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A 2-CATEGORICAL APPROACH TO CHANGE OF BASE

AND GEOMETRIC MORPHISMS I

by A. CARBONI, G.M. KELLY and R.J. WOOD1

CAHIERS DE TOPOLOGIE

ET GF’OR1 F’TRIF DIFFERENTIELLE
CATÉGORIQUES

Bl’ 0 L . XXXII- 1 (1991) 

RESUME. Pour 6tudier le comportement, par rapport aux

morphismes g6om6triques, du passage d’une cat6gorie
régulière e à la 2-cat6gorie Rel c des relations dans
e, on introduit une 2-categorie F dont les Rel c sont

des objets et qui contient, pour tout foncteur
F : v -&#x3E; un morphisme Rel F : Rel c -&#x3E; Rel F. En

fait, Rel induit une bijection entre les adjonctions
G - F : c -&#x3E; dans Cat et les adjonctions
S - T : Rel c -&#x3E; Rel F dans F ; et parmi ces

dernières, on distingue par des propri6t6s simples cel-
les qui proviennent d’un morphisme geom6tnque
G - F . De plus, Rel F 6tant d6fini pour tout fonc-
teur F , on peut 6tudier au niveau de F les morph-
ismes g6om6triques essentiels, ou ouverts, ou locaux.

INTRODUCTION.

The general question of change of base is a large one.

On the one hand, in enriched category theory, one wants to

consider the effect on the 2-category v-Cat , on the bicat-

egory v’-Mod (also called v-Prof), and on the various no-

tions of limit, coliinit, Kan extension, and so on, of a mono-

idal functor O : V - V’ in the sense of [7], or more par-
ticularly of an adjoint pair ’11 2013O in the 2-category of
monoidal categories and monoidal functors; recall from [14]
that the left adjoint ’11 here necessarily preserves tensor

products to within isomorphism. There is particular inter-
est, of course, in the cases where the monoidal categories V

and V’ are closed or biclosed, and where they have a sym-
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metry or, more generally, a braiding in the sense of Joyal
and Street [11]; while it has become clear since the work of
Walters in [21] and [22], and various later developments of
this, that the questions above are not seen in the proper
light until the monoidal categories are replaced by suitable

bicategories. Some progress has been made on these matters

by Gray [9], by Jay [10] and by Betti and Power [2]; but a

satisfying general account is still lacking.
In topos theory, on the other hand, the appropriate no-

tion of a change of base is that of a geometric morphism
G - F : 8 -&#x3E; g; and one wants to consider the effect of
this on various fundamental constructions such as the passage
from v to the bicategories Span v and Prof 8, as well
as others we shall mention in a moment. It is clear, how-
ever, from the work of Walters mentioned above and that, for
instance, of Rosebrugh and Wood in [19], that this latter

concept of change of base is related to the former by no mere

analogy but by precise mathematical connexions; one may leg-
itimately hope for a general account that is not only satis-

fying but also unifying.
In the present article and its planned sequel we make a

small initial step in this direction, restricting ourselves
to the geometric-morphism context, and even there availing
ourselves of the great simplification provided by studying
only such constructions as lead to Ord-categories rather than
to general bicategories. By an Ord-category we mean a categ-
ory enriched over the cartesian closed category of ordered
sets; it is the same things as a 2-category, or a bi- categ-
ory, whose hom-categories are but ordered sets. At this
level we do have what seems to be (so far as we have gone) a

satisfactory general approach; and while we hope that this
will guide the way to the study of the more general cases, we

note that many constructions leading to Ord-categories are of

great importance in themselves.
For instance, the value of considering, for a topos e,

the Ord-category Sl c of sup-lattices in 8 has been made
clear by Joyal and Tierney in [12]. Intimately connected
with Sl E are two other Ord-categories, namely Idl Lp

given by the preorders in c and the ideals between these,
and Rel 9 given by the objects of 8 and the relations bet-
ween them; the significance of ReI 8 in the study of limits
for Grothendieck toposes is evident from Pitts [18] (which
draws on Carboni and Walters [6], to which we refer again
below). Note that, while the definition of Sl 8 uses the
full force of the topos axioms, when dealing with Idl 6 and
Rel c we need of c only that it is a regular category in
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the sense of Barr.
The kind of problem we wish to address then is - at

least to a first approximation - that of the functoriality of
the constructions Rel, Idl and Sl with respect to geometric
morphisms. This first article really deals only with Rel,
although we adumbrate the case of Idl to motivate some of our

definitions. In an as yet partially-prepared sequel, we

shall extend the study of Rel in connection with a "compre-
hension scheme", include that of Idl, and perhaps turn to Sl
as well.

As to the functoriality of Rel, it is clear that a geo-
metric morphism G - F : c -&#x3E; between regular categories
induces in a natural way graph-morphisms, monotone with res-

pect to the order on hom-sets, Rel F : Rel c -&#x3E; Rely and
Rel G : Rel 9 -&#x3E; Rel 6 ; only the latter of these, however,
is a 2-functor, the former being only a lax functor (or what
B6nabou [1] calls a morphism of bicategories). We think that
the reader will share - or at least sympathize with - our

conviction that it should be possible to exhibit Rel G and
Rel F as adjoints; but no-one, so far as we know, has hith-
erto done so. In speaking of "adjoints" here, we are refer-

ring to the usual notion of adjoint morphisms in a bicategory
- or preferably, for greater simplicity, in a 2-category - a

notion replete with good and useful properties; not to the
various notions of "local adjunction" given in [10] and [2],
nor to any of the other weakenings of the adjunction concept
given by Gray in [8]. One of our main tasks, then, is to

find a 2-category F in which Rel G and Rel F live and are

adjoint, and to demonstrate the "correctness" of our choice
of F both by giving an elementary characterization of those

adjunctions S - T : Rel 6 -&#x3E; Rel 9 in F which arise from
a (unique) geometric morphism G - F : e F, and by
showing that we can express in F such extra properties of
the geometric morphism as being local, or essential, or

open. (It was the facility for expressing these extra pro-
perties that we had in mind above when we used the words "to
a first approximation".)

There is a seeming obstruction: it is notorious that

2-categories - even Ord-categories - and lax functors, with

any reasonable definition of 2-cell, do not form a 2-category
(or for that matter a bicategory): see [18, Section 1.3,
Warning]. Recall, however, from [3, Proposition 5] (which
generalises results of Lawvere [17] and Walters [21], [22]),
that for a regular category v , the maps in Rel c that is,
those 1-cells f which have a right adjoint f* - are just
the graphs of the arrows of e . Thus, if F : e - 5 is a
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left-exact functor, the induced lax functor Rel F : Rei 8 e -&#x3E;
Rel 9 has a special property: it preserves adjoint pairs of
1-cells. This was our first idea: lax functors with this
special property compose, and with a suitable definition of
2-cell (cf. [18, Definition 2.4 (ii)]) they form a 2-

category.
The matter becomes more subtle, however, when we replace

Rel by Idl; for Idl F is now a lax functor that preserves,
not all adjoint 1-cells, but only those that arise from func-
tors ; this subcategory of the maps of Idl 6 , related to the
notions of Cauchy completion and the axiom of choice in 6 ,
was studied by Carboni and Street in [5]. Our second idea,
then, was to take as the objects of our 2-category pairs
(A,A*) consisting of an Ord-category A and a subcategory A#
of its maps (containing all the identities), and to take as

the morphisms those lax functors which preserve the adjunc-
tions for the maps in 4* ; again, with a suitable defini-
tion of 2-cell, this does give a 2-category, which we are now

calling F , the  here indicating "lax functor". Note

that we are dealing in effect with "proarrow equipment" in
the sense of Wood ([23] and [24]) and of Rosebrugh and Wood
in [20].

We soon came to see, however, that this F  is still

too narrow. When e and 5 are regular categories but the
functor F: 8 - 5 is not left exact, we do not get a lax
functor Rel F ; yet, for the proper development of the
theory of geometric morphisms, we do want in our final 2-

category F a morphism Rel F for every F , left exact or

not. For instance, we want to be able to deal with an essen-

tial geometric morphism G- F , where G has a further
left adjoint H , which will not in general be left exact.

Moreover, our treatment of the "comprehension scheme", to

appear in the sequel, again demands a Rel F where F is
not left exact.

After a first chapter devoted to preliminaries - mostly
well-known results on relations in regular categories for
which we do not give full historical references, although
Proposition 1.8 seems to be new - we define in Chapter 2 a

2-category F that is "Flabby" enough for the purposes
above. It has sub-2-categories F , ) F &#x3E;, and F_ obtained

by restricting to those morphisms that are lax functors, co-

lax functors, and 2-functors, respectively. For instance,
when a left-exact F also preserves strong epimorphisms,
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Rel F lies not only in F but in F= . In Chapter 3 we

study adjunctions in F , which turn out to have excellent
properties, and give necessary and sufficient conditions for
a morphism in F to admit a right adjoint. We define the
Rel F : Rel Lp -&#x3E; Rel 7 in Chapter 4, exhibiting Rel as a

colax functor from the 2-category Reg of regular categories
and all functors to the 2-category F ; we determine those
T : Rel E - Rel 5 in F of the form Rel F , as well as

those F for which Rel F lies in F , in F&#x3E;, or in F= ; and

we give some evidence for the "correctness" of F by showing
that Rel induces a bijection between adjunctions G - F :
e -&#x3E; F in Reg and adjunctions S -r T : Rel E -&#x3E; Rel 7 in F .

In any 2-category with products we can define a cartes-

ian object A as one for which the diagonal A -&#x3E;A x 4 and
the unique 4 -&#x3E; 1 admit right adjoints o and I , and a

cartesian morphism between cartesian objects as one which

preserves 0 and I . In Chapter 5, after pointing this
out, we examine the cartesian objects of F (which turn out

in fact to be cartesian in F) along with their central

properties; and discover that the cartesian objects 4 in

F= (at least those where s4. consists of all the maps of

A) are nothing but the cartesian bicategories introduced ad
hoc by Carboni and Walters in [6], which were basic to their
characterizations of Rel E for a regular e and of Idl c
for an exact e . Since the cartesian objects of F share
all the important properties of cartesian bicategories except
the 2-functoriality of , this gives further evidence of
the "correctness" of F . We continue on in Chapter 5 to

study the cartesianness of a general morphism in F between
cartesian objects, and of Rel F in particular, showing that
Rel F is cartesian if and only if F is so - the latter
meaning of course that F preserves finite products in the
classical sense. We end the chapter and this article by cha-
racterizing in Theorem 5.9 the morphisms T : Re1 -&#x3E; Rel 5
in F of the form Rel F for a left-exact F as the carte-

sian morphisms in F satisfying one simple extra condition,
and by showing in Theorem 5.10 that, in the bijection which
ends the last paragraph above, G - F is a geometric mor-

phism if and only if S (and then, automatically, T as

well) is a cartesian morphism in F .
This, we think, clinches the argument that F provides

a natural setting for the study of geometric morphisms of
toposes. It is indeed the case that the notions of local,
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essential or open geometric morphisms find their formulations
in F , as do various constructions such as glueing for a

left-exact functor. One may accordingly be tempted to see F
as the "algebra" of geometric morphisms; but now we must re-

turn to the beginning of this Introduction, pointing out that
not all of the notions linked to geometric morphisms G - F
are expressible in F - for example, that of locally-
connected morphism, in which G is to preserve the functors
1I . To obtain a context general enough to encompass these
further notions, one must study the functoriality of geomet-
ric morphisms with respect to such other constructions as

Span c and Prof e . This, in its turn, requires a charac-
terization of the bicategories Span c and Prof E , at

least for locally-cartesian-closed e . Such further inves-

tigations, as well as the question of change of base in en-

riched category theory, will, we hope, be the subject of
later investigations: the main challenge here will be the

generalization of F to an analogue whose objects are no

longer Ord-categories but general bicategories.

1. PRELIMINARIES

1.1 A preorder on a set is a reflexive and transitive rela-
tion  ; is an order when it is anti-symmetric. Ordered
sets and monotone functions form a cartesian closed category
Ord ; accordingly, by the general theory of enriched cate-

gories, we have the 2-category Ord-Cat of Ord-categories,
Ord-functors, and Ord-natural transformations. An

Ord-category 4 is the same thing as a 2-category (or, for
that matter, a bicategory) in which each hom-category 4(A,B)
is but an ordered set. An Ord-functor T : i -&#x3E; is the
same thing as a 2-functor (which is what we usually call it);
it is nothing but an ordinary functor T : 40 -&#x3E; So bet-
ween the underlying ordinary categories of 4 and 2 ,
which is locally monotone, in the sense that TO TY:
TA -&#x3E; TB whenever :g : A -&#x3E; B . An Ord-natural trans-

formation « : T - S 4 -&#x3E; B is simply a natural trans-

formation « : T - S : Ao -&#x3E; B0 , the extra condition of
enriched naturality being vacuous here. Because the closed

category Ord is itself an Ord-category and hence a 2-

category, the 2-category Ord-Cat extends to a 3-category; the
3-cells a-&#x3E;B: T-&#x3E; S: also called modifica-
tions from a to B, are just inequalities aB, this
last meaning that aA s 9A TA -&#x3E; SA for each A .

1.2 An arrow f : A -&#x3E; B in an Ord-category 4 is called a

map if it has a right adjoint f* ; that is, an arrow
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with and

Note that f* , when it exists, is unique. Clearly compos-
ites of maps are maps, as are all identities and even all

isomorphisms; so that the objects of 4 , the maps between
them, and the inequalities between these, form a locally-full
sub-Ord-category Map 4 of A . Let us adopt the convention
whereby Greek letters stand for general arrows of the

Ord-category 4 and Roman letters for maps, then for
f : A-&#x3E;B, Y:B-&#x3E;D, O:A-&#x3E;C, and g : C -&#x3E; D we

have (as a very special case of [16, Prop. 2.1])

if and only if
The type of inequality on the left of (1.1) occurs repeatedly
below; we call it an adjoint inequality.

1.3 We call a category 9 regular if (a) it is finitely
complete (some authors demand only pullbacks), (b) for each
f : A -&#x3E; B there is a smallest subobject i : C -&#x3E; B of B

through which f factorizes as f = ie ; then the mono-

morphism i , or more properly the subobject it represents,
is called the image im f of f , while e is a strong
epimorphism in the sense of [13]; and (c) every pullback of a

strong epimorphism is a strong epimorphism. We call ie the
factorization of f . Recall from [13] that strong epi-
morphisms are closed under composition. In a regular cate-

gory every strong epimorphism is (see [5, Prop. 1]) the co-

equalizer of its kernel-pair, so that regular and strong epi-
morphisms are the same things.

1.4 By a relation O: A - B in a regular category 6’ we

mean a subobject of A x B . If

is one of the monomorphisms representing this subobject, we

call the jointly-monic pair

a tabulation of the relation 0 ; the tabulation is unique
to within an isomorphism of O . As is well known, we get an

associative composition of relations 4O: A -&#x3E; B and
Y : B-&#x3E; C by forming in u the diagram
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where the diamond is a pullback, and taking for 00 the rel-
ation given by the image of O101,Y202 &#x3E; : 0 -&#x3E; A x C ; the

identity relation A -&#x3E; A is given by the diagonal subobject
A : A -&#x3E; A x A . With this composition, and with the order’ 

1

on relations from A to B given by inclusion of subobjects
of A x B , the objects of e and the relations between them
form an Ord-category Rel c This has local finite infima,
OAX for relations from A to B being their intersection as

subobjects of A x B and the top element TAB being the
identity subobject A x B-&#x3E; A x B tabulated by the projec-
tions p : A x B-&#x3E; A and q : A x B-&#x3E; B . There is an

evident involution ( )° : Rel 0 = (Rel e)op sending
O : A-&#x3E; B as above to O° : B -&#x3E; A given by O2,O1&#x3E;:

O-&#x3E; B x A . Treating the category 9 as a locally-discrete
Ord-category, we have a 2-functor e -&#x3E; Rel c which is the
identity on objects and sends f : A-&#x3E; B in c to the rel-
ation A-&#x3E; B given by the graph 1A,f&#x3E; : A -&#x3E; A x B of
f . Since 1A,f&#x3E; 1A,g&#x3E; only when f = g , we may as

well identify  1 A,f&#x3E; with f , regarding e ---7 Rel c as a

locally-full inclusion. Such a relation f : A - B in 8

we call a function; of course A-&#x3E; B is a function pre-
cisely when CP1 is invertible. We use Roman letters only
for such relations as are functions.

1.5 If we form (1.2) when O is a function f , so that
(O1,O2) = (1 A,f) , the pair (91,t/J262) is jointly monic, and
is therefore itself the tabulation of Of there being no

need to pass to an image. When, moreover, Y is g° for a

function g : C -&#x3E; B , the composite gof is just the rela-
tion 8 tabulated by el and 02 in the pullback
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in e. In particular, when C = A and g = f , the rela-
tion f°f is the equivalence relation tabulated by the kernel-

pair (01, 02 ) of f in e; it follows that 1Af°f, with

equality precisely when f is a monomorphism.

1.6 When, on the other hand, we form (1.2) where O is arb-

itrary but Y is a function k : B --7 C , the pullback is
trivial since el like Y1 is 1 and 02=02 ; yet the

pair (O1,kO2) is not in general jointly monic, and we are

obliged to take its image. This is so even when 0 = h° for
a function h : B -&#x3E; A ; then the outer legs of (1.2) are h
and k , so that the composite relation kh° is the sub-

object given by the image of h,k&#x3E; : B --7 A x C . Various

consequences follow. First, if x : A -&#x3E; C is a relation
given by the subobject x1,x2&#x3E; : X - A x C , we have some
t : B -&#x3E; X with x1 t = h and x2t - k if and only if
kh°  x . Next, since x1,x2&#x3E; is a monomorphism, for any
relation x we have x - x2x1 . Finally, combining this with
§ 1.5, we see that a diagram (1.3) commutes and is a pullback
if and only if 81 and 02 are jointly monic with

0201° = g°f .

1.7 Taking C = A and k = h in § 1.6 we observe that, A be-

ing embedded in A x A by the diagonal A : A -&#x3E; A x A , the
relation hh° : A -&#x3E; A as a subobject of A x A is im h c A
c A x A , with tabulation (im h --7 A , im h -&#x3E; A) ; thus we

have hh °  1 A , with equality precisely when h is a strong
epimorphism. For any f : A - B in c therefore, since
1 A  f by § 1.5, we have f -f° in Rel c Thus every
function is a map in Rel c with f* = f° . In fact the

only maps in Rel c are the functions; see [3, Prop. 5].
Accordingly, when speaking of Rel c , we may use function and
map interchangeably - in the language of § 1.2 we have
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Map Rel e = e . This reconciles our conventions of § 1.2 (re-
serving Roman letters for maps) and of § 1.4 (reserving Roman
letters for functions); we abbreviate by using these conven-

tions throughout, beginning with the following on the nature

in Rel 6 of the adjoint inequalities of § 1.2.

1.8 Proposition . For f : A - B , 0 : B - D , 0 : A - C ,
and g : C - D in Rel 6 , we have the adjoint inequality
g O  of if and only if we have some (necessarily unique)
t : 0 -&#x3E; Y rendering commutative

Proof By § 1.6, there is such a t if and only if gO2O°f°s Y ;
since o2o’ = -0 by § 1.6 again, and since f - fo , we have

the result by (1.1 ).

1.9 Consider now those relations O : A -&#x3E; A for which
O 1 A Such relations are clearly those for which
O1 = 4&#x3E;2 = i , say; whereupon the condition that O1 and O2
be jointly monic becomes just the condition that i be
monic. Such relations, therefore, are in bijection with sub-

objects i :O -&#x3E; A of A , the tabulation of O being
(i : O -&#x3E; A , i : O --7 A) . We have 1 A - i’i by § 1.5, and
O = ii0 by § 1.6; so that O is an idempotent in (the
underlying category of) Rel 6 split by i and io . Such
a O may accordingly be called a comonad in Rel c necessa-

rily a symmetric one, since clearly O° = O . For
h,k : B -&#x3E; A , it is immediate that h,k&#x3E; : B - A x A
factorizes through i,i&#x3E; : t -&#x3E; A x A if and only if k = h
and h factorizes through i .

Proposition. Let o : A - B be a relation and write p :
A x B - A , q : A x B - B for the projection functions.
The relation

is s 1 ; let its tabulation be (i,i) where i is a mono-
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morphism C - A x B . Then pi : C - A and qi : C - B
provide a tabulation of O.

Proof. Certainly pi and qi are jointly monic, for in fact

pi,qi&#x3E; = i : C -&#x3E; A x B ; we are to show that this and

O1,O2&#x3E; : O -&#x3E; A x B are equal as subobjects. Consider any
functions h : X --&#x3E; A and k : X - B ; to say that h,k&#x3E; : X
-&#x3E; A x B factorizes through i is, by § 1.9 and § 1.6, to say
that h,k&#x3E;h,k&#x3E;° w . . Since we always have f° 1 ,
this is equally to say that h,k&#x3E;h,k&#x3E;° qoop 0; 

O 
which, as

in (1.1), is equally to say that qh,k&#x3E;h,k&#x3E;°p°O or

kh°O ; by § 1.6 again, this is to say that h,k&#x3E; factor-
izes through O1,O2&#x3E; .

1.11 Although the study of ideals in a regular category &#x26;

must await a later article, we define them here the better to

motivate our definitions below; our nomenclature differs

slightly from that in the general reference [5]. An object
A = (A,nA) of the Ord-category Idl &#x26; is a preordered
object of &#x26; ; that is, an object A of &#x26; together with a

preorder relation nA : A -&#x3E; A in Rel 6 by which (as in

§ 1.1) we mean a relation satisfying 1  nA and nAnp  1l A

(or equivalently a monad structure on A in Rel 8). An

arrow 0 : A -&#x3E; B of Idl 6 is an ideal, by which we mean a

relation O satisfying nBOnA o ; and a 2-cell is, as in
Rel 8, an inclusion of ideals as subobjects of A x B .

Composition of arrows in Idl 8 is just the composition of
relations, the composite of ideals being an ideal since
1  nB = UBUB in Idl c , however, the identity arrow of A
is nA : A -&#x3E; A . Identifying the object A of Rel 6 with
the object (A,1 A ) of Idl Lp exhibits Rel LP as a full

sub-Ord-category of Idl c we may call (A,1 A ) a discrete

object of Idl f: .

For A and B in Idl&#x26; , a functor f : A -&#x3E; B is a mono-

tone function - that is, an f in 8 satisfying fnA s nBf ;
clearly the composite in c of functors is a functor. We
define a preorder relation on functors A - B by setting
g  f whenever f,g&#x3E; : A - B x B factorizes through the

subobject corresponding to nB ; by § 1.6 this is to say that

gf° £ 1lB’ which is easily seen to be equivalent to 1lBg
s nBf . We write PreOrd c for the 2-category given by the

preordered objects of c , the functors, and the inequalities
g s f ; its full sub-2-category given by the discrete ob-

jects is just 6 , seen as a locally-discrete 2-category.
There is a 2-functor ( )* : Preord &#x26; -7 Idl £ which is
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the identity on objects and which sends the functor
f : A --&#x3E; B to the ideal f* = 1lBf ; not only is it locally
monotone, but by the above we have g s f if and only if

g* s f* ; so ( )t fails to be locally-fully-faithful only
because g* - f gives not g = f but g z f , in the
sense that g  f* and f  g . The restriction of ( ) to

the discrete objects is the usual inclusion c -&#x3E; Rel 9 
* 

of
§ 1.4. Following [5], we call ideals of the form f* princi-
pal ; by taking only these principal ideals as arrows, we get
a locally-full sub-Ord-category PrinIdl &#x26; of Idl &#x26; with
the same objects; by the above, it is isomorphic to the

Ord-category obtained from PreOrd 8’ by identifying isomor-
phic functors.

A principal ideal f * is in fact a rrap in Idl 8; it
has the right adjoint (f *) * , usually written simply as

f* , given by the composite fonB in ReI 8. We observed
in § 1.7 that the only maps in Rel c are the functions, so

that Map Rel &#x26; = &#x26;; in constrast (see [5]), maps in Idl 8
need not be principal ideals - which, by the above, are

"essentially" functors - so that Prinldl c -&#x3E; Map Idl c is
in general a proper inclusion. To see this, begin with a

strong epimorphism f : A -&#x3E; B in &#x26; . By § 1.7 we have
ff = 1 B , while E= f°f is by § 1.5 the equivalence rela-
tion on A given by the kernel-pair of f . Regard (A,c)
and (B,1 B ) as preordered objects of &#x26; ; clearly f is a

functor (A,c) -&#x3E; (B,1 B ) , the principal ideal f * being f
itself. Since rf = 1 B and rf = c , we see that
f° = f* is in fact inverse to f in Idl c and so is
certainly a map. Suppose that f° is a principal ideal
g - eg for some functor g : (B,1 B) -&#x3E; (A,E) . Since
ff° = 1 B we have feg = 1B ; but fe = ff°f = f , giving
fg = 1 B and exhibiting f as a retraction in &#x26; . Thus,
unless 6 satisfies the axiom of choice (in the sense that
all strong epimorphisms are retractions), a map in Idl v
need not be a principal ideal, even if it is the inverse of a

principal ideal.

2. THE 3-CATEGORY F AND THE 3-FUNCTOR
( )# : F -&#x3E; Ord-Cat

2.1 While a general 3-category is a (2-Cat)-category, the

3-category F we are about to define may be seen as an

(Ord-Cat)-category, since its only 3-cells are inequalities.
An object of F is a pair (A,A#) where 4 is an

Ord-category and S44t is a locally-full sub-Ord-category of
, the objects of A# being exactly the objects of 4 and
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every arrow of s4. being a map in A . In other words, to

give s4. is to give a subclass of the maps of A , which we
shall call the selected maps, and which are to contain the
identities and to be closed under composition. When there is
no danger of confusion, we abbreviate (A,A#) to A . The
chief motivating examples are sat = Rel 6’ (for a regular cat-

egory &#x26;) , with (Rel 6) consisting of the functions, so

that (Rel &#x26;)# = Map Rel 6 c ; and 4 = Idl c , with
(Idl 8). consisting of the principal ideals. In the latter

example, we see from § 1.11 that a map need not be selected,
even if it is the inverse of a selected map. We now modify
the convention of §1.2; henceforth Roman letters are reserved
for selected maps.

2.2 The neatest description of the morphisms of F is in
terms of the adjoint inequalities of ( 1.1 ), where now f and

g denote selected maps. Given li E F , forgetting A#,
forgetting the 2-cells of A, and forgetting the composi-
tion in 4 gives us the underlying graph of sd A morphism
T : 4 -&#x3E; 2 in F is a morphism of the underlying graphs
which (a) is normal, in the sense that T1 A - 1 A , (b) pre-
serves adjoint inequalities, in the sense that go of imp-
lies Tg.TO TW.Tf , and (c) preserves selected maps, in
the sense that Tf is in JJ. whenever f is in A# . It
is immediate, given (a), that (b) is equivalent to the con-

junction of the following three conditions: (b1 ) T is loc-
ally monotone, in the sense that o  w : A - C implies
To  To (b2) Tg.To  T(gO) (b3) T(wf)  TýJ.Tf. Now (a)
and (b1) (b3 ) give Tf.Tf *  T(ff *) Tl = 1 , and simi-

larly 1 Tf*.Tf , so that

accordingly (c) is automatic whenever B# = Map B . Since
(b2) and (b3) give T(gf) = Tg.Tf , and since we have (b1 ),
we see that restricting T to the selected maps provides a

2-functor T# : A# -&#x3E; B# . Clearly morphisms in F compose,
so that F is a category, with a functor
( ) # : F -&#x3E; Ord-Cat .

2.3 In the definition of a morphism T in F we can re-

place the condition (b) by (d): Of*  g*w implies
TO.Tf*  Tg*.To . The point is that, given (a), it is clear
that (d) is equivalent to the conjunction of (dl) = (bl),
(d2) Tø.Tf*  T(of*), and (d3) T(g*w) Tg*.Tw; that
(a) and the (d 1) like (a) and the (b 1) give (2.1); and
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that, in the presence of (2.1), (b) and (d) are equivalent by
(1.1). It is then clear that, given (a), we can go further
and replace (b) or (d) by a combined form (e1) of the condi-
tions (b1) and (d1); namely (e1 ) = (b1) = (d1 ) = local mono-

tonicity, along with the inequalities

There are yet further ways of describing a morphism T in
F , in which (2.1) is not a conclusion but one of the condi-
tions. Write (a  ) for the weakening 1 T A s T1 A of (a), and

(a2) for

2.4 Proposition, For A and 1J in F , let the morphism
T of their underlying graphs be locally monotone, satisfy
(2.1) and satisfy (c). Then T is a morphism in F if and
only if it satisfies any one of the following conjunctions of
conditions: (i) (a),(b2), and (d2); (ii) (a) and (e2);
(iii) (a&#x3E;),(b3), and (d3 ); (iv) (a&#x3E; ) and (e3)-

Proof, "Only if is known. We deal with (i) and (ii), to

which (iii) and (iv) are dual. Clearly (i) implies (ii),
while (ii) implies (i) on taking f = 1 or g = 1 . Given
(ii), it suffices by §2.3 to prove (a) and (e3). Since
1 A - 1A , (2.1 ) gives T1A - T1 A , so that

using (ax) we have

giving (a). Again, gg*  1 and ff* 1 give gg*wff* w ;
now (e2) and the local monotonicity of 0 give Tg.T(g*wf).Tf*
s Tw; since Tg - Tg* and Tf --- Tf* by (2.1), we have
(e3) by (1.1).

2.5 Recall from [16] that, for Ord-categories 4 and Jj, a

lax functor T : 4 -&#x3E; B is a locally-monotone graph morphism
for which 1 T A  T 1 A and To.To :g T(8w) ; in the language
of [1] this is a morphism of bicategories. A colax functor,
on the other hand, has T1 A w 1TA and T(e8o)  To.To ,
while a 2-functor is of course a T that is both a lax func-
tor and a colax functor. Since 2-functors preserve adjunc-



61

tions, (2.1 ) is automatic for a 2-functor T . It now fol-
lows from Proposition 2.4 that a lax functor or a colax func-
tor T : 4 -&#x3E; B is a morphism in F if and only if it satis-

fies (2.1) and (c); a 2-functor T is a morphism in F if
and only if it satisfies (c); and (c) is superfluou.s if
B# = Map s .

Note that, when T is a lax [resp. colax] functor, the

inequality (e3) [resp. (e2)] of (2.2) is an equality.

2.6 Given morphisms T, S : 4 -&#x3E; bB in F , we define a

transformation f : T -&#x3E;S to be a family (fA : TA - SA)
of selected maps in B , indexed by the objects A of 4 ,
and such that for each arrow A -&#x3E; C in 4 we have the
adjoint inequality

If k : S -&#x3E; R : 4 -&#x3E;B is another transformation, we have an

evident composite transformation k· f : T-&#x3E; R given by
(k· f)A - kAfA since we have also the identity transforma-
tion 1 T : T - T given by (1T)A = 1 T A , the morphisms
s4 -&#x3E; B in F and their transformations constitute a cate-

gory F(s4,1l) ; this becomes an Ord-category when, for

f,g : T -&#x3E; S , we write f  g to mean that fA s gA for
each A . We should note that f : T -&#x3E; S is invertible in
F(A,B) if and only if (i) each fA is invertible in B# ,
and (ii) for each O the inequality (2.3) is an equality.
The "if ’ part is clear, f having the inverse k where
kA = fA . For the converse, let f have an inverse k ;
(i) is immediate since kAfA and fAkA are identities; and
then, by (2.3) for f and for k , we have TO = kcfc . To
kc.So.fA To.kAfA = To , giving (ii) since kc is inver-
tible. Two points need emphasis: first, as we observed in
§2.1, the invertibility of fA in B* is strictly stronger
than its invertibility in B in general, although not when
B* = Map B ; secondly, (ii) above is not a consequence of
(i), even when each f A is an identity - we shall meet below
(see §4.4) pairs T,S : 4 - 2 of morphisms in F which
agree on objects but have strict inequalities To So .

2.7 It is a central observation that, for any transformation
f : T -&#x3E; S : 4 -&#x3E; j3 in F , the inequality (2.3) is an

equality whenever ø: A-&#x3E; C is a selected map. The point
is that, for a selected map h : A -&#x3E; C , (2.3) with ø = h
gives fc.Th  Sh.fA , while (2.3) with ø = h* gives fA.Th*
s Sh*.fc , equivalent by (2.1) and (1.1) to Sh.fA  fc.Th .
One consequence of this is that every transformation f as
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above gives rise to a natural transformation f# : T#-&#x3E; S * :
A# -&#x3E;B# in Ord-Cat , where (f#)A = fA ; clearly we have
f #  g# if and only if f s g , so that f# = g# if and
only if f = g . We may at times abbreviate by writing f
for f# .

2.8 We now make F into an (Ord-Cat)-category. For P :
B - c and f : T - S : 4 - o we define a transformation
Pf : PT-&#x3E; PS by (Pf)A = PfA ; observe that PfA is indeed a

selected map by (c) of §2.2, and that (2.3) for Pf follows
from (2.3) for f by (b) of §2.2. Since P # is a 2-
functor, it is clear that P(k-f) = Pk·Pf , that PlT = Ipi ,
and that f f’ implies Pf s Pf’ . Next, for g : P - Q :
s --&#x3E; e and T : 4 -&#x3E; B we define a transformation gT : PT
-&#x3E; QT by (gT),, = 9TA ; here (2.3) for gT follows trivi-

ally from (2.3) for g , and it is clear that (h. g)T = hT· gT ,
that 1 pT = 1 p T , and that g  g’ implies gT s g’ T . Consider
now f : T -&#x3E; S : A -&#x3E;B and g :P-&#x3E;Q: B-&#x3E; C; to def-
ine the horizontal composite gf : PT - QS : s4 - c we need
the equality of gS · Pf and Qf· gT ; in terms of components
we need 9SA-PfA = QfA.gTA’ which we have by applying §2.7
to (2.3) for g , since fA is a selected map. Since we

clearly have equalities of the forms

and

it is indeed the case that F is a 2-category - and in fact
an (Ord-Cat)-category by the remarks above on inequalities.
The cartesian closed category Ord-Cat is of course itself an

(Ord-Cat)-category and it is immediate that 4 -&#x3E;A#,
T - T# , and f -&#x3E; f* constitute an (Ord-Cat)-functor (a 3-
functor) ( )# : F - Ord-Cat . In fact this (Ord-Cat)-func-
tor is representable; the reader will easily see that it is
isomorphic to F( 1,-) where 1 E F is the terminal object
of F , given by the one-arrow Ord-category 1 with 1 # - Map 1
= 1 .

2.9 The 3-category F has not only the terminal object 1
above, but all products; to illustrate by binary products,
the product in F of A and B is just the usual product
A x B of Ord-categories, with (4 x B)# = A#. x B* - Clearly
the projections ni : 4 x 2 -&#x3E;A and N2 : A x 2 -&#x3E;B are

2-functors. Let us henceforth write F ,F&#x3E;, and F= for

the locally-full sub-3-categories of F obtained from F by
keeping all the objects but restricting the morphisms to the
lax functors, the colax functors and the 2-functors respect-
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ively ; see § 2.5. It is immediate that the product A x 11 in
F is equally the product in F , in F &#x3E;, and in F- .

2.10 We now consider various dualities in F , beginning by
fixing some notation. For enriched categories x in general,
and hence for 2-categories and 3-categories in particular, we

have the opposite enriched category e where
Kop(A,B)= k(B,A) ; when k is a 2-category [or a 3-
category], kop is obtained from k by reversing the 1-cells
but not the 2-cells [nor the 3-cells]; in these latter cases

k(A,B) is itself a category [or a 2-category], and we get a

second dual e given by kco (A,B) - k(A,B)OP ; in kco
the 2-cells are reversed, but not the 1-cells [nor the 3-
cells] ; clearly e OP = Xop co When x is a 3-category,
so that each k(A,B) is a 2-category, we have a third dual
kO where KO(A,B) = K(A,B)co ; in x° the 3-cells are re-

versed, but neither the 1-cells nor the 2-cells.

If f : A -&#x3E; B is a map in an Ord-categoqy A , with
f - f* , then f* : A --&#x3E; B is a map in 4°P with f* - f ,
and f* : B -&#x3E; A is a map in sdco with f* - f . Accordingly,
for 4 = (,d,,4t) . in F we get objects 4°P = (AoP,(AoP)#and s4co = (s4 ,(Aco)#) of F by taking the maps in (Aop)#
and in (Aco)#. to be the f* where f is a map in A# .
Note that in both cases f H f* gives isomorphisms

Since, by (1.1), an adjoint inequality in A gives adjoint
inequalities in $4 op and in Aco , it follows from §2.2
that, if T : 4 -&#x3E; fJ is a morphism in F , the same data
constitute morphisms 1 : 54 -&#x3E;Bop and 1: . ACO -&#x3E;Bco ,
with (Top)# - (T #)co and (Vo)* = (T#)op modulo (2.4). A
transformation f : T - S : 4 -&#x3E;B gives transformations

and

on setting (fop) = (fco)=- f* . The upshot is that we have
A A A

isomorphisms

which under the action of ( )# : F - Ord-Cat become, modu-
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lo the isomorphisms in (2.4), the isomorphisms

Moreover F F&#x3E; , and F are stable under ( )°p , while

( )co carries F into F &#x3E; and vice-versa, preserving

F .

3. ADJUNCTIONS IN F

3.1 Ignoring the 3-cells of F and treating it just as a 2-

category, we have in the usual way the notion of an

adjunction

in F , given by morphisms T : 4 -&#x3E;B (the right adjoint)
and S : 11 -&#x3E;A (the left adjoint), along with trans-

formations x : 1 -7 TS (the unit) and y : ST - 1 (the
counit) satisfying the triangular equations

Since 2-functors send adjunctions to adjunctions, the adjunc-
tion (3.1) gives an adjunction

in Ord-Cat. Again, from an adjunction (3.1) the isomorphisms
of (2.5) give two further adjunctions (still in F)

either of these (which are "trivially" equivalent) can be
used to halve our work by an appeal to "duality"; the point
is that the components of the units and counits in (3.4) have
the forms x*,y* . B A
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3.2 For a morphism T : 4 - o in F we write TAC :
A(A,C) --&#x3E; B(T A,TC) for the monotone function sending ø to

To ; recall from §2.2 that Tf is in B# when f is in

. Given an adjunction (3.1) in F , consider arrows

W : B -&#x3E; D in B and O : SB -&#x3E;SD in 4; we have

if and only if

For applying T to the left side of (3.5) and using (2.3)
for x gives xDW TSW.xB  TO.XB while applying S to

the adjoint inequality on the right side of (3.5) - which it

preserves by (b) of §2.2 - and using (2.3) for y gives

whence Sw ø by the second equation of (3.2). By a dual

argument, for arrows 0 : A - C in A and 0 : TA -&#x3E; TC in B we
have

if and only if
v

Now define monotone functions SBD:A(SB,SD) -&#x3E; B(B,D) and

T Ac:B(TA,TC) -&#x3E; 4(A,C) by

using (1.1) we can rewrite (3.5) and (3.6) as

if and only if

if and only if

thus for any adjunction S --I T in F , each S B D : B(B,D)
---4 4(SB,SD) has the right adjoint SBD in Ord, while each

TAc : A(A,C) - B(TA,TC) has the left adjoint TAC in Ord.

3.3 Still supposing (3.1) to be an adjunction in F , con-

sider composable arrows W : B ---&#x3E; D , x : D-&#x3E; ins. Two

applications of (2.3) for x give XFXww TSX-XDW 
TSX.TSW.XB. It follows from (3.5) that

implies
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The same argument works for three composable arrows, giving

Dually, for we have

implies

as well as the three-arrow dual of (3.10). We conclude from
(3.9) and (3.11) that for any adjunction S ---I T in F , T is
a lax functor precisely when S is a colax functor. In parti-
cular, if S ---I T is an adjunction in F  , so that both T

and S are lax functors, then S is in fact a 2-functor. We
see no reason to believe that every right adjoint in F is a

lax functor; yet it is so in all the practical examples we

have so far studied, and we have no counter-example; it is

certainly so, as we shall see in § 4.5, when 4 and s are of
the form Rel c and Rel 5 . At any rate, a right adjoint
T has more laxness and a left adjoint S more colaxness
than general morphisms in F ; for when S -l T we can

(cf. the last sentence of § 2.5) replace the inequalities of
(2.2) by the equalities

It suffices by duality to prove the second of these. Since
Sk and Sh are again selected maps, with Sh -l Sh* , the

inequality (e2) of (2.2) gives TSk.TSw.TSh* &#x3E; T(Sk.So.Sh*) ;
and now (3.10) gives S(kwh*) £ Sk. Sw. S h * , while we have
the reverse inequality by (e2) again. The second equality of
(3.12) may be seen as asserting commutativity for the first
diagram below; replacing each arrow by its second adjoint in
Ord then gives commutativity for the right diagram:
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with the dual results for T and T . We end this section with
the following formulae which "invert" (3.7), in that they
express T and S in terms of S and T respectively; for
,0: A -&#x3E; C in 4 and 0 : B-&#x3E; D in s we have

We prove the first of these dual assertions by direct calcu-
lation ; by (3.7) its right side is x * TC T(y* co y A ).x TA ’ by
(3.12) this is x* .Ty*To.TyA.xTA, which is To by two

TC C A TA,

applications of the first equation of (3.2).

3.4 For an adjunction (3.1) in F , define monotone func-
tions

by

note that we could equally give element-free descriptions
such as

It is classical that, for an adjunction (3.1) not in F but
in Cat , T and a- are mutually inverse isomorphisms; the
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same is true (see [15, (1.51)]) for an adjunction in V-Cat ,
where now T and y must be defined by (3.16); it is true

in particular for adjunctions in Ord-Cat, so that by (3.3)
the restrictions of the T and CT of (3.15) to selected maps
are indeed inverses; but it is false in general for adjunc-
tions in F . For a simple example, let A = 1 , let
s = Rel Set , and let S : s -&#x3E; 1 be the unique morphism in
F ; S is easily seen to have in F the right adjoint
T : 1 -&#x3E; s naming the object 1 e Set c s ; yet here
A(SB,A) = 1 for each B and the only A , while s(B,TA)
is in bijection with the subsets of B e Set . What we can

assert for an adjunction (3.1) in F is that we have in Ord
(not isomorphisms but) adjunctions

It suffices to prove the first of these dual statements;

since TS B , A has by §3.2 the left adjoint TSB , A , the TB A of

(3.16) has the left adjoint T SB,A .B(x*B,TA) ; the value of

this at 0 : B -&#x3E; TA is T(w,*B) , which by (3.7), (3.12) and

the second equation of (3.2) is

Leaving it to the reader to formulate the "naturality"
properties of T,y,T’ and 0" that follow from (3.12) and
(3.13), we pass on to the observation - perhaps surprising -
that the expression [15, (1.53)] of TAC in terms of T for

adjunctions in v’-Cat continues to hold for adjunctions in
F ; that is to say, TAC is the composite

For the value at O of this composite, which by (3.15) is
T(OYA).XTA , is T t/J. Ty A .XT A by (3.12), and hence To by (3.2).

3.5 Theorem. A morphism S:B -&#x3E;A in F admits a right
adjoint if and only if it satisfies
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(ii) S. : 3J. --&#x3E; 514. admits a right adjoint in Ord-Cat,
given say by x,y : S# --l P : A# --&#x3E; :8. ;

(iii) for each B and D , the monotone function

admits a right adjoint SBD in Ord;

(iv) for each A in A we have the inequality

In fact, given (i)-(iv), there is a unique morphism
T:A -&#x3E;B in F such that Tit = P and such that x and

y are the unit and the counit for an adjunction
x,y : S --i T : A -&#x3E;B in F ; here TA = PA and To is
given by (3.14).

We make some remarks before giving the proof. First, we are

for brevity confusing x,y with x#,y# , which by §2.7 have
the same components. Secondly, to require the inequality
(3.19) is in fact to require equality as in (3.12), since by
(2.2) we always have the opposite inequality; otherwise put,
(i) gives commutativity in (3.13(a)), and hence - on taking
right adjoints - in (3.13(b)), once we have (iii). Again,
since S1PA - 1 SPA  y*AyA , the inequality opposite to

(3.20) is automatic, so that to require (3.20) is in fact to

require equality. Finally, given (i), (ii), and (iii), if

(3.20) holds for one choice of the adjunction in (ii), it

holds for any other choice x,y : S# --I P ; for by the gen-
eral theory of adjunctions (see [16]) there is an invertible

n : P -~ P :A# -&#x3E; se with - V= · Sn-1 , and it followsn:P-&#x3E;P:A#-&#x3E;B# with y Y* Sn- and it follows

easily from (3.13) and (3.20) that S(yA* yA) = 1 .
A A

Proof . As for "only if’, we have (i) by (3.12), (ii) by (3.3)
and (iii) by §3.2; while (iv) (with equality) follows at once

from (3.7), (3.12) and (3.2). Suppose then that we have (i)-
(iv). Wanting T#= P and x,y : S -l T, we are forced -
as stated in the theorem - to set TA = PA and to define To
by (3.14). For f : A --&#x3E; C in 94. we have, since
y : S #P -&#x3E; 1 is a natural transformation,
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v v

now (3.14) gives Tf = S(y*fy ) = S(y*cyc .SPf) , which byC A C

(3.13(b)) is S(ycy*c).Pf ; it follows from (3.20) with equa-C C

lity that Tf = Pf . We henceforth replace PA and Pf by
TA and Tf , observing that we shall indeed have T # = P
once T has been shown to be a morphism in F .

The result Tf = Pf gives (a) and (c) of § 2.2, so that
to exhibit T as a morphism in F we must establish (b) of
§2.2. Suppose that f : A - B ,w: B --&#x3E; D ,o : A-&#x3E;C,
and g : C -&#x3E; D satisfy go wf , which by (1.1 ) is equiv-
alent to o g*of This gives yc *oYA  Y*g*Wfy the

C A A

right side here, by two applications of (3.21), is

S(Tg)*.yD*wyB.STf ; applying the monotone function STA, TC
D B 

and using (3.13(b)) gives S(yc*oyA)  (Tg)*.S(y*DWYB).Tf ,C A D B

which by (3.14) may be written as To (Tg)*.Tw.Tf; now

(1.1) gives the desired Tg.To Tw.Tf .
It remains to show that the yA : STA --&#x3E; A and the

XB : B --&#x3E; TSB are the components of transformations in F

satisfying (3.2), or equivalently

in fact (3.22) is automatic, since these are equally the tri-
angular equations for the adjunction x,y : S # --l P . Be-

cause ST A, TC is the right adjoint of S T A , T c , (3.14)

gives STW £ y*coyA , equivalent by (1.1) to yc.STO ’OYAC A

which is the condition (2.3) for y to be a transformation.
Again, (1.1) applied to the second equation of (3.22) gives
S xB y*SB ; so for w : B -&#x3E; D we have, using (3.19), that

B SB

S(x 0) = S xD. Sw y* S D. Sw. Using the second equation of

(3.22) again gives S(xDW) s y* .SW.y .Sx , or equivalent-D bU bH B 

ly xDW  S(y*SD.SW.ySB.SxB) ; by (3.13) and (3.14), the

right side here is S(y*SD.SW.ySB).xB = TSW.xB; so that we

have xDW TSP-XB , which is the condition (2.3) for x to

be a transformation.

3.6 Condition (iv) in Theorem 3.5, connecting the "local"



71

v

right adjoint S with the counit y of the "global" adjunc-
tion in (ii), cannot be omitted, even when S is a 2-
functor. Consider the case where S is the unique morphism
2 --&#x3E; 1 in F . Then (i) is trivially satisfied, S being a

2- functor; (ii) asserts that the Ord-category B# has a

terminal object I , which is equally to say that B# , as

a mere category, has this terminal object; (iii) asserts that
each B(B,D) has a top element, and (iv) asserts that the

top element of B(I,I) is 1, . To see that (iv) does not

follow from (i)-(iii), let B have a single object I , two

arrows 1 I and 0 : I --&#x3E; I with W2 = W, and the inequal-
ity 11  8/J; the only map l i is of course selected.

For other independence results among Conditions (i)-
(iv), see [4, Remarks 2.17]; we omit them here for lack of
space, (i)-(iii) seeming more natural than (iv) and being so

clearly necessary. Because Condition (iv) is less limpid, we

give an alternative formulation of it. First recall from the
remarks preceding the proof of Theorem 3.5 that the right
assertion of (3.13) follows from (i) and (iii) alone; accord-

ingly, for any selected map h : B--&#x3E; PA , (iv) implies
B,PA (y*y A A .Sh) s h , of which (iv) itself is the special
case h = 1PA Since 0160 is the "local" right adjoint as in

(iii), we can by (1.1) express this generalized Condition
(iv) as follows, where 0 : NB --&#x3E; PA is an arbitrary arrow:

implies

the analogue for the original (iv) has 0 : PA -&#x3E; PA , and
reads

implies

4. THE COLAX FUNCTOR Rel : Reg - F
4.1 We write Reg for the 2-category of regular categories,
all functors F : 8 ---F , and all natural transformations,
and use J : Reg - Ord-Cat for the fully-faithful inclusion
sending c to itself seen as a locally-discrete Ord-category.
It is to be understood that all the categories E,E,G, ...

that we introduce are regular. Recall from § 2.1 that
Rel c E F , with (Rel E)# = Map ReI 8 = 8, and from § 1.7
that f* = f* for a map f . Given any F : &#x26; - F we de-
fine a graph-morphism Rel F : Rel c - Rel F ; by
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where (O1,O2) is a tabulation of O . Equivalently, by
§ 1.6, (Rel F)O = W where

FO1,FO2&#x3E; has the factorization
(4.2)

Clearly (Rel F)(0o) = ((Rel F),O)° , allowing us to write

(Rel F)e unambiguously. Note that, when O is a map
f : A - C , so that O1 = 1 and O2 = f , (4.1) gives

In fact Rel F : Rel 9 - Rel g is a morphism in F with
(Rel F) # - F : 9 - 5 . Conditions (a) and (c) of § 2.2 fol-
low from (4.3); as for condition (b), an adjoint inequality
gO  of in Rel 9 gives by Proposition 1.8 the commutative

(1.4), applying F to which gives Fg.FO2 = F02.Ft and

Ff.FfJ1 = Ft/l1.Ft. Using (1.1) on the second equation, we get
FO1.(Ft)° (Ff)°.Ft/l2 , 

° 
from which the involution ( )°

gives Ft.(FØ1)° (FW1 ) .Ff ; combining this with the first

equation above we have Fg.FO2.(FO1)° = FW2.Ft.(FO1 )° W
FW2. (FW1 )°.Ff, which by (4.1) and (4.3) is the desired
(Rel F)g.(Rel F)O  (Rel F)W.(Rel F)f .

Consider now a natural transformation a : F -&#x3E; G :
&#x26; -&#x3E; 9. In fact, the components aA constitute a transforma-
tion Rel a : Rel F -&#x3E; Rel G : Rel &#x26; --&#x3E; Rel F in F , with

(Rel a) # =a: F -&#x3E; G : E-&#x3E;F . The aA being maps, we

need only the inequality (2.3) for a , where ø: A -&#x3E; C
is given by Ø1,Ø2&#x3E;:O -&#x3E; A x C . The naturality of a

giving aC.FO2 = GO2-ao and aA.FO1 - GO1.aO, and the lat-

ter of these giving aO.(FØ1)° (GO1)°.aA by (1.1), we have

ac.FO2.(FO1)° = GOa2.aO.(FO1)° GØ2.(GØ1 )o.aA , as desired.

Clearly, if we also have B: G -&#x3E; H : E -&#x3E;F: then

Rel(f3- a) = (Rel B).(Rel a) , while Rel 1 F - 1 ; thus we

have a functor Rel = Rel E,F : Reg(E,F) -&#x3E; F(Rel 6,Rel 9) .

4.2 We now consider the image of this functor. If
T : Rel LP --&#x3E; Rel 9 is a morphism in F , the 2-functor

( )# : F --&#x3E; Ord-Cat sends it to a morphism T# : E -&#x3E;F in
Ord-Cat which, the inclusion J of §4.1 being fully faithful,
is the same thing as a functor T# : c -&#x3E;F in Reg. Simi-

larly, for a transformation f : T --&#x3E; S : Rel 9 --&#x3E; Rel 5 in
F , we can see f # as a natural transformation f # : T-&#x3E;
S* :E -&#x3E;F in Reg. Thus we have a functor ( ) # :
F(Rel c , Rel g) -&#x3E; Reg(C , 5) , which by § 4.1 satisfies
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Suppose now that we start with T : Rel e --&#x3E; Rel 5 in F .
Since T*A = TA and T*f = Tf for a map f , while by § 1.7
and (2.1) we have (Tf)° = (Tf)* = Tf* = TfB , here (4.1)
gives (Rel(T#))A = TA and (Rel(T#))o = T-02.TO’ . Because
O = O2O1 by § 1.6, while TO2.TO1° T(O2O1°) by (2.2), we have
(Rel(T*))¢ S To . Thus there is a transformation

in F whose A-conponent is the identity of TA . Moreover,
given a transformation f : T - S : Rel v --&#x3E; Rel F in F ,
we have

for a transformation in F is fully determined by its compo-
nents, and (Rel(f#)) A = (f#)A = fA by §4.1 and §2.7. So
the nT constitute a natural transformation

Because the components of nT are identities, nT is inver-
tt’ble precisely when it is an equality; that is to say, when
we have

for any relation O , tabulated by ’1 and ’2: such a T is
said to be tabulation-defined. It follows from §4.1 and the
above (using (4.6) in particular) that a morphism T :
Rel c - Rel v in F is of the form Rel F for some F : 6 --+ F

if and only if it is tabulation-defined, and then F is neces-

sarily T# . More generally, if there is some F : c --+ F
and an isomorphism f : T a Rel F , we have f* : T* = F , and
T = Rel(T*) while f = Rel(f.). The functor Rel LP, 7 is

fully faithful, every transformation f : Rel F - Rel G :
Rel c -&#x3E; Rel F being Rel a for a unique a :F --+ G : u --+ F;
namely « = f* The identity in (4.4) and the n of (4.7)
are the unit and the counit of an adjunction
Rel E,F --l ( )#.

Not every T : Rel B -+ Rel f in F is tabulation-
defined ; see §4.4 below. On the other hand, let us say that
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T preserves tabulations if, whenever O is a relation tabu-
lated by O1 and O2’ the maps TO1 and T02 form a

jointly-monic pair which tabulates TO . By § 1.6, T pre-
serves tabulations if and only if it is tabulation-defined
and such pairs (TO1,TO2) are jointly monic; thus T : Rel c
-&#x3E; Rel F in F is Rel F for an F that preserves jointly-
monic pairs if and only if T preserves tabulations. Since
a general F in Reg need not preserve jointly-monic pairs,
preserving tabulations is strictly stronger than being
tabulation-defined.

4.3 We now determine those F : c -&#x3E; F in Reg for which the
morphism Rel F : Rel c -&#x3E; Rel F of F is a lax functor, a

colax functor, or a 2-functor. Consider first the effect of
F on a pullback diagram:

here the left diagram is an arbitrary pullback in E , the
interior diamond in the right diagram is a pullback in g ,
and r is the unique map making that diagram commute; we say
that F nearly preserves pullbacks if r is always a strong
epimorphism. Of course, if F preserves pullbacks, in the
sense that r is always invertible, it nearly preserves
pullbacks; on the other hand, if F preserves jointly-monic
pairs and nearly preserves pullbacks, it preserves pullbacks;
for then r is monomorphic since FO1,FO2&#x3E; is so, whence
r is invertible if strongly epimorphic. { Note that an F
that nearly preserves pullbacks preserves monomorphisms; when
A = C and f = g is monomorphic, we can take O1 - O2 =1 ,
so that again r is monomorphic and hence invertible if

strongly epimorphic. } It is immediate from § 1.5, (4.2) and
(4.3) that F nearly preserves pullbacks if and only if
T = Rel F satisfies
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We conclude that Rel F is a lax functor if and only if
F nearly preserves pullbacks. For (4.10) holds by § 2.5 if
T = Rel F is a lax functor; while for the converse, if 8O
is a composite in Rel c , (4.8), (4.10), (2.2) and § 1.6
give

By §4.2, therefore, an arbitrary T : Rel c - Rel 9 in F
is Rel F for an F that nearly preserves pullbacks if and
only if T is a tabulation-defined lax functor (or equally, T
is tabulation-defined and satisfies (4.10)). The last para-
graph of §4.2 and the first paragraph of this section give a

corollary: T : Rel E -&#x3E; Rel 9 in F is Rel F for an F
that preserves pullbacks and jointly-monic pairs if and only
if T is a lax functor that preserves tabulations. Going a

little further, write I and I for the terminal objects of
e and g then T : Rel c -&#x3E; Rel F in F is Rel F for
a left-exact F if and only if T is a lax functor, preser-

ving tabulations, for which the unique map TI - I in F

is invertible. (We return in §5.9 to the study of left-exact
F , giving an alternative characterization of the corres-

ponding Rel F which, while built on that above, is more

2-categorical in spirit.)
To approach the case where Rel F is a colax functor,

we begin by observing that F preserves strong epimorphisms
if and only if T = Rel F satisfies

for all h : D - A and k : D -&#x3E; C in 8. One direction
is immediate from (4.3) and §1.7: if h is a strong epimor-
phism we have hh = 1 , whence (4.11) gives Th.Th’ = 1 , so

that Fh = Th is a strong epimorphism. For the other direc-
tion, recall from § 1.6 that kho 0 where h,k&#x3E; = W1,W2&#x3E;r
for a strong epimorphism r ; this gives Fh,Fk&#x3E; =
Fol,F02&#x3E;.Fr so that if F preserves strong epimorphisms
§ 1.6 gives Fk.(Fh)o = FW2.(FW1 )° , which by (4.1) and (4.3)
is (4.11).

We can now show that Rel F is a colax functor if and
only if F preserves strong epimorphisms. Writing T for
Rel F , we recall from §2.5 that (4.11) holds if T is a



76

colax functor; it remains to prove the converse. First, for
a map g , we conclude from § 1.6, (4.11) and (4.8) that
T(g§) = T(gO2O1)° = T(g,04.Too = Tg.TO2.TO1° = Tg.TO . Apply-
ing the involution ( )° gves, by §4 1, T(Wfo) = TW.Tf° ;
so that T satisfies T(gOf°) = Tg.TO.Tf° . Now, for compo-
sable e and O in Rel B, this last, along with (2.2)
and (4.8), gives

as desired. Since (4.11) contains (4.8) as a special case

and holds by §2.5 for any colax functor, it follows from §4.2
that, for any morphism T : Rel E --&#x3E; Rel 9 in F , the fol-
lowing are equivalent: T is Rel F for an F that pre-
serves strong epimorphisms; T is a colax functor; T
satisfies (4.11 ).

Putting the results above together, we see that Rel F
is a 2 functor precisely when F preserves strong epimor-
phisms and nearly preserves pullbacks; and that every
2 functor T : Rel c - Rel v is Rel F for such an F .
Note that Rel F is certainly a 2-functor if F preserves
strong epimorphisms and pullbacks, and in particular if F

preserves strong epimorphisms and is left exact.

4.4 We now compare Rel(GF) with (Rel G)(Rel F) , where
F : E -&#x3E;F, and G : F -&#x3E; G in Reg. On objects, (4.1) gives

For in Rel E , let (Rel F)o = W , let

and let (Rel(GF))O = x . Then by (4.2) we have

and

where r , s , t are strong epimorphisms. Since the first
two of these equations give GFO1,GFO2&#x3E; = 01,02&#x3E;s.Gr , it
follows that (Rel(GF))o K (Rel G)(Rel F)O , with equality if
and only if s.Gr is a strong epimorphism.
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We do not in general have equality here. Take E =

5 = c = Ab , the category of abelian groups; writing Z/n
for the finite cyclic group, take F = Z/4 o - and G =
Hom(Z/2, -) ; and let O1 - 2 : Z - Z while O2 : Z --&#x3E; 0 .
We find that s.Gr = 0 : Z/2 -&#x3E; Z/2 , which is not epimor-
phic.

By the second-last paragraph, there is a transformation
kG , F : Rel(GF) -&#x3E; (Rel G)(Rel F) : Rel c -&#x3E; Rel g in F whose

A-component is the identity of GFA ; of course (kG , F)#
= 1 , and kG, F is invertible precisely when it is an equa-
lity. For nullary composites, we clearly have the equality
Rel(I = 1 Rel c ’ sometimes called the normality condition.

When x and L are 2-categories, what B6nabou [1] calls a

morphism of bicategories K - r. is often called a lax func-
tor ; when K and r. are merely Ord-categories, this re-

duces to the notion so named above. A colax functor has the
sense of the comparison transformations reversed, to be that
of our kG , F . For a colax functor, these transformations
have to be natural in F and G , and to satisfy three co-

herence conditions: all of which is trivial here because the

kG , F have identities as components. We conclude that the

functors Rel E,F of §4.1, along with the transformations

kG , F , constitute a normal colax functor Rel : Reg -&#x3E; F ,
whose composite with the 2 functor ( )# : F-&#x3E; Ord-Cat is the

fully-faithful inclusion J : Reg - Ord-Cat of §4.1.
There is a simple connection between the kG , F and the

nT of (4.5); for morphisms T : Rel c -&#x3E; Rel 9 and S : Rel 5
-&#x3E; Rel g in F , we see that the composite

is nsT ,

because every component of each of these transformations is
an identity. If we now take our example above of a non-

invertible kG, F and set S = Rel G and T = Rel F , so

that S# = G and T# = F by § 4.1 while ns and n T are

equalities by §4.2, we see that n S T is not invertible, so

that ST provides an example, promised in §4.2, of a mor-

phism Rel t, - el g in F that is not tabulation-defined;
it further provides an example promised at the end of § 2.6.

Let us say of a functor F : c -&#x3E;F , that it almost
preserves jointly-monic pairs if, for any jointly-monic pair
: O -&#x3E; A , O2 : O -&#x3E; C) , the strong epimorphism r in
the factorization (4.2) is a retraction; of course F almost

preserves jointly-monic pairs if it preserves them but the
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former condition is strictly weaker, being automatic when
F = Set ; both conditions are a fortiori satisfied when F
is left exact. It is clear from the last sentence of the
first paragraph of this section that kG , F is an equality
Rel(GF) = (Rel G)(Rel F) if either F almost preserves
jointly-monic pairs or G preserves strong epimorphisms.

Write Reg 1 ex [resp. Regs e] for the locally-full sub-2-
categories of Reg given by restricting to those F: f: -&#x3E;F 
that are left exact [resp. those that preserve strong epimor-
phisms], and Regreg for Reg 1 ex0 Regs e, where F now

preserves the whole regular-category structure. We conclude
from the last remark and the results of §4.3 that the res-

trictions of Rel : Reg-&#x3E; F to Reg 1 e x , 9 to Regs e , and
to Reg r eg .are 2- functors: which take lhel.r values respect-
tively in FS  , in F&#x3E;, and in F = .

4.5 A general colax functor, unlike a 2-functor, does not

produce an adjunction from an adjunction; yet the special
properties of the colax functor Rel enable us to cxhibtt a
bijection between adjunctions

in F and adjunctions

in Reg . In one direction, the 2-functor ( ) # applied to

(4.13) gives as in (3.3) an adjunction

in Ord-Cat, which we may equally see as an adjunction (4.14)
in Reg . For the other direction we start with (4.14);
because the right adjoint F preserves jointly-monic pairs,
while the left adjoint G preserves strong epimorphisms, the
last section gives two distinct reasons for the conclusion
ReI(GF) = (Rel G)(Rel F) . This allows us to define a trans-

formation v : (Rel G)(Rel F) -&#x3E; 1 by

v is

while we define a transformation u : 1 -&#x3E; (Re! F)(Rel G) by
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u is the

Since (Rel a)# = a by §4.1 and (kF, G)-.", = 1 by §4,4, we have

and

Because the triangular equations for u and v, , when writ-
ten in terms of components, are by §2.7 and (4.18) just those

for ), and E y we do indeed have an adjunction

in F . Clearly, if we now apply ( )# to (4.19), we regain
(4.14). It remains to show that, if we begin with (4.13),
and take for (4.14) the adjunction (4.15), so that G = S # ,
F = T# , n = x# , and c = y#, the (4.19) we obtain is

(4.13) itself.
By (3.12), however, the left adjoint S satisfies (4.11)

in the form S(kho) = Sk.Sh° , and a fortiori satisfies (4.8).
By §4.2 therefore, S = Rel G . Note that (3.12) does not

give (4.8) for T - it gives rather (4.10) - so we reason

indirectly as follows. Since S --l T by (4.13) and S --l 
Rel F by (4.19), we have "T= Rel F ; by §4.2, this suffi-
ces for the conclusion T = Rel F . Now (4.18) gives
u# = x# and v# = y# , so that u = x and v = y by §2.7;
this completes the proof.

Since, as we have just remarked, S satisfies (4.11)
and T satisfies (4.10), it follows from §4.3 that, for any
adjunctions (4.13) in F , S is a colax functor and T is a

lax functor; compare this with the remarks in § 3.3, where the
Rel E and Rel 9 of (4.13) are replaced by general objects
94 and v of F . As there, S is a 2-functor when it is
lax as well as colax, which is to say that (4.13) is in fact
an adjunction in F ; by §4.3, this is so precisely when G

nearly preserves pullbacks.

We call the adjunction (4.14) in Reg a geometric morph-
ism when G is left exact. (In contrast to some authors,
for whom the geometric morphism is F , or G , or the pair
(F,G) , we understand by it the whole adjunction.) In other
words a geometric morphism is an adjunction (4.14) in

Reg 1ex . By § 4.4, the left exactness of G gives
k F, C, = 1 , so that here (4.17) simplifies to u = Rel -o
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By §4.3, the geometric morphisms (4.14) are in bijection with
those adjunctions (4.13) in F for which S preserves tab-

ulations and the unique map SI - I in E is invertible.
We return to geometric morphisms in §5.10, replacing the tab-

ulation-preserving condition on S by one more 2-categorical
in spirit; see the corresponding remark in §4.3 above.

4.6 We end with some comments on mates under a pair of

adjunctions, in the sense of [16, Section 2]. Suppose that

alongside (4.13) we have an adjunction x’ ,y’ : S’ --I T’ :
Rel E’ -&#x3E; Rel 5’ , and morphisms P : Rel E -&#x3E; Rel el
Q : Rel 9 -&#x3E; Rel 9 in F ; then the formulas of [16] give
a bijection, natural in the sense described there, between
transformations f : QT --&#x3E; T’P and transformations g : S’ Q -
PS . Since mates are preserved by a 2-functor, the natural
transformations

and

in Reg are again mates. Now suppose that, instead, we begin
with the adjunction (4.14) and another such 1)’ ,c’ : G’ -
F’ : E’ ---&#x3E; F’ , with functors H: E-&#x3E;E’ and K : F - F’ ,
and that we have a pair of mates A : KF - F’ H , u : G’ K --&#x3E;
HG . The transformations kH , F and k, G t K being identi-

ties by §4.4, we can define transformations 

and

along the lines of (4.17) by

The calculations leading from (4.17) to (4.18) here give
f# = A and g# = u , so that f # and g # are mates. It
follows that in fact f and g are mates; for if the mate

of f is h , that of f# is h# , giving g# = h# ,
whence g = h by § 2.7.

5. CARTESIAN OBJECTS IN F AND VARIOUS
MORPHISMS BETWEEN THEM

5.1 Let k be any 2-category with finite products - in the

2-categorical sense, of course: the projections
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and

induce for each c an isomorphism of categories

while for the terminal object 1 each K(C,1 ) is a one-

arrow category. For each object 4 of K we have the diag-
onal morphism 8 : 4 -&#x3E; 4 x 4 and the unique morphism
! :  A -&#x3E; 1 ; we call 4 a cartesian object of K when 5

has a right adjoint o : 4 x A -&#x3E;A and ! has a right adjoint
I : 1 -&#x3E;A . Although there is a strong pressure of analogy
to use x for o and [1] for I , it is probably less

confusing in our context not to do so; when K = F and
4 = Rel LP for instance, o is not the product in Rel c ,
nor I the terminal object, in the usual "external" sense;
moreover our present notation agrees with that of the seminal
article [6].

We denote the unit of the adjunction 5 - e by
A : 1 -&#x3E; es : 4 --&#x3E; A , and the counit by

the latter has the components

and

We leave it to the reader to write out the triangular equa-
tions in this generality; one of them splits into two compo-
nent equations. For the unit of the adjunction ! --i I we

use t : 1 -&#x3E; I! : s4 - 4 ; here the counit is trivially the

identity, and the triangular equations reduce to

tI = 1 : I -&#x3E; I .

Write

and p : 4 x 1 -&#x3E;A for the canonical associativity, commu-

tativity, and unit isomorphisms for the product in K .

Since we trivially have

we have for any cartesian 4 an isomorphism
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in x between the corresponding right adjoints. Similarly
we have isomorphisms in X

When the 2-category K is of the form v’-Cat for some
symmetric monoidal closed V , a cartesian object A is
just a V-category that admits finite products in the usual
sense; the only such cases that occur below are those where
K = Cat or Ord-Cat . Here, of course, we do write x for
O , although we retain I for the terminal object of 4 ;
now the units and counits are given by their components

as are a , c , and r.

Let X’ be a second 2-category with finite products; we

still use x and 1 for the products in K’ , but we use

8’ , O’ , a’ for the X’- analogues of s , 0, a , and so

on. Suppose now that O :K --&#x3E; x’ is a 2-functor which pre-
serves finite products, in the sense that the usual compari-
son morphisms p : O(A x s) -&#x3E; M x M and v :O 1 1 are

invertible. For our applications it suffices to suppose that
u and v are identities; if they are not, the formulae that
follow need slight but trivial modifications, without any
change to the essential conclusions. For any 4 in K ,
the diagonal 8’ : &#x26;4 -&#x3E; OA x M is -ts4 and the unique OA 

-&#x3E; 1 is O! ; so that if A is cartesian so is ts4,
with 0’ = to and I’= I , with p’ = Op , q’ =Oq , A’ = OA ,
t’ = Ot , and moreover (since o preserves mates) with
a’ =Oa , c’ = Oc , and r’ =Or.

In particular, taking O to be K(C,-) : X -&#x3E; Cat , we

see that a’ = K(C,a) is the usual associativity isomorphism
in Cat . The coherence of a , c , r for any cartesian 4

in K now follows from the classical coherence of
a’ , c’ , r’ in Cat , since 2-cells cx,f3: P - Q : 4 -&#x3E; se

coincide if K(C,a) = (K(C,B) for all c .

5.2 Consider now a morphism T : 4 -&#x3E;A in X between car-

tesian objects, where X has 8,i,I,a and so on. We have

equalities 8T = (T x T)8 : A-&#x3E; A x A and !T = ! : A -&#x3E; 1 ;
these equalities, regarded as identity 2-cells, have mates
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By the results of [16], T is the unique 2-cell with

and

while T° is simply the unique 2-cell. In the case x =

v-Cat , T is given by its components

and is the usual comparison morphism, the components of (5.5)
then being

When O : X -&#x3E; X’ is a finite-product-preserving 2-functor
as above, we can compare (PT)~ and t(T) , these having
the same domain and codomain since O(T x T) = DT x OT ;
similarly for (tT)o and O(T°) . In fact it is immediate
from (5.5) and the uniqueness of T° that

We call T: A -&#x3E;A a cartesian morphism if T and T°
are invertible 2-cells of X ; that is to say, if " T pre-
serves finite products" in the internal sense - which in the
case of v’-Cat is equally the usual external sense. (Al-
though aware that this nomenclature conflicts with the use of
"cartesian arrow" in the theory of fibrations, we think it

unambiguous in the context.) It follows from (5.7) that:
when ét is finite-product-preserving, tT is a cartesian
morphism whenever T is so. Finally, we observe that any
right adjoint T: s4 -7 ;¡ in X between cartesian objects
is a cartesian morphism. For, this being classically so when
K = Cat , we conclude that each K(C,T) is cartesian, and
hence by (5.7) that K(C,T) and x(c,V) are invertible for
each c , whence T and T° are invertible 2-cells in x .

5.3 We now seek conditions for an object 4 of F to be
cartesian. First, s : 4 -&#x3E; A x A admits a right adjoint o in
F if and only if it satisfies Conditions (i)-(iv) of Theorem
3.5. Since 8 is clearly a 2-functor, Condition (i) is aut-

omatic. Because 8# : s4. -7 (4 x A)# =A# x s4. is the usual
diagonal in Ord-Cat, Condition (ii) is the requirement that
the Ord-category s4. admit binary products; we denote these
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by with the units and counits as in (5.3). Next,

being the usual diagonal in Ord, Condition (iii) is the

requirement that each ordered hom-set s4(A,B) admit binary
infima O^W. Now Condition (iv) takes the form

which - see the remarks preceding the proof of Theorem 3.5 -
is an equality when it holds. Similarly, for ! : 4 -&#x3E; 1 to

have in F a right adjoint I : 1 -&#x3E;A (which we identify
of course with an object I of A), Condition (i) is again
automatic; Condition (ii) is the requirement that the
Ord-category A# have a terminal object I , whose unit we
denote as in (5.3) by tA : A -&#x3E; I ; Condition (iii) is the
requirement that each ordered hom-set 4(A,B) admit a top
element TAB ; and Condition (iv) - trivially an equality
when it holds - takes the form

In summary, the object sad of F is cartesian if and only if
(i) the Ord-category A#. admits finite products, (ii) each
ordered set A(A,B) admits finite infima, and (iii) we have
(5.8) and (5.9).

The counter-example in § 3.6 shows precisely that (5.9)
cannot be omitted; one presumes that the same is we of
(5.8). The alternative formulation of (5.8) corresponding to

(3.23) here reads

where o : C -&#x3E; A x B is any arrow in 4 while f: C-&#x3E; A
and g : C - B are selected maps; the more special but
equivalent formulation (3.24) contemplates O : A x B -
A x B and reads

Similarly the formulation (3.23) of (5.9) becomes

while (3.24), as the special case A = I of this, is just
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(5.9) again.
Suppose now that 4 is a cartesian object of F , that

the finite products in 14. (along with their units and co-

units) are given, and that O is then constructed as in the

proof of Theorem 3.5; this ensures that we have an actual

equality o* = x , and not merely an isomorphism. So 0 is

given on objects by A o B = A x B (and it is often appro-
priate to replace x by O when writing the maps (5.3)),
while by (3.14) the value of o on arrows O: A --&#x3E; C and

0 : . B -&#x3E; D is

of course - recall our convention whereby Roman letters de-
note selected maps - we have f o g = f x g . Because 8 is
a 2-functor it follows from §3.3 that O: A x A -&#x3E; A is a

(normal) lax functor; that is

However we have equality in some cases: whether by § 2.5 (o
being a lax functor) or by (3.12) (0 being a right adjoint),
we have

Recalling from §2.9 that the product in F is also the pro-
duct in F , in F&#x3E; , and in F_ , we conclude (cf. §3.3)
that 4 is a cartesian object not only in F but also in

F; the case where (5.14) is always an equality, so that 0

is a 2-functor, is of course that in which 4 is a cartesian

object of F .
Since, by Theorem 3.5, p,q&#x3E;, o, and t are transfor-

mations in F , (2.3) gives for O:A-&#x3E;C and 0: B -&#x3E; D
the inequalities

v v

Because, in the notation of § 3.2, 8 here is ,, and !
is T , the first formula of (3.7) gives 
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for O ,W : A -&#x3E; B ; since t = 1I , (5.12) is a special
case of the second of these equations.

Consider finally the isomorphisms a , c , r of (5.1 )
and (5.2) for 4 . By §5.1, a# , c* , r# are the usual
canonical isomorphisms for the cartesian product in s4. ;
rince a and a# for instance, have by §2.7 the same com-

ponents, we use a for a# when no confusion is likely.
The a of (5.1), however, is an isomorphism in F; conse-

1’lently, hy §2.6, we have commutativity in

for arbitrary arrows 0,0,o in 4 ; and similarly for c

and r .

5.4 The bicategories considered by Carboni and Walters in
[6] are in fact Ord-categories. They define in [6, Defini-
tion 1.2] the notion of a cartesian bicategory - but not as a

cartesian object in some 2-category, no 2-category apt for
this purpose being known at the time of their writing. In

hindsight, comparing our conditions for cartesianness in §5.3
with [6, Theorem 1.6] shows that an Ord-category 4 is a

cartesian bicategory in their sense precisely when, with 4*
consisting of all maps, s4 is a cartesian object in F .
Note that our (5.8) - or rather its generalization (5.13) -

as well as (5.9) occur in the conditions of their Theorem
1.6; the last two inequalities of our (5.16) occur in their
Definition 1.2; our (5.17) occurs in the proof of their Theo-
rem 1.6; and our (5.18) is part of their Definition 1.1.

5.5 We turn to some examples of cartesian objects in F ,
cach of which is in fact cartesian in F . Recalling the

nomenclature in the last paragraph of §4.4, observe that, for

regular categories 8 and F , the usual product 8 x 9 in
Cat is a regular category; that its projections onto 8 and
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F lie in Reg,, . g , and that it constitutes the product of
f: and 5 not only in Cat (or in Ord-Cat, for that matter)
but also in each of Reg , Reg 1ex , Reg.. , and Regreg . 
Similarly, the one-arrow category 1 is terminal in each of
these. In fact, every regular category E is a cartesian

object in Regreg, and so a fortiori in Reg and in the inter-
mediate 2-categories above. For 6 : E - E x 6 and
! : P -&#x3E; 1 , with their usual meanings in Cat, lie in

Regreg, while the same is true of their right adjoints
x : 9 x c - x and I: 1-&#x3E;E: in Cat : these preserve
finite limits since they are right adjoints, and preserve
strong epimorphisms since f x g is a strong epimorphism -
as the composite of the pullbacks f x 1 and 1 x g - when
f and g are such.

For our first example, which is the central one for the

present article, consider the 2-functor Rel : Regr e g -&#x3E; F-
of §4.4; when we recall from §2.9 the description of the pro-
duct in F , which is also that in Fs , in F&#x3E;, and in

F, it is clear from §4.1 that Rel preserves products.
Accordingly, by §5.1, Rel sends the cartesian object x of

Regreg to an object Rel x that is cartesian in F and a

fortiori in F and in F . By § 5.1 again, the I of

Rel E is just the terminal object I of E , while the 0

of Rel c is Rel(x) - so that A o B = A x B and, for
o : A-&#x3E; C and w : B -&#x3E; D in Rel E,, the relation
OOW:AOB --&#x3E; CO D is that tabulated by

Since, by §4.1, the components of Rel p are those of p ,
and so on, we may as well by § 5.1 denote the units and co-

units for Rel c by the same letters p , q , A , t used
for E ; which agrees not only with our standard notation
for a general cartesian object, but also with the notation of
§ 1.4 for ReI 8. Of course the 2-functor

sends Rel 6’ back to E , seen now as a cartesian object of
Ord-Cat.

For our second example we refer back to §1.11, observing
that in a later article we shall exhibit c " Idl c as part
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of a product-preserving 2-functor Id1 : Regreg -&#x3E; F- ; thus

Idl c too is a cartesian object of F . The o of Idl E

is again given by (5.19), the O OW there being an ideal
when 0 and 0 are ideals.

Our final example is of quite a different flavour, and
we establish its cartesianness by a direct argument. We re-

marked in § 1.1 that Ord is itself an Ord-category; in fact
OW : A -&#x3E; B in Ord precisely when Oa  Wa for all
a e A . Now write A = Ordr i for the full sub-Ord-category
of Ord determined by those ordered sets that admit finite
infima, and make it into an object of F by selecting all of
its maps. These, of course, are those monotone functions
f : A --&#x3E; B that have right adjoints f* in Ord ; note that
an arrow in A - even a map - is not required to preserve
the finite infima. The Ord-category 4 has a terminal
object 1 and binary products A x B , the latter being the
usual product of sets with the pointwise order; thus
ô : s4 - 4 x 4 and ! : 4 -&#x3E; 1 have in Ord-Cat right
adjoints x : 4 -&#x3E;A and I : 1 -&#x3E;A. Since A# = Map 4 ,
these 2-functors x and I are by §2.5 morphisms in F .
Moreover the components (5.3) of the units and the counits
are in fact maps: A*: A x A -&#x3E; A sends (a,a’) to a A a’ ,

A

P * : A -&#x3E; A x B sends a to (a,T ) , q*AB: B -&#x3E; A x B
AB B AB

sends b to (TA,b), and t* : I -&#x3E; A sends the unique
element of I to TA . Since the inequalities (5.16) are

valid here, being in fact equalities, the units and counits
above are transformations in F ; accordingly the adjunc-
tions 8 - x and !-) I lie in F so that 4 =

Ord f i is a cartesian object of F .
The cartesian objects 4 of F which are, to within

biequivalence, of the form Rel x for a regular 8 are

characterized (although not in the language of F - see § 5.4
above) by Carboni and Walters in [6, Theorem 3.5]; they are

those for which 4* = Map 4 , for which every object is dis-
crete in the sense of [6, Definition 2.1], and which are

functionally complete in the sense of [6, Definition 3.1].

5.6 Consider now a morphism T : 4 -&#x3E;A in F where
and A are cartesian objects of F . The transformation T
of (5.4) in F has components TAB: T(A 0 B) --&#x3E; TA 0 TB in

. Since
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and

by (5.7), and since a transformation f in F has the same

components as f# , it follows from (5.5) that TAB is the

unique selected map (that is, the unique arrow in A#)
satisfying (5.6), while T : T I --&#x3E; I is simply the unique
arrow in ;4..

As we saw more generally in §5.2, it follows from (5.20)
that T# is cartesian whenever T is so; recall from the
same § 5.2 that, for T* : 4* -7 A#, to be cartesian is just
to preserve finite products - that is, to have T’ and each

s invertible. Note that, by §2.6, the cartesianness of T

requires, besides this invertibility of T° and the TAB’
also the commutativity for all arrows 0 and 0 of the dia-

gram

Note that, since by §5.3 the cartesian objects of F
are in fact cartesian objects of F, to say of T: A-&#x3E;A 

that it is a cartesian morphism in F is, when T happens
to be a lax functor, equally to say that T is a cartesian

morphism in F . . Similarly, when 4 and X like Rel 6

and Rel 9 are cartesian objects of F , to say of a 2-

functor T that it is a cartesian morphism in F is equally
to say that it is a cartesian morphism in F_ .

We make use below of the following observation: for car-

tesian objects 4 and X of F and a cartesian morphism T :
s4 in F  , each TA B : A(A,B) -&#x3E; A(TA,TB) preserves

finite infima. To see this, note that by (5.6) the composite
of TAA : TA -&#x3E; T(A o A) and T AA : T(A 0 A) - TA 0 TA is
ETA ; whence, replacing A by B , taking right adjoints,
using (2.1), and observing that the right adjoint of the in-
vertible BB is its inverse, we have A*B. T BB = TA* . Com-

BB TB BB B

bining these equations with (5.21) for the cartesian T gives
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us, for O,W : A -&#x3E; B , the equation

by § 2.5. T being a lax functor, the right side here is
T(A*(OO W)A) ; so that by (5.17) our equation reads

B A

To A To = T« A 0) The argument for nullary infima is sim-
ilar but easier, using the trivial T°.TtA= tT A : TA -&#x3E; I ,
the right adjoint Tt* = t*.T° of this, and the second

B TB

equation of (5.17) .

5,7 Since, as we have seen, the product in Regreg is equally
that in Reg and the product in F is equally that in F , the

expressions

and

have unambiguous meanings for arbitrary morphisms F,F’ in Reg
and T,T’ in F . We remarked in § 5.5 that the 2-functor
Rel : Regreg -&#x3E; F_ preserves products; but it is equally
clear from § 4.1 that more is true; not only do we have
Rel(E x E’) = Rel e x ReI B’, but for any F : c -&#x3E;F and
F’ : E’ -&#x3E;F’ in Reg we have

In particular we have Rel(F x F) = (Rel F) x (Rel F) .
Consider now the effect of Rel on the mates

and

of the appropriate
identity 2-cells; we are using here X and I for the prod-
ucts in f, and shall use o = Rel(x) and 0 = Rel(D - see

§ 5.5 - for the tensor products in Rel c and Rel F; - While
the result (5.22) below follows quite easily from §4.6, some

may prefer the following elementary argument. Since, as we

remarked in §5.5, x and X lie in Regreg, § 4.4 gives
Rel(Fx) = (Rel F)e and
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accordingly (Rel F) and Rel(F) have the same domain and codo-
main. Because (Rel F)I = F I , the same is trivially the
case for (Rel F)° and Rel(F°). In fact we have

The second of these is immediate: each is the unique map
FI -&#x3E; I . As for the first, the components of F satisfy
the analogue of (5.6); but the components of Rel P and
Rel p being those of P and of p by § 4.1, and (Rel F)PAB
being FPAB by (4.3), the (Rel P) A B also satisfy (5.6);
the desired result now follows from the first paragraph of
§5.6.

We conclude from (5.20) and (5.22), along with (Rel a) #
= a, from § 4.1 and the results of § 4.2, that a functor
F : 8 --&#x3E;F in Reg is cartesian (that is, finite-product-
preserving) if and only if Rel F : ReI 8 - Rel 7 is a car-

tesian morphism in F ; while a morphism T : Rel c - Rel F
in F is of the form Rel F for a cartesian F if and only
if T is tabulation-defined and cartesian.

We remark that Rel F for a cartesian F need be
neither a lax functor nor a colax one. Let Grp be the cate-

gory of groups and F : Grip - Ab the abelianization functor
sending A to A/[A,A] ; although F preserves finite pro-
ducts, it does not preserve monomorphisms - as we see by con-

sidering the inclusion into a non-abelian simple group of one

of its cyclic subgroups; by the first paragraph of §4.3,
therefore, F does not nearly preserve pullbacks; thus, by
§ 4.3 once more, Rel F is not a lax functor. Again,
F = Hom(Z/2, -) : Ab -&#x3E; Ab , although cartesian, does not

preserve the strong epimorphism Z - Z/2 ; by § 4.3, there-
fore, Rel F is not a colax functor.

5.8 The characterizations in § 4.3 of those
T : Rel c - Rel 9 in F of the form Rel F for a left-
exact F , and in §4.6 of those adjunctions
S --l T : Rel 9 -7 Rel 9 in F arising from applying Rel to
a geometric morphism G -l F : E-&#x3E;F in Reg, have the dis-
advantage that the "preserving tabulations" condition they
contain refers to the internal structure of Rel c ; in the
next two sections we replace this condition by others which
can be stated directly in terms of F . One of these is car-

tesianness ; but we need another as well, for which we now

prepare the ground.
For a map i : A - B in an Ord-category s4 , the follow-

ing are equivalent: (i) is a coretraction in sat, in that we
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have oi = 1 for some arrow e : B -&#x3E; A ; (ii) i is

"representably fully faithful", in the sense that, for any
arrows O,W : C -&#x3E;03BC A , the inequality io  io implies
O W; (iii) we have i*i = 1 A - It is in fact trivial
that (i) implies (ii) and that (iii) implies (i); since the
adjunction inequalities ii*  1 and 1  i*i together give
ii*i = i , it follows that (ii) implies (iii).

We call such a map i in s4 intrinsically monomorphic.
Recalling from § 1.7 that f* = f° for a map f in Rel 9 ,
we see from §1.4 that the intrinsically monomorphic maps in
Rel B are precisely the monomorphisms in f:.

5.9 Theorem. For a morphism T : Rel E -&#x3E; Rel 9 in F to

be of the form Rel F for a left-exact F : e -&#x3E;F, it is
necessary and sufficient that T be a cartesian morphism in

FS satisfying

for every intrinsically monomorphic map i : A - B in Rel t,
- that is, for every monomorphism i in E . For T to be
of the form Rel F for an F in Regr e g , it is necessary
and sufficient that T be a cartesian morphism in F= .

Remark. The latter assertion is essentially [6, Corollary
3.6].

Proof. To facilitate reference to results above, let us

write f ° rather than f* for a map f in Rel 6 As for
the necessity of the conditions, we saw in § 4.3 that T must

be a lax functor; it must by § 5.7 be cartesian, since any
left-exact F is cartesian in Reg; and it must satisfy
(5.23), by (4.8) applied to the relation W = ii : B-&#x3E; B
tabulated by (i : A -&#x3E; B , i : A-&#x3E; B) . Turning to the
sufficiency, it suffices by the result of § 4. 3 - since the
invertibility of the unique map TI -&#x3E; I is part of cartesi-
anness - to show that T preserves tabulations.

We first show that T preserves the tabulations of such
relations as 0 = iio with i monomorphic in E . By § 2.5,
the lax functor T applied to the equality ioi = 1 gives
Ti°.Ti = 1 , so that Ti is by § 1.7 a monomorphism in F ;
since To Ti.Ti° by (5.23), TW is indeed the relation
tabulated by (Ti,Ti) .

We now turn to a general relation o : A-&#x3E; B , using
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Proposition 1.10 to describe its tabulation (O1,O2) . We

write p and q for pTA, TB and qT A , T B , and T for the

invertible TAB. With W = 1 A q°op as in Proposition
1.10, the final observation of § 5.6 gives us

TW = 1 A T(q°op), which is 1 A Tq°.To.Tp by § 2.5 since T
is a lax functor. Now (5.6) gives, since the right adjoint
of T is its inverse,

Since, as we have just seen, the tabulation of Tw is (Ti,
Ti , it follows from Proposition 1.10 that that of TO is
(pT.Ti,qT.Ti), which by (5.6) again is (Tp.Ti,Tq.Ti) , or

(TO1,TO2), as desired. The latter part of the theorem now

follows from the final paragraph of §4.3, since (5.23) is
automatically satisfied by a 2-functor T .

5.10 Theorem. In the bijection of § 4.5 between adjunctions
11,£ : G --l F : 8 -&#x3E;F in Reg and adjunctions x,y : S -l T :
ReI 8 -&#x3E; Rel F in F , the former is a geometric morphisms
if and only if S is a cartesian morphism in F. Then S

is in fact a 2 functor, T too is a cartesian morphism in
F , and S --l T may be seen as an adjunction in F  .
Proof. Since, by (3.12), the left adjoint S automatically
satisfies the S-version S(ii*) = Si.Si* of (5.23), the first
assertion follows at once from Theorem 5.9. Then, by Theorem
5.9 again, the right adjoint F = T# being left exact, T too
is a cartesian morphism in F . Because S is necessarily a

colax functor by § 4.5, it is in fact a 2-functor.
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