the category Q-S.6T.

Proposition 3.4. Let f : A - B be a morphism of Q-sets with Q a right quantale.
f is a monomorphims in the category Q-S.6T when the relation

holds for every elements a, a’ in A and b in B.

Proof: If f is a monomorphism and a, a’ are in A, put

Consider the Q-set ( jq, &#x26; ) and the morphisms fa, fa’:lq =&#x3E; A defined by

From f o fa - f o fa’ we deduce fa == f.,. Choosing x = q and a" = a’ we get
q &#x26; [a = a’] = q and therefore

Conversely, if g, h: C =&#x3E; A are morphisms of Q-sets such that f o g = f o h, for
alla,a’inA,binBandcinC

from which one concludes by symmetry.
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Proposition 3.5. Let Q be a right quantale and A a Q-set. The poset S(A)
of sub-Q-sets of A is isomorphic to the poset of subobjects of A in the category
Q-SCT.

Prooj: If f : B - A is a monomorphims in the category Q-SET, we define a sub-Q-
set Of of A by the formula

It is routine to observe that given another monomorphism h:D-&#x3E; B, one has
(9(f o h)  O f; therefore O factors through the poset of subobjects and respects
the poset structure.

If f : B -&#x3E; A and g: C -&#x3E; A are monomorphisms in Q-SET such that O f = Og,
the formulas

for b E B and c E C define two inverse isomorphisms a, B: B -&#x3E; C in Q-SET,
expressing the fact that f and g define the same subobject of A. Thus O is injective.

e is also surjective. Given a sub- Q-set s E S(A), the formulas

define a monomorphism in Q-SET

applied on s by O.
Finally, with the notations just defined, observe that if’sl 1  S2 are sub-Q-sets

of A, the formula 

for a, a’ in A, defines a morphism h: As i -&#x3E; A s2 such that f s2 o h = f s1. Therefore
a reflects the poset structure.

4 Complete Q-sets
Let us first observe the obvious result:

Proposition 4.1. Let Q be a right quantale and a E A an element of a Q-set A.
Th e assignm en t

is a sub-Q-set of A.
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A sub-Q-set as in 4.1 satisfies clearly the next definition for being a "singleton":
Definition 4.2. Let Q be a right quantale and A a Q-set. A singleton of A is a
sub-Q-set s of A satisfying the additional requirement

(s5) sa&#x26;sa’  (a = a’

for aII elements a, a’ of A.

Definition 4.3. Let Q be a right quantale. A Q-set A is complete when every
singleton on A has the form [a = .] for a unique element a E A.

The interest of complete Q-sets lies in the fact that morphisms to a complete
Q-set can be represented by actual mappings ... and each Q-set is isomorphic to a
complete one!

Proposition 4.4. Let Q be a right quantale and A, B two Q-sets, with B complete.
There exists a bijection between:

1. the morphisms of Q-sets f: A -&#x3E; B;

2. the actual mappings p: A -&#x3E; B satisfying the two conditions

for all elements a, a’ in A.

This bijection is compatible with the composition.

Proof: Given f and an element a E A, [fa = ] is a singleton on B, thus is repre-
sented by a unique element of B which we choose as cpa. Conversely given cp one
defines f as the assignment

where this last bracket is the Q-equality on B.

Proposition 4.5. Let Q be a right quantale. Every Q-set is isomorphic to a
complete Q-set.

Proof: For a given Q-set A, write A for the set of singletons on A. A becomes itself
a Q-set when provided with the equality

for all singletons s, s’ . 
To prove this new Q-set A is complete, choose a singleton Q: Â --+ Q. For an

element a E A, put sa = Vs’EA(os’$s’a). It is routine to check that s is a singleton
on A, the unique one such that Q = IS = .].
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It remains to observe that given a E A an s E A the relations

define two inverse isomorphisms f : A -&#x3E; A, g: A -&#x3E; A in the category of Q-sets.

5 Etale maps of quantales
The 8econd way of defining a sheaf on a quantale Q is in terms of dale maps: a
sheaf on Q is a quantale 6tal6 over Q, i.e. locally isomorphic to Q. We define very
naturally:

Definition 5.1. A morphism of quantales f: Q -&#x3E; Q’ is a mapping preserving
arbitrary joins, the multiplication and the top element.

We recall that a mapping between two quantales is 6tale when it preserves
arbitrary joins and is locally an isomorphism of quantales. The generalization to
quantales requires some care about what "locally" means; in fact the local character
has to be compatible with the 2-sided closure operation.
Definition 5.2. Given an arbitrary mapping f: Q -&#x3E; Q’ between two right quan-
tales, an element a E Q is f -small when the restriction

is an isomorphism of quantales.

Definition 5.3. A mapping f: Q -&#x3E; Q’ between two quantales is 6tale when

1. f preserves arbitrary joins;

2. f preserves the partial order «;

3. every element of Q is a join of f-small elements.

Here is a useful equivalent condition:

Proposition 5.4. A mapping f: Q -&#x3E; Q’ between quantales is 6tale if and only if

1. f preserves arbitrary joins;

2. f preserves the partial order «, thus in particular the 2-sidedness of elements;

3. there is a family (ai)iEI of 2-sided f-small elements of Q such that V iEI ai = 1.
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Proof: When f is 6tale, write 1 = Viel u; with each ui f-small. Each ai = ui is still
f-small, with now ai 2-sided and again Viel ai = 1. This is the required family of
elements.

Conversely, with the notations of the statement, every element b E Q can be
written as 

with each b A ai f -small.

Proposition 5.5. Let f: Q - Q’ be an 6tale map of quantales and a E Q, b E Q’.
Consider the mapping f *: Q’ -&#x3E; Q defined by

1. f*: (Q’, 5) -&#x3E; (Q,) is right adjoint to f: (Q, ) -&#x3E; (Q’, ), i.e. f and f*
preserve the partial orders  and f (a)  b iff a  f*(b);

2. when a is f-smafl, the inverse to f 4"d -&#x3E;l f(a) applies b on f*(b) &#x26;a;

3. f * preserves the partial order «, thus in particular the 2-sidedness of elements;

4. f(a) = f (1) &#x26; f (a);
5. if b  f (1), then b = f (a) for some a E Q.

Proof: The two first statements are obvious. As a left adjoint, f * preserves arbitrary
meets, thus

Let now a run through the family (ai)iEI of proposition 5.4. For each 2-sided b,
f (ai) &#x26; b = f (ai) A b is 2-sided in I ai; by the second statement and the previous
formula f*(b) A ai is 2-sided in l ai, thus in Q; therefore the supremum, which is
f*(b), is 2-sided in Q. So f * preserves already 2-sided elements; this result, applied
at the level f*(b), yields easily the third statement.

Using again the family (ai)iEI of 5.4, when a  a;, one has 3 = ai &#x26; a and thus
f(3) = f (a) &#x26; f (ai). For an arbitrary a, one has a = ViE I (a &#x26; ai) and applying
the previous relation to each a&#x26;ai yields the fourth statement, since f preserves
arbitrary joins.

Next observe that for a 2-sided a, the previous relations yield

The converse relation holds as well since a  f* f (a)  f * f (a). Using again the
elements ai of 5.4, for b  f (ai) one has b = f (f*(b) &#x26; ai). For an arbitrary b, the
relation ff * f (ai) = f (ai) implies easily f* (b A f(ai)) = f*(b &#x26; f (ai)) from which
the last statement by computing the supremum on i E I.
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Corollary 5.6. The composite of two gtale maps of right quantales is still 6tale.
This makes the right quantales and their 6tale maps a category.

Proof: Consider two composable 6tale maps of right quantales f : Q -&#x3E; Q’ and
g: Q’ -&#x3E; Q". Given a E Q, write it as a = ViEI ai with each ai f-small. Write also
each f (ai) as f (ai) = VjEJ bij with each bij g-srpall. There is a unique aij  ai
such that f (aij) = bij and since f (aij) = f (1) &#x26; f (aij)  f (aij) = bi j , each ai j is
g f -small. Moreover Vij aij = Vi ai = a.

We shall write ET for the category of right quantales and etale maps. Thus

ET/Q will denote the category of right quantales 6tal6 over Q.

6 Sheaves on a quantale
The most popular definition of a sheaf is a contravariant functor to the category of
sets (= a presheaf) together with glueing requirements. This is also the definition
which generalizes the less elegantly to the case of quantales. We recall (cf. section 1)
that given an element v of a right quantale Q, (l u, ) denotes the down segment of
v provided with the preorder p  q when p = p &#x26; q.
Definition 6.1. A presheaf on a right quantale Q is a pair (v, F) where

. v is an element of Q;

. F: (lv, ) -&#x3E; SET is a contravariant functor to the category of sets;

. u=V{pE l u l (F(P)+}
In the previous definition, the element v is thus exactly what is generally called

the "support" of the presheaf F. It is necessary to have this data as part of the
definition in order to define F on just the down segment of v; indeed, defining a
presheaf directly on (Q,) would impose the support of a presheaf to be always a
2-sided element of Q, because of the relation V 4 v. As usual, when p  q, we write

ppq: F(q) -&#x3E; F(p) for the corresponding restriction mapping.
Definition 6.2. Let Q be a right quantale and (v, F), (w, G) two presheaves on Q.
A morphism of presheaves a: F -&#x3E; G is defined just when v  w; it is a natural
transformation from F to the restriction of G at the level v.

Clearly, the presheaves on a right quantale and their morphisms constitute a
category. The sheaves are now defined as the presheaves with the usual glueing
condition:

Definition 6.3. Let Q be a right q uan tale. A presheaf (v, F) on Q is a sheaf when
for every covering u = ViEI ui  u and every family (ai E Fui)iEI compatible in the
sense that pui ui &#x26; Ui ai = P Uj ui &#x26; Uj aj for all indices i, j, there exists a unique elementPui &#x26;uj ui &#x26;uj
a E Fu such that for every index i, pu; a = ai .

We write Sh(Q) for the category of sheaves on the right quantale Q.
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7 Q-sets and sheaves on Q
The first major theorems of this paper prove the equivalences, for a right quantale
Q, of the three categories of Q-sets, 6tale maps over Q and sheaves on Q. First, we
prove the equivalence between the categories of Q-sets and sheaves on Q.

Lemma 7.1. Let Q be a right quantale. Every Q-set A is isomorphic to the Q-set
constituted of the set A together with the Q-equality

where the last bracket is the original Q-equality on A.

Proof: The two inverse isomorphisms in the category of Q-sets are defined by

where a E A, a’ E A and the brackets [a = a’], [a’ = a] are the original Q-equality
of A..

Lemma 7.2. Let Q be a right quantale. The category of Q-sets is equivalent to
the following category:

O the objects are the pairs (v, A) where v E Q and A is a 2-Q-set with support
v;

o 8 morphism (v, A) ---4 (w, B) is defined just when v  w and is then a
morphism of 2-Q-sets A -&#x3E; B;

o the composition is that of morphisms of 2-Q-sets.

Proof: In 7.1, observe that each element s(A) &#x26; [a = a’] is 2-sided in E(A) so that
the new equality on A makes it a 2l E(A)-set. By 1.4 this is equivalent to giving a
set, thus a 2-Q-set with support E(A). The rest is just routine.

Lemma 7.3. Let Q be a right quantale. The category of sheaves on Q is equivalent
to the following category:

O the objects are the pairs (v, F) where v E Q and F is a sheaf on 2-Q with
support v;

O a morphism (v, F) -&#x3E; (w, G) is defined just when u  w and is then a

morphism F -&#x3E; G of sheaves on 2-Q;

O the composition is that of morphisms of sheaves on 2-Q.

Proof: If (v, F) is a sheaf on Q, giving F is equivalent, by 1.5, to giving a sheaf on
2-lv. By 1.4 this is still equivalent to giving a sheaf on 2-!v thus finally a sheaf on
2-Q whose support is v. The rest is routine.
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Theorem 7.4. Let Q be a right quantale. The categories of Q-sets and sheaves
on Q are equivalent.

Proof: By 7.2, 7.3 and the corresponding result for locales (cf. [5]). 

8 Q-sets and etale maps
We prove now the equivalence, for a right quantale Q, of the categories of Q-sets
and 6tale maps over Q. We need an intermediate technical notion which will make
the proof more understandable.

Definition 8.1. Let f:X -&#x3E; Q be an 6tale map of right quantales. f is stable
when the f -small elements x E X are exactly those for which the restriction f : I
x --4 f x is an isomorphism of quantales.

We shall write S-ET/Q for the full subcategory of ET/Q whose objects are the
stable 6tale maps. We shall prove first that every etale map over Q is isomorphic
to a stable etale maps. Next we shall prove the equivalence between the categories
of Q-sets and stable etale maps over Q.

Lemma 8.2. Let f : X - Q and g: y -&#x3E; Q be stable 6tale maps of quantales. If
h: (X, f ) -&#x3E; (Y, g) is a morphism of S-ET/Q and x E X is f -small, then hx E Y
is g-small.

Proof: Let us write 1 = ViEI Xi with each xi h-small and 2-sided (cf. 5.4). By
definition of 6tale maps, both f and h restrict to isomorphisms at the levels x&#x26;x¡.
So g restricts to an isomorphism at each level h(x &#x26; xi). By stability of g, each
h(x &#x26; xi ) is thus g-small.

Now if y  hx, by 5.5 applied at the level x, y = hx’ for some x’  x. Using
5.5 together with the fact that each h(x&#x26;xi) is g-small, one verifies first that y =
g*gy&#x26;hx. From this follows easily the fact that g, restricted at the level hx, is an
isomorphism of quantales.

We recall that S(A) denotes the quantale of sub-Q-sets of a given Q-set A (cf.
section 3).
Lemma 8.3. Let Q be a right quantale and A a Q-set. The assignment

is a stable 6tale map of quantale for which the cpA-small elements are exactly the
singletons. This assignment extends in a functor p: Q - SET -&#x3E; S - ET/Q.
Proof: We know by 3.2 that S(A) is a quantale. It is routine to verify that pA
preserves the relation «. It preserves also arbitrary suprema since it has a right
adjoint given by



223

where v e Q and a E A.
Next consider s E S(A) for which the restriction of pA to is is an isomorphism,

with inverse pA (.) &#x26; s (cf. 5.5). Applying f AcpA to s &#x26; [a = .J yields a relation
implying immediately sa&#x26; sa’  [a = a’], thus the fact that s is a singleton. The
converse is easy.

But if s is a singleton of A, its 2-sided closure in S(A) is still a singleton.
Therefore every singleton is pA-small and, moreover, the additional requirement
for getting a stable etale map is already verified.

Finally let us observe that for every element a E A, sa = E(A) &#x26; [a = .J is
a 2-sided singleton. It is routine to check that the family (Sa) aEA satisfies the
requirements of the last condition in 5.4. So p(A) is indeed a stable etale map of
quantales.

Let us extend this construction in a functor cp: Q - SET -&#x3E; S - £7/Q. If

f : A -&#x3E; B is a morphism of Q-sets, the assignment

where b E B defines a mapping cp( f ) which is easily seen to preserve the partial
orders  and «. This mapping preserves arbitrary suprema since it admits the

right adjoint

where a E A and s E S(B). Finally the family (sa)aEA

satisfies the requirements of the last condition of 5.4. This completes the definition
of the functor W.

Let us now construct a functor in the other direction.

Lemma 8.4. Let f : X -&#x3E; Q be an 6tale map of quantales. The set Y(f) of f-small
elements, provided with the Q-equality [x1 = X2] = f(Xl &#x26;X2) for x1, x2 in X, is a
Q-set. This assignment extends to a functor 1/;: S - ET/Q - Q - SET.
Proof: The fact for Y(f) to be a Q-set is immediate. The rest follows from 8.2.

To understand the next lemma, let us make clear that an isomorphism in the
category of right quantales and 6tale maps is of course an isomorphism for both
partial orders  and , but just locally an isomorphism of quantales.
Lemma 8.5. Let Q be a right quantale. Every 6tale map over Q is isomorphic to
a stable 6tale map.

Proof: Consider an etale map of quantales f : X -&#x3E; Q. By lemmas 8.3 and 8.4
pY(f): S(Yf ) -&#x3E; Q is a stable 6tale map. It is isomorphic to f in the category of
6tale maps over Q; the isomorphism is given by
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for x E x, with inverse

Theorem 8.6. Let Q be a right quantale. The category of Q-sets is equivalent to
the category of 6tale maps over Q.

Proof: By lemma 8.5. it suffices to prove the equivalence of the categories of Q-sets
and stable Atale maps over Q. We shall ,prove that the functors cp, 1/1 of lemmas 8.3
and 8.4 exhibit this equivalence. It follows immediately from the proof of 8.5 that
cp1/J is isomorphic to the identity.

Conversely, given a Q-set A, let us exhibit an isomorphism of Q-sets between A
and Yp(A). This is j just

where a E A and s is a singleton of A, i.e. s E 1jJcp(A). With the same notations,
the inverse isomorphism is given by

The rest is routine computations.

9 Categorical properties of sheaves
Fbr a given right quantale Q, the two previous sections have proved the equivalence
between the categories of Q-sets, 6tale maps over Q and sheaves on Q. We shall
work with Q-sets, which is the most "flexible" of the three equivalent notions. All
the properties of the category will be easily deduced from the following lemmas.

Lemma 9.1. Let Q be a right quantale. A morphism f : A - B of Q-sets is an
epimorphism if and only if the relation

holds for every elemen t b E B .

Proof: If f is an epimorphism, consider the disjoint union B II B. For every b E B,
we write bl, b2 for the two corresponding elements of B U B. We provide B u B
with the structure of a Q-set by putting
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for all b, b’ in B. Now we define morphisms of Q-sets g1, g2 : B =&#x3E; B jl B by the
formulas

for all b E B, c E B II B. From 911 = g2 f one deduces [g1b = bli = (g2b = b1] for

every b E B, which is the required relation.
The converse implication is proved by arguments analogous to that developed

in the case of monomorphisms (cf. 3.4) .

Lemma 9.2. Let Q be a right quantale. Consider the following category F:

. objects are the pairs (A, v), where v E Q and A is a Q-set such that E(A) is
2-sided in v;

O a morphism (A, v) -&#x3E; (B, w) is defined just when v  w and is then a

morphism of Q-sets A -&#x3E; B;

9 the composition is that of morphisms of Q-sets.

The functor p: X - Q applying (A, v) on v has the following properties:

l. cp is both a fibration and a cofibration;

2. each fibre is a localic topos;

3. the inverse image functors between fibres are logical morphisms of toposes
with both a right and a left adjoint.

4. every cartesian morphism is a monomorphism in Q-S£T and every cocartesian
morphism is an epimorphism in Q-SET;

5. every cocartesian morphism is cartesian as well.

Proof: The considerations of section 7 prove that the fibre at v E Q is equivalent to
the topos of sheaves on the locale of 2-sided elements ofis.

If v  w in Q and A is a Q-set in the fibre over w, we get a Q-set in the fibre
over v by providing A with the Q-equality v &#x26; [., ]. The corresponding cartesian
morphism a is defined by a( a, a’) = v &#x26;[a = a’). It is a monomorphism of Q-sets
by proposition 3.4.

If v  w in Q and A is a Q-set in the fibre over v, we get a Q-set in the fibre
over w by providing A with the Q-equality w&#x26; [., ]. The corresponding cocartesian
morphism B is defined by /3(a, a’) = [a = a’]. It is an epimorphism of Q-sets by
lemma 9.1.

If u  w in Q and A is a Q-set in the fibre over w, transporting A in the fibre
over w by the cofibration and back in the fibre over v by the fibration yields the set
A with the Q-equality v&#x26; [., .]. Since E-(A) is 2-sided in v, this Q-equality is equal to
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e(A)&#x26;[cdot, .1, yielding a Q-set isomorphic to the original Q-set A (cf. lemma 7.1).
This implies easyly that every cocartesian morphism is also cartesian.

Finally the inverse image functor corresponding to u w in Q is the usual
restriction functor from the category of sheaves over the locales 2-l w and 2-,w, so
has the required properties (cf. [6]).

It should be noticed that the fibration-cofibration of lemma 9.2 is generally not
a bifibration, since the Beck conditions are not satisfied.

Proposition 9.3. Let Q be a right quantales. The category of Q-sets is both

complete and cocomplete.

Proof: Given a diagram with vertices (Ai)iEr, we copy this diagram in the fibration-
cofibration X of 9.2 by putting each Ai in the fibre over E(Ai). Using the fibration
property, we get a diagram of the same shape in the fibre over ÅiEl E(Ai). Comput-
ing the limit cone of this last diagram in the fibre and composing with the cartesian
morphisms to the original objects Ai yields a cone on the original diagram in Q-
SET. If another cone with vertex M is given over the original diagram in Q-SET,
then E(M)  E(Ai) for each i E I. By the cofibration property we can thus transport
the cone of vertex M in the fibre over Aiei c(Ai) and get the required factoriza-
tion by composing the cocartesian morphism on M with the factorization in the
fibre. This proves the completeness. The cocompleteness is analogous, permuting
the roles of the fibration and the cofibration.

Lemma 9.4. Let Q be a right quantale. In the category of Q-sets, a monomor-
phism (respectively, epimorphism) f: A -&#x3E; B is regular if and only if c(A) is 2-sided
in E(B); in the case of an epimorphism, this implies £(A) = £(B).

Proof: This follows immediately from the way equalizers and coequalizers are con-
structed in the category of Q-sets (cf. 9.3). In the case of an epimorphism,
lemma 9.1 implies the relation E(B)  e(B)&#x26;e(A) thus E(B) = c(A) under the
conditions of the present lemma.

Proposition 9.5. Let Q be a right quantale. The category of Q-sets is regular
and exact.

Proof: For the regularity, we must prove that the pullback of a regular epimorphism
f: A -&#x3E; B along g: C -&#x3E; D in Q-SET is still a regular epimorphism. Using 9.4, in
the fibration of 9.2 f is an epimorphism in the fibre over E(B). The result follows
thus from the construction of pullbacks in Q-SEE and the last statement of 9.2.

Next if R * A is an equivalence relation in Q-set, the reflexivity implies imme-
diately e(R) = E(A), so that the exactness of Q-S,6T follows from that of the fibres
and the construction of coequalizers in Q-SET (cf. 9.3).

Applying again 9.2 and 9.3 one deduces with the same techniques a list of other
properties of the category of Q-sets:
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Proposition 9.6. Let Q be a right quantale. The following are properties of the
category of Q-sets:

1. equivalence relations are universal;

2. each morphism factors uniquely as an epimorphism followed by a regular
monomorphism;

3. the pushout of a regular monomorphism is still a monomorphism and the
corresponding square is a pullback;

4. the initial object is strict;

5. the canonical injections of a coproduct are monomorphisms;

6. the coproducts are disjoint.

10 The quantales of subobjects
By 3.2 and 3.5 it follows already that the poset of subobjects of a Q-set A, for a given
right quantale Q, can be provided with the structure of a quantale. We want now
to emphasize the important fact that this is not an extra structure: this structure
of quantale on the subobjects of A is completely determined by the categ6rical
properties of the category of Q-sets. In particular, for A = 1, the terminal object,
we recapture the original quantale Q.

Lemma 10.1. Let Q be a right quantale and A a Q-set. The regular subobjects of
A constitute a locale which is both reflective and coretlective in the complete lattice
of alI subobjects of A.

Proof: By 9.3, the poset of subobjects of A is complete. If (Ai)iEI is a family of
subobjects of A, by 9.3.again c
One concludes by 1.4 and 9.4.

Theorem 10.2. Let Q be a right quantale and A a Q-set. The complete lattice of
subobjects of A becomes a quantale when provided with the multiplication

where S and T are subobjects of A and T is the reflection of T in the locale of
regular subobjects of A (cf. 10. 1).

Proof: Applying 1.4, it remains to show that the subobject f: S - A is regular
precisely when the corresponding sub-Q-set
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described in 3.5, with a E A and x E S, is 2-sided in the quantale of sub-Q-sets
(cf. 3.2).

If S is regular, E(S) is 2-sided in E(A) (cf. 9.4) thus s(a) is 2-sided in E(A), which
is the required condition (cf. 3.3).

Conversely, one has immediately VAEA s(a) = £(5’); thus if each s(a) is 2-sided
in E(A), so is E(8).

Corollary 10.3. Let Q be a right quantale. In the category of Q-sets, the quantale
of subobjects of the terminal object 1 is isomorphic to the original quantale Q.

Proof: The terminal object is the singleton provided with the Q-equality [* = *] = 1
(cf. 9.3). In this case, all the axioms for a subq-set vanish (cf. 3.1) so that a sub-
Q-set is just an arbitrary element s(*) of Q.
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