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ON COMPLETE SAKS SPACES

by Armin FREI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE D/FFÉRENTIELLE

CA TÉGORIQUES

VOL. XXXIII-2 (1992)

R6sum6. La cat6gorie C des espaces de Saks (X, ||||, T) dont
la boule unit6 est T-complete et des contractions lin6aires T-
continues sur OX est sym6trique ferm6e, bicomplète et auto-
duale. Elle contient la categorie Bani comme sous-cat6gorie
pleine codense et la categorie W des espaces de Saks ayant une
boule unite T-compacte comme sous-cat6gorie pleine dense.
Code des Mathematical Reviews: 46 M 05.

1. Introduction.

The category of dual. Banach spaces and dual linear contractions
is isomorphic to the category W of Saks spaces having compact unit
balls, the isomorphism consisting in adding the w*-topology to a dual
Banach space. We embed the category W in a complete, cocomplete
and self dual category C, the full subcategory of the category S of Saks
spaces consisting of complete Saks spaces, that is of the S-objects hav-
ing complete unit balls. The category C is endowed with an internal
hom functor, inherited from an internal hom functor on S and with
a tensor product which represents bilinear morphisms and which, to-
gether with the internal hom turns C into a closed category. This will
provide a convenient base category for the theory of group represen-
tations [4]. In Section 2 we describe briefly the category S of Saks
spaces and introduce its internal hom functor which gives rise to a
duality functor on C. In Section 3 we pay special attention to the full
subcategories S and W of S consisting respectively of Banach spaces
"with the norrn taken twice" and of Saks spaces with compact unit
ball. Section 4 is devoted to the complete Saks spaces and to those
which are reflexive with respect to our duality and to the categories
they form, in particular to the category C. Iri Section 5 we construct
the tensor product of C. In [5] the Saks spaces are called spaces with
mixed topology and in [1] an alternative description of the objects in
W, there called Waelbroek spaces is given.
The author wishes to. thank H. Kleisli for many fruitful conversa-

tions on the subject matter of this paper.
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2. The category S of Saks spaces.

The objects of S are triples X,|| ||, T&#x3E; where X, || ||&#x3E; is a Banach

space and T is a locally convex topology on X such that

i) T is coarser than the 11 ||-topology,
ii) the unit ball OX = {x E X| ||x|| C 1 } is T-closed.

In [2] and [5] the space X, || ||&#x3E; is not necessarily complete. By
i) the topology T is defined by a family of seminorrns p on X with
p  || ||. Axiom ii) is equivalent ([2], Lernma 13.1 ) to either of

ii’) || || ( is lower T-semicontinuous,
ii") || || - sup {pBp is a T-continuous seminorrn on X with p  || || }
A morphism f : (Xl, 11111, Tl) - (X2,11112, T2) in S is a contractive

linear map whose restriction to OX1 is Tl-T2-continuous. An isomor-
phism is an isometry of Banach spaces which is a homeomorphism on
the unit balls. We use the term "morphism" for morphisms in s. We
denote the objects of S simply by X, Y, Z, ... and speaking of a map
f : X - Y the term "bounded" refers to the norms, while "contin-
uous" and "open" refer to the topology on the ball of the domain.
Every topology considered is Hausdorff. By "farnily of seminorms on
X" we always mean a family which defines the topology.

Given a set {Xt} of S-objects let fIXt denote the subspace of
the product of the vectorspaces Xt consisting of those elements with
llxll = sup llxt II  00. With this norrn arid with the topology in-

t

duced by the product topology, IIXt is the product of {Xt} in S,
([5], 13.7, 13.9). If f, 9 : X - Y are morphisms then the kernel
K = {x c X B f (x) - g (x, ) } of f - g is the equalizer in S of f and g.
Thus

Proposition 2.1. The category S is complete I

Let [X, Y] denote the vectorspacc of all bounded linear rnaps from
X to Y whose restrictions to OX are continuous, endowed with the
usual norm ll.fll = sup Ilf(x)II and with the topology of uniform

xEOX

convergence on the compact subsets of OX. Thus the topology on
[X, Y] is generated by the family of serninorrns tKq (f) = sup q f (x),

xEK

where q is a serninorm on Y and K a compact subset of OX. One
verifies that [X, Y] with the norm and the topology so defined is a
Saks space and that
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Proposition 2.2. If f : X -+ Y and Z are in S then the compo-
sition maps [Z, f] : : [Z, X ] -+ [Z, Y] and [ f , Z] : [Y, Z] -+ [X, Z] are
morphisms. Thus [-, -] is a bifunctor sop x S --&#x3E; S I

Any Banach space, in particular the field C, with the norm taken
twice is an S-ob j ect . Hence (-)* = [-, C] is a functor S°p --&#x3E; S with

11 f * 11 = || f || . We call X* and f * the dual of X and f respectively
and draw attention to the fact that as a Banach space X* is not the
usual dual of the Banach space underlying X. Let qx denote the
natural map X -&#x3E; X ** taking x E X to the evaluation (x, -) at x.
Each (x, -&#x3E; is linear and bounded and is continuous as f -&#x3E; |f (x)| is
a seminorm on X * , thus lies in X * * . The map nx is clearly linear and
isometric but is not a morphism in general.
3. The full subcategories B and YV of S.

Let B be the full subcategory of S consisting of Banach spaces and
W the one consisting of the objects whose unit ball is compact in the
topology. We reserve the capital letters B and W for objects in B and
in W respectively. One verifies that for an ob ject B the topology on
OB* coincides with the w*-topology. For an object W the topology
on [W, B] is just the norm topology as OW is cofinal in its compact
subsets and [W, B] is in B. Thus

Proposition 3.1. i) Every [W, B], in particular W*, lies in B.
ii) Every B* lies in W I

The considerations above also show that both functors Bop -&#x3E; W -&#x3E;
Bop giving the isomorphism BoP = W of [5], 13.18 (our W is denoted
AC there) are restrictions of our (-) * . Thus
Theorem 3.2. For all objects in B U YV the map 71X : X - X**
is an S-isomorphism and (-)* gives an isomorphism of categories
Bop = W 1

4. Complete ob jects, reflexive ob jects.
An object (X, 1111, T) of S is said to be: complete if OX is complete

in the uniformity of T, ref l’exive if the map qx : X - X** is an

isomorphism. The objects in B U W are reflexive by Theorem 3.2 and
are obviously complete. From the construction of limits as equalizers
of morphisms between products we have immediately
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Proposition 4.1. The limit in S of a diagram consisting of complete
objects is complete I

Let X be an object in S and {pi: X --+ R+ I sup Pi  1111} a directed
family of seminorms. We denote by Bi the Banach space obtained by
the usual completion of the normed space X/ker pi and by Oi the
obvious morphism X -&#x3E; Bi with pi = Iloill. If pj  pi there is a
canonical morphism Oij : Bi --+ Bj such that Oij oi Oj. Then

{Vij : Bi --&#x3E; Bj} is a projective diagram in S and X = lim Bi is
-

complete. One verifies that the morphism ex : X -&#x3E; X induced by
the oi is a dense embedding and that it has the universal property:
Given a morphism f : X -&#x3E; Z with Z complete there is a unique
morphism g : X --&#x3E; Z with gex = f . This justifies to call the morphism
ex : X -&#x3E; X the completion of X; if X is complete then cz is clearly
an isomorphism. This together with Proposition 4.1 gives (see also
[2], I.3.8) ,
Proposition 4.2. An object X in S is complete if and only if it is a
limit of a diagram in B I

The family {Vi} of morphisms constructed above has the following
useful properties:

Proposition 4.3. For any object Z in S
i) A map f : Z --&#x3E; X is a morphism if and only if every Oif is a

morphism .
ii) A bounded map f : Z -&#x3E; X is in [Z, X] if and only if Oif is in

[Z, Bi] for aiI i I

We call a family { Vi : X -&#x3E; Bi } of morphisms so that {IIViII} is
a family of seminorms a generating famzly for X. The family of all
morphisms X - B is clearly generating.

For the sequel we need a few lemmas involving complete objects.
Lemma 4.4.

Let X be a complete object in S and K a compact subset of OX.
There is an open morphism B : W -&#x3E; X with K c B (OW ) .

Proof. The closed convex circled hull 0 of K is complete and pre-
compact, hence compact. Let W be the closed linear span of 0 with
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the induced topology and the Minkowski functional 11110 as norm.
Hence OW = 0 and 0 is closed in the topology of W . As OW C OX
the norm 11110 is finer that the one induced from X, hence finer than
the topology. By Lemma 1.1.2 of [2] W is lillo-complete. Thus W is
an object in W and the injection 0 : W -&#x3E; X is contractive, continuos
and open as the topology on OW is induced from that on X I

Lemma 4.5. Let X be a complete and Y any object in S. Let (8z )
the family of all morphisms Wi -&#x3E; X . The topology on O[X, Y] is the
initial topology a defined by the family {Bi}.

Proof. The "original" topology is clearly finer than o. On the other
hand let q be a seminorm on Y, K a compact set in OX and tKq
the corresponding seminorm on [W, Y]. Let 0 be as in Lemma 4.4.
The map s : g -&#x3E; sup qg (w) is a seminorm on [W, Y] and r =

wEOW

s[8, Y] is a seminorm for o an [X, Y]. Then for f in O[X, Y] one has
sup qf (x)  sup qf (x) = sup q f 8(w) = r( f ), hence a is finer
xEK XEO(OW) wEOW

than the original topology on [X, Y] i

Taking Y = C in Lemma 4.5 we obtain that {||Oi*|| : X -&#x3E; R+ } is a
family of seminorms on X* . From this and Lemma 4.4 we have

Corollary 4.6. Let X be a complete object in S. There is a family
{Oi : Wi -&#x3E; X} of morphisms having the properties:

i) OX = U Bi (OWi) and the Bilowi are open.
i

ii) The family {Oi*} is generating for X * i

We collect a few facts about the canonical map Tix : X - X ** .

Lemma 4.7. For every object X in S
i) The canonical mapqx is linear isometric (hence injective) and

open.

ii) The composition X* TIS X *** -&#x3E;n X* is the identity on X*.

In general T/x does not take values in X* but it does on qx* (X*).
However if qx is a morphism or if T/x* is sur j ect ive t hen q% takes
values in X * .
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Proof of Lemma 4.7.
i) The map nx is clearly linear and isometric. To show that it is

open let lbz : X - Bi be a generating family. A subbasic neighbour-
hood U in X is given by Oi 1 (V) for ane-neighbourhood V in Bi. Now
nx(U) = (Vi**)-1(nBi(V)) which is open as 77Bi is an isomorphism.

ii) Let g be in X * and f in X * * . Then (nx* (g))( f) = f (g) hence
(n*x (nx* - (g)) (x) = (nx(x))(g) = g(x) i
We are now ready to prove

Proposition 4.8. IfX is a complete object in S then T/x is surjective.

Proof. Let the family {Oi} be as in Corollary 4.6 and let f be an
element of X**. As f is continuous there are finitely many seminorms
IIOiII, i = 1, 2, ... , n and c &#x3E; 0 such that for every h in OX* one has

where K = U Bi (OWi) is compact in OX . Let 0 : W --+ X be the
i

morphism corresponding to K as in Lemma 4.4. Then c sup Ih(x)1 ::;
xeK

c sup )h8(w)) = cIIO*(h)ll, thus ker 0* C ker f. Now 0* maps X*
mEOW

onto the (not necessarily complete) subspace X*/ker 0* of W* and
f = X* - X /ker B* -&#x3E;t C where the linear map t is bounded. By
the Hahn-Banach Theorem has an extension to an element of W**

also denoted t. Then f = X* 0. W * -&#x3E;t C. Now for g in X* one has
f (g) = tB* (g) = t (gB) = gB(n-1W (t)) = g (Oqwl (t)) where Bn-1W (t) is in

X 1 

From the above and Lemma 4.7.i) we have

Corollary 4.9. If X is a complete object in S then Tlxl is a bijective
isometric morphism I

We now proceed to investigate the relationship between complete
and reflexive S-objects and the categories they form.
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The full subcategory R of S consisting of reflexive objects is self
dual. More precisely:

Proposition 4.10. If X and Y are reflexive objects in S then the
map A : [X, V] -&#x3E; [Y*, X*] taking f to f* is a natural isomorphism.

Proof. The map A is clearly linear and isometric; it is surjective as
AA = Id by the naturality of 71.
To show that it is bicontinuous we may, without loss of generality,

show that the map [X, Y*] -&#x3E; [Y, X*] taking f to f*nY is bicontinuous.
For this let uK(g) = sup Ig(x)1 and vc(h) = sup Ih(y)1 be seminorms

xEK yEC
in X* and Y* corresponding to the compact subsets K of OX and
C of OY respectively. A seminorm tKc on [Y, X*] is then given, on
f* nY, by tKC (f*nX) = sup uK(f*nY(y)) = sup sup 1(ny(y)(f(x))1 =

yEC yECxEK

sup sup If(x)(y)I = sup vC(f(x)) where the last term is a seminorm
xEK yEC xEK

on [X,Y*] evaluated at f . The naturality in both variables is obvi-
ous I

Let C denote the full subcategory of S consisting of all complete
objects. We will show that C is a subcategory of R and is closed
under the duality functor (-)*, hence is self dual.

Theorem 4.11. Every complete object in S is reflexive.

Proof. If X is complete then qx is a surjective open linear isometry
by Lemma 4.7 i) and Proposition 4.8. In order to show that it is
continuous let foil be the family of Corollary 4.6 i). As Tlx and

all 77B, are bijective we have that If U is

an open subset of OX * * , then

which is open as the

Bi |OWi are open I

Thus C is a subcategory of R. In order to prove that C is closed
under the duality functor (-) * we need some lemmas.
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If X is an S-object for which qx is surjective, in particular if X is
complete, then every morphism B : W = B* -4 X** is of the form
B - V * for a morphism V = X * --&#x3E; B. Indeed one verifies that

1b = nB-1 B* (n-1 )* does the trick.
As before we denote by eX : X -&#x3E; X the completion of X.

Lemma 4.12. If X is a complete object of S then the morphism
ex. : (X*)* -&#x3E; X** is an isomorphism.
Proof. Let f oi : X - BJ be the family of all such morphisms.
Taking the completion of X* we obtain a diagram

and dualizing

As C is complete, e*X* . is an isometric bijective morphism; it re-

mains to show that it is open. By Theorem 4.11 the object X**
is complete and by the comment preceding this lemma the family
{Vi*} consists of all morphisms W -&#x3E; X * * . Let {Bj} be the subfam-
ily of {Vi*} as in Corollary 4.6 and let U be an open set in (X*)*.
Then and i

which is open as the Bj |OB* j are open I

The category C is closed under the functor (-) *, more precisely
Theorem 4.13. If X is a complete object in S then also X* is com-
plete.

Proof. We consider the commutative diagram
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where e**X* is an isomorphism by Lemma 4.12, n*X and nX* are isomor-
phisms by Theorem 4.11 and, by Lemma 4.7 ii) 71X - is an isomorphism.
Hence eX* is an isomorphism I

One verifies easily that for every object X in S the functor [X, -] :
S - S commutes with limits. We use this to show that the category
C is self enriched, that is

Theorem 4.14. If X and Y are complete objects in S then also
[X, Y] is complete.

Proof. Taking first X = W we have [W, Y] = [W, lim Bi] = lim[W, Bi]
-  -

where the [W, Bi] are in B by Proposition 3.1 and [W, Y] is com-

plete by Proposition 4.2. By Theorem 4.11 and Proposition 4.10 this
entails that also [X, B] is complete for every B. Finally [X, Y] =
[X, lim Bi] = lim[X, Bi] which is complete I

- -

From Proposition 4.2 and the discussion preceding it we have that
any object X in C can be represented as X = lim Bi in C with limiting

-

cone all morphisnls X - Bi, thus the subcategory B in codense in
C. The self-duality of C together with Theorem 4.13 then entails that
the subcategory W is dense in C.

Summarizing this section we have

Theorem 4.15. The category C is

i) Complete and cocomplete,
ii) Self d ual,

iii) Self enriched, and
iv) Contains the full su bcategories W and B as full dense, respec-

tively codense, subcategories.

5. The tensor product for C.
In this section we show that the functor [-, (-)*]* : C x C - C is a

tensor product for C. The following lemrna will be useful in proving
that certain maps are actually morphisms.

Lemma 5.1. Let X and Y be complete Saks spaces and T a topo-
logical space. Then:

i) For a map f : X -&#x3E; Y the restriction flax is continuous if and
only if f oi|OWi is continuous for all morphisms oi : Wi -&#x3E; X .
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ii) For a map g : X x Y - T the restriction g|OXxOY is con-
tinuous if and only if g(oi x 1/li)lowixowj is continuous for all

morphisms l1i : Wi -&#x3E; X and 1/lj : Wj -&#x3E; Y.

Proo£ i) Let U be an open subset of T and let V = (f|OX)-1(U).
Let (aj) be the family of morphisms of Corollary 4.6 Then V =

Uoi(oi-1(V)) = Uoi((foi|OW)-1(U)) which is open as the oi|OW
i i

are open. For ii) it suffices to observe that every rnorphism B : W -
X x Y can be written as B = (p10 x P2B)8 where 6 : W - W x W
is the diagonal map and pl, p2 are the projections of X x Y onto its
factors I

For objects X, Y and Z in C and a morphism f in [X, [Y, Z]] we
denote by f the map Y -&#x3E; 4 Sets(X, Z) given by j(y)(x) = f (x)(y).

Proposition 5.2. If X, Y and Z are objects in C then the correspon-
dence f -&#x3E; f is a natural isomorphism (D : [X, [Y, Z]] -&#x3E; [Y, [X, Z]] in
C.

Proof. The map f(y) is clearly linear and bounded for every y in Y
and its continuity follows from that of f, thus f takes values in [X, Z].
The map f is clearly linear and ll f ll = ll f ll. In order to show that f
is continuous let (0z : Wi -&#x3E; X } and fwj : Wj -&#x3E; Y} be the families
of all such morphisms. For each pair (i, j) we have two commutative
diagrams

where gij is defined by commutativity. As allOW are compact the
continuity of gij entails that of 9ij, thus the 9ij are rnorphisms. Now
the fWj are continuous by Lemma 4.5 and f is continuous by Lemma
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5.1.i). Thus the map (D is well defined; it is clearly linear and bijec-
tive. In order to see that &#x26; is bicontinuous observe that a [Y, [X, Z]]-
seminorm at f is an [X, [Y, Z]]-seminorm at f and vice-versa I

It is easy to see that [X, Y*]* extends to a functor C x C -&#x3E; C. This
functor is symmetric, associative and has the object C as a unit. More
precisely

Proposition 5.3. There are natural jsomorphisms

Replacing the symbol [X, Y*]* by X (9 Y the above isomorphisms
take the more familiar forms r : X ® Y -&#x3E; Y ® X, S2 : (X ® Y) ® Z -&#x3E;
X (9 (Y (9 Z) and r : X ® C -&#x3E; X. A tedious verification shows
that r, Q and A satisfy the coherence axioms [3] thus C is a monaidal
category.

Proposition 5.4. For every object Y in C the functor [-, Y*I* is
left adjoint to then functor [Y, -]. That is: there is an isomorphism
BII : [[X, Y*]*, ZI - [X, [Y, Z]] in C which is natural in every variable.

Proof. The isomorphism T is given by the composition

where -P and A are the natural isomorphisms of Propositions 5.2 and
4.10 respectively I 

°

With Propositions 5.3 and 5.4 we may add to the list of properties
of the category C given in Theorem 4.15:

Theorem 5.5. The category C in symmetric closed.

Let X, Y and Z be Saks spaces. A bilinear morphism is a map
b : X x Y -4 Z which is bilinear, contractive and whose restriction
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to OX x OY is continuous. We conclude this section by showing
that in the category C the tensor product [X, Y*]* represents bilinear
morphisms.

Theorem 5.6. Let X, Y and Z be objects in C. The map 7r : X x
Y - [X, Y*]* given by 7r (x, y) (u) = u (x) (y), u E [X, Y *] is a bilinear
morphism of norm 1. Composition with 7r is a norm-preserving one
to one correspondence between [[X, Y*]*, Z] and the set [X, Y; Z] of
bilinear bounded maps X x Y -&#x3E; Z whose restriction to OX x OY
is continuous; in particular the morphisms correspond to the bilinear
morphisms.

Proof. The map 7r in obviously bilinear and of norm  1. In order
to show that it is continuous we first take X = Wl and Y = W2.
The object [Wi, W2*] is in B by Proposition 3.1, hence the topology on
0 [Wi, W2*]* is w*, which is defined by the seminorms tv ( f ) = If (v) 1, v
in [Wi, W2* ], f in O[W1 , W2*]*. As OW2 is compact, v, considered as
a map OWl x OW2 -+ C is continuous, hence there are seminorms p
on Wi and q on W2 with lr(W1, w2)(v)l = lV(WL, w2)l  p(Wl) Q(W2)
for all (Wl, W2) in OWl x OW2. Thus 7r is continuous. Let now {oi}
and {Vj} be the families of all morphisms Wi --+ X and Wj - Y
respectively. One verifies that the diagram

commutes for all (i, j). The maps [oi,Vj*]*rij are continuous and by
Lemma 5.1 ii) also 7r is continuous.
We now consider the diagram



189

where T is the hom-tensor adjunction of Proposition 5.4, a is the

composition with 7r and a takes an element f in [X[Y, Z]] to f given
by f(x, y) = f(x)(y). One verifies that the above diagram commutes.
Let b be an element of [[X, Y*]*, Z]. Then a(b) is in [X, Y; Z] as
rlOXxOY is continuous. On the other hand if b is in [X, Y; Z], then
B-1(b) is continuous, thus in [X, [Y, Z]]. Indeed if {p}, {q} and {r} are
the families of seminorms on X, Y and Z respectively, the topology
on [Y, Z] is defined by the seminorms tCr (v) = sup rv(y), C compact

yEC
in OY, v in [Y, Z]. As bloxxoy is continuous there are semirlorms p
and q on X and Y with rb(x, y)  p(x) q(y) for all (x, y) in OX x OY,
hence tCr((B-1(b))(x) == sup rb(x, y)  p(x) - max q(y) for all x in OX.

yEC yEC

Thus (3 is a bijection from [X [Y, Z]] onto [X, Y; Z] and it is clearly
norm preserving. As T is an isomorphism it follows that the map a
is a norm preserving bijection from [[X, Y]*, Z] onto (X,Y; Z].
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