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CONVENIENT AFFINE ALGEBRAIC VARIETIES

by Paul CHERENACK

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXI - 4 (1990)

ReSUMe. On 6tend la cat6gorie des vari6t6s algebriques
sur un corps k en une cat6gorie AF qui est cart6sienne
ferm6e. Pour cela on construit d’abord la cat6gorie cart6-
sienne fermee SP des applications polynomiales entre

espaces vectoriels structur6s. Les z6ros de morphismes
dans AF vers k determinent des vari6t6s algebt-iques (de
dimension infinie) et les morphismes de AF entre vari6t6s

aig6briques (comme dans le cas de dimension finie) sont

juste des restrictions de morphismes dans SP .

0. INTRODUCTION.

Frdlicher [5] has identified a Cartesian closed cate-

gory, the category of convenient vector spaces, in which a mea-

ningful study of differential calculus can be pursued. Nel [11]
has treated functional analysis in a similar way and his work
motivates some of the directions taken here. Here a category AF
becomes a convenient category for affine algebraic geometry.
The construction of AF although complicated, assumes little

specialized knowledge on the part of the reader in contrast to

analogous results found in our study [I] of ind-affine schemes.
However, where ind-affine schemes are ringed spaces, objects in
AF are not. The construction proceeds in stages since each

stage has its own difficulties. Thus hom-sets may not have
their canonical associated basis and have only a canonical linear-

ly independent subset; or the hom-functor in the contravariant
variable may depend on infinitely many variables.

What possible applications can be made of convenient
affine algebraic varieties? Because AF is Cartesian closed and
should in important cases have suitable quotients (see [1]), as in

ordinary homotopy theory, one should be able to define appro-
priate suspension and loop functors. See [3] where suspension
and loop functors have been defined for the restricted category
of ind-affine schemes. The infinite dimensional varieties here can
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also be useful in the study of affine moduli problems. For more
details see 141. We intend to prove in a later paper that the
structure that we place on hom-sets here corresponds to that
of the Hilbert scheme construction [7]. Finally, one can use the
structure placed on Hom AF(V1,V2) C, · t it with a topology
that we call the Zariski topology. In analogy to the situation
for C°°-differentiable maps [6] one would like to determine
whether certain classes of transversal maps in HomAF(Vt, V2)
contain an open subset. Some work in this connection can be
found in [2] for ind-affine schemes.

All vector spaces will be defined over an uncountable
infinite field k (so that in particular there is a bijective corres-
pondence between polynomials and polynomial maps). The sym-
bol Ix will always denote the identity map on a set X. Let V
be a vector space and V’ a vector subspace of V. Let t: V’-&#x3E; V be
the inclusion map. A map IT: V-V’ is called a projection if it is

linear and satisfies nO L = IV’. Suppose that L is a linearly inde-
pendent subset of V, U is a subspace of V generated by the
subset {u,...,un} and W is a subspace of U generated by
{u1,..., um}. Then, letting v = a1 u1 + ... + a n un the projection
7r: U-W associated to L sends v to a1u1+--- +amum.

DEFINITION 0.1. A pol.yspace is a triple (V,L,) where V is a

vector space, L is a basis of V and  is a well ordering on L. A

partial polyspace is a quadruple (V,L,P,) where L is a linearly
independent subset of the vector space V, 5 is a well ordering
of L and P consists of one projection nw: V-&#x3E;W for each finite
dimensional subspace W of V generated by elements of L sub-

ject to the condition:
If W c U where U is also a vector subspace of V generated

by a finite number of elements of L and n: U-W is the projec-
tion associated to L, then nOnu= nw.

To every polyspace (V,L,5) one can associate (Section 1) in
a natural way a partial polyspace (V,L.P,s) . We will usually wri-
te V instead of (V,L,) (resp. (V,L,P,5) ) and then when necessary
write Lv for the basis associated to the polyspace V (resp. Lv
and Pv for the linearly independent set and the collection of

projections associated to the partial polyspace (V,L,P,5)). In
Section 1 we define for polyspaces some useful constructs and

provide some useful motivating examples. To avoid multiple
subscripting we sometimes write Xi instead of Xi.



317

DEFINITION 0.2. Let L 1 = Lvi and L2 = LV2 be linearly indepen-
dent sets defining the polyspaces V1 and V2. Define a map
a: V1-&#x3E; kL 1 (and similarly a map B: V2 -&#x3E; kL2) by sending t, E V1 to
(a;? E kL 1 where if ai1,..., aim are the coordinates of kL1 corres-
ponding to the elements Vit ,..., v;m of L, V’1 is the vector space
generated by vi1,..., vim and 1t: V1-&#x3E; V’1 is the unique projection in

P1= Pvl, then (ai1,...,ajm) is the coordinate representation of
n( v) with respect to y it’... , Vim- The condition of Definition 0.1

guarantees that a is well defined. A map f: V1-&#x3E; V2 is a polymap
of partial polyspaces if there is a commutative diagram

such that, for finitely many (or just one) coordinate y 1,...,yr in

k L2 there are finitely many coordinates x,...,xm in kL 1 such
that yp - ( f’) p (p= 1, ... , r) is a polynomial in the x 1 ,..., xm.

Thus, for a polymap each relevant coordinate in V2 is a

polynomial in the relevant coordinates of VI. From Definition 0.2
it is clear that the collection of polymaps between polyspaces
(resp. partial polyspaces) forms a category P = Poly (resp. PP =
PPoly). For the purpose of viewing f in Definition 0.2 as a rin-

ged space map it would have been useful to assume that f sent
linear subspaces of V 1 generated by finitely many elements of L1
into linear subspaces of V2 generated by finitely many elements
of L2. The difficulty here is that if 9:V1xV2-&#x3E;V3 is a polymap
of polyspaces, the induced map g0: V1-&#x3E; HomP( V2, V3) need not
send finite dimensional subspaces to finite dimensional subspa-
ces even if g does. In Section 1 examples of polymaps are given
and an alternate coordinate free description of polymaps is pro-
vided.

We will ignore the well ordering on the linearly indepen-
dent set Lv of a partial polyspace V unless it is essential in
our considerations. Note that if Lv has two different well orde-
rings, then the identity map is an isomorphism between the two
different partial polyspaces. 

We prove in Section 1 that Poly has products. The set H =

Homp(V l’ V 2) will be given the structure of a partial polyspace.
The subspace of H generated by LH contains functions which

roughly speaking determine the other functions in H. A major
difficulty forcing us to extend PPoly is the following. If V1 -&#x3E; V2
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is in PPol..v, then the induced map from Homp(V2,V3) to

Homp(V1,V3) need not be. See Example 1.4. Hence we make the

following definition.

DEFINITION 0.3. using the conventions ot Definition U.2, a map

f: V1-&#x3E;V2 of partial polyspaces is a basic stratawise polymap if,
for every finite dimensional subspace V of V 1 generated by the
elements of L1 and the inclusion tv: V-&#x3E; V1, the map fO tV is a

polymap. Unfortunately the collection of basic stratawise poly-
maps does not form a category. Hence we define f: V1-&#x3E; V2 to

be a stratawise polymap i f f = f1O f2O---O Fn where the fi (for
i = 1,...,n) are basic stratawise polymaps.

Clearly the collection of stratawise polymaps whose ob-

jects are the partial polyspaces forms a category that we denote
SP or SPoly. We can now define a bifunctor (Section 2)

F: PopxP -&#x3E; PP where F(V1,V2) - (Homp(V1,V2),LH,PH,).
We wish to identify the maps V1-&#x3E; Homp(V2, V3) in PPoly (with

VI, V2 and V3 objects in P) corresponding to maps VIXV2-V3 in
P. The following definition leads to an answer.

DEFINITION 0.4. A map of polyspaces f : V1-&#x3E;V2 maps into strata
if f(V1 is contained in a finite dimensional subspace of V2.

The collection of polymaps mapping into strata need not
form a category since for instance the identity map need not

map into strata. We note the inclusions

Poly C PPoly c SPOtJ’
where (Section 1) we identify every polyspace with its associated

partial polyspace. We will eventually show that SPal)’ is Carte-
sian closed by working up the ladder of inclusions.

Let r(V1,Homp(V2,V3) be the set of all elements f in

Hompp (V1,Homp(V2,V3)) such that, for every V’3 of V3 genera-
ted by a single element of L3 and the projection map 1t: V 3-&#x3E; V’3,
the composition

is a polymap mapping into strata. We show in Section 3:

THBORBM 0.5. There is a natural equivalence

Homp (V1xV2, V3) = r(V1, Homp(V2,V3))
arising from that in sets where the right and left hand sides of the
natural equivalence are trifunctors
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For finite dimensional V1, V2 and V3 one can readily show
that there is a natural equivalence arising from that in Sets:

Homp,(V1xV2, V3)= Hompp(V l’ Homp(V2,V3)).
See [1]. Theorem 0.5 shows how one can extend this equivalen-
ce to polyspaces where the "internal hom-f unctor" is a partial
polyspace.

In Section 4 we describe a construction of Nel [11] which
enables one to extend separately the category of affine algebraic
varieties and projective algebraic varieties over the complex
numbers to a Cartesian closed category. This construction may
be too general for many purposes. However it motivated looking
at SPoly.

DEFINITION 0.6. Let C be a concrete category (see Mac Lane
[10]) which is generated by a collection T of maps in C which
contains all the identities of C. Thus every map f in C has the
form f = f1O---O fn with f1.... , fn in T. If a and b are objects of
C. the T-product a x b of a and b is an object of C with projec-
tions p1, p2 in T (whose underlying set maps are set projec-
tions) such that, for every pair of maps f: c -a and g: c -&#x3E; b in

T, there is a unique morphism h: c-a xb in T such that pioh =
f and P20h = g. T-limits and T-colimits are defined in the same

way. Let HomT( b, c) denote the collection of elements in

Homc(b, c) which lie in T. Let D be a full subcategory of C and
a , b, c be objects in D. We assume that the T-products a x b
define a functor D x D -C and that the sets Homz-( b, c) plus
additional structure define a functor D -C with respect to the
covariant variable. Then D is called Cartesian closed relative to

C and T-generated if there is, for fixed a and b in D, a natural

equivalence

HomT(ax,c) = Hom T(a, HomT( b, c) )
in C between functors D-Sets arising from the natural equiva-
lence in Sets .

Using these notions we obtain (Section 5):

THBORBM 0.7. The category Poly is Cartesian closed relative to
SPoly and basic stratawise polymaps generated.

We chose - k to be uncountable in order to prove Lemma
5.2 and hence Theorem 0.7. A stronger result could have been
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proven by introducing the notion of partial bifunctor to Defini-
tion 0.6.

Let W be a partial polyspace and f: W-&#x3E; k a stratawise

polymap. Then V(f)- - E W| f(p) -O} is called d hypersurface
in W. The set A[W] = Homsp(W, k) can be given the structure

of a ring using pointwise addition and multiplication. A[W] will
be called the affine ring of W. Let I be an ideal in A[W]. Then

V(I) = {p E W | I f(p) = 0 for all f E I ) }

will be called an affine variety and also an affine subvariety of
W. Note that W= V((01). The V(I) define the closed sets for a

topology on W which will be called the Zariski topologJ/. Let V1
(resp. V2) be a subvariety of W1 (resp. W2). Then a map f:

V1-&#x3E;V2 is a basic map of affine varieties if there is a commuta-

tive diagram

where the vertical arrows are inclusions and f ’ is a basic stra-
tawise polymap. The collection of basic maps B of affine varie-
ties generates a category that we denote AF. A morphism f in
AF is always continuous for the Zariski topologies. On restric-

ting to finite dimensional vector spaces, the above definitions
become the usual ones.

Let AF" denote the full subcategory of AF consisting of
those affine varieties which are affine subvarieties of a polyspa-
ce and where the morphisms between the associated polyspaces
are polymaps. Using Theorem 0.7, we obtain:

THEOREM 0.8. The category’ AF^ is Cartesian closed relative to
AF and basic maps of affine varieties generated.

Finally, in Section 7, using heavily our earlier results, we
prove our main result.

THEOREM 0.9. 1. SPo1.y is Cartesian closed.
2. AF is Cartesian closed.

Initially we defined the notion of polymap by looking at

coordinates. Using this approach it became, for instance, imme-
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diate that PPoly was a category. The construction of internal
hom-functors in Section 2 on the other hand used except where
necessary a coordinate free approach. The coordinate free ap-

proach allowed one to see more clearly the steps needed to

form the convenient category AF. Finally, instead of proving one
gigantic theorem, we have decided to prove simpler results
whose proof generated by analogy in an obvious way the proof
of more general results (proof bootstrapping).

1. PULYSPACES AND POLYMAPS.

We will establish some concepts which will be used later
in placing structure on the hom-sets of Poly. First, for a partial
polyspace V, let Fv denote the collection of finite dimensional
vector subspaces of V generated by a finite number of vectors
in Lv. When V is a polyspace, one can form the collection Pv
of projections nv’: V-V’ (V’ E Fv) with respect to the basis L.
Since these projections satisfy the conditions stated in Definition
0.1 every polyspace is a partial polyspace in a natural way.

Let V be a partial polyspace. For n1, n2 2 E Pv we write

n1&#x3E; n2 if there is a commutative triangle

with a a projection. Clearly a is unique. Note that &#x3E; is a partial
ordering. A set X with a partial ordering &#x3E; is up-directed if, for
a, b E X, there is a c E X such that c ,- a, b.

LEMMA 1.1. Let V be a partial poli-space. Then, as Fv is up-di-
r-ected ki- inclusion, Pv is up-directed b.J" &#x3E;.

The proof is clear.

EXAMPLE 1.2. a) Let

An = {(ai) E kNI aj= 0 for i &#x3E; n}.

Since UAn ( n E N) can be used to represent polynomial maps
from A1 to At, we sometimes write

H* = Homp(At,A 1 ) = UAn (nE N).
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A natural selection of basis for H* making it into a polyspace is

E = t ei ei = (Eji)jEN}iEN where Eji = 0 if i# j and Eii = 1.

Here PH* consists of projections onto various finite dimensional
coordinate planes. Note that H* is the direct sum of copies of k
indexed by N.

b) The vector space kN is not viewed as a polyspace in
its own right but as a subspace of kB where B is a basis of k N
and

card(B) = dimk(kN) &#x3E; card(N).
For kN, when referrred to later, we assume that B z E where E
is defined in (a). Note that kN is the direct sum of copies of k
indexed by B.

Let V, W be finite dimensional vector spaces. Choosing a

basis for V and W. a map f: V-W is represented by a map
f0 : kn-&#x3E; kt" where n = diMkV and m = dirtlJ.cW. If f0 = ( f0i)i-1,...,m’,
f;° is a polynomial map fi0 : kn-&#x3E; k , then f is called a primitive
po1.ymap. Note that this definition is independent of bases cho-
sen for V and W.

One can now provide a coordinate free interpretation of

polymaps.

LEMMA 1.3. A map f:V1-&#x3E;V2 of partial pol vspaces is a pol vmap
if, for all 7t E P2’ there is a y E P1 sufficiently large and a primiti-
ve polymap f’ such that the diagram

commutes. 

Note that the term "sufficiently large" is used with res-

pect to z on P1. The proof is straighforward.

EXAMPLE 1.4. a) Let f:A1-&#x3E;A1 be a polynomial map and

Then the map
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induced by f in the contravariant variable, embeds in a diagram
(with Lrn the inclusion):

where ( ci ) E Am is sent by f’ to ( bp) E Amn with

where

Similarly, the map f. induced by f in the covariant variable em-
beds in a diagram

where (Ci) E Am is sent by f’ to ( bp) E Amn with

where

Because this last expression for bp is independent of C q for q
large, f. is a polymap but clearly f* is only a stratawise poly-
map.

b) Let B be the basis defined in Example 1.2 for kN. Then
if f: kN-&#x3E; kN is a polymap, it is not difficult to see that each
coordinate of f is a polynomial in a finite number of variables.
Not every map f : k - kN whose coordinates are polynomials
need be a polymap. For instance, f defined by setting

f(Xj)jEN = (Yi)iE N where yl = x 1x2 ... xi

is not a polymap if 1 =(1,1,...,1,...)EB. To see this note that the
coordinate corresponding to 1 depends on x1, x2, ... , xn,... which
form an infinite set of variables.
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Let V1 and V2 be polyspaces with bases L1 and L2, res-

pectively. Suppose that the vector space product V 1x V 2 has the
basis

One well orders L12 via the orders on L 1 and L2 and by setting

Then one sees quickly:

LEMMA 1.5. The projection P1: V1xV2-&#x3E; V is a polymap.

Next we have:

PROPOSITION 1.6. The polyspace V1xV2 with the usual projec-
tions P1:V1xV2-&#x3E;V1 and P2: V1xV2-&#x3E; V2 is the product of V1 and
V2 in O . 
PROOF. Let f: V3-&#x3E;V1 and g: V3-&#x3E; V1 be polymaps and define

h:V3-VIXV2 by setting h(x)=(f(x),g(x)). Clearly, h satisfies
the uniqueness required. Let (b,0) be a basis element of L12
with corresponding coordinate xi. Then (h(x))i=(f(x))i is a

polynomial in only a finite number of variables cor-r-esponding to

a basis element of LV3. A similar statement holds for

(0, b) E L12.

The projections and injections which come automatically
with a partial polyspace are polymaps. We state this in the fol-

lowing readily proven proposition.

PROPOSITION 1.7. Let V be a partial polyspace and V’ E Fv. Then
the projection n: V-&#x3E;V’ in Pv and the inclusion i : V’- V are pol-i,-
maps.

2. HOM-SETS AS PARTIAL POLYSPACES.

We wish to put a partial polyspace structure on

Homp (V1,V2) . We write Lm for Lu and Pm = Pu where U = Vm
(m E N).

LEMMA 2.1. Let f,g E Homp(V1,V2) and CEk. Let f+g and cf be
formed bi- pointwise addition and scalar multiplication. Then f +

g, ct’ EHomp(V1,V2). Thus. Homp(VIV2) is a vector space under

pointwise operations.



325

PROOF. Let x; be a coordinate corresponding to an element of

L2. Then as fi and g; involve only a finite number of variables

corresponding to elements of L1, the same is true for (f+g)i =
fi + g; . A similar argument works for cf .

REMARK. The notation introduced below is for a fixed hom-set.
If we change our hom-set, we change our notation by adding a

particular superscript or subscript depending on context.

We wish to determine a suitable linearly independent sub-
set of Homp(V1,V2) and suitable projections which make

Homp( V1, V2) into a partial polyspace. Let n1g EP1, and b2 8 E P2.
There are commutative diagrams in Poly:

with I the appropriate identity and t 1CP, t28 inclusions. This fol-
lows from Proposition 1.7. Applying the functor HOIIln(-,V2) to

triangle (1), one obtains a commutative triangle

with (n1g)* an injection and

a projection. For simplicity we will now write H instead of

Homp(V1,V2)-

Similarly, applying Homp(V1g,-) to triangle (2), one ob-
tains a commutative triangle
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with (t28)*. an injection. Set Hg = Homp(Vtcp,V2). The map

is a projection. Let

The next results show how the Hg8 fit into H.

LEMMA 2.2. The map

is a projection.
PROOF. Let f E Hg8. Then

Applying the definitions we have made,

Thus the ng8 which act by restricting variables in domain and

image are projections. To determine a suitable linearly indepen-
dent subset of Homp(V1,V 2) one must choose bases on the va-

rious Hg8 and make sure that these bases fit together properly.
To satisfy, in part, this last point we will show that the ele-
ments of

f it together compatibly. 
Suppose that n1g’ &#x3E;n 1g and n28’ &#x3E;n28. There are commu-

tative triangles

with a1 and a2 projections. Let j 1 (resp. j2) be the inclusion of

Vlcp into Vlcp’ (resp. of V2S into V26’). Applying the hom-func-
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tors, as above, one obtains maps ji* and (a2)* where

and u(g,8,g’,8’) = (a2)*oj1* has a right inverse a1* o( j2)*. Pulling
back to Homp(V1, V2) one obtains a map

LEMMA 2.3. One has an inclusion Hg8 C Hcp’s’.
PROOF. Let r E Hcps - Then

Thus

LEMMA 2.4. The map n(g,8,g’,8’): Hg’8’ -&#x3E; Hg8 is a projection.
PROOF. Let f’ E Hg8 and
wuns lemma. Then

In the next lemma, we see how H can be viewed as a li-
mit cone over the Hcp8.

LEMMA 2.5. Suppose that n18’ &#x3E; 7rig and n28’ &#x3E; n2 8. Then

1tg’8’ &#x3E; ng8. Thus, since P1 and P2 are up-directed (Lemma 1.1), P
is up-directed.
PROOF. One has

As a corollary of Lemma 2.5, taking the cone determined

by the 1tcpõ, one has an embedding H-&#x3E;limHg8’ the inverse limit

being taken in the category of vector spaces.

Next we determine a suitable linearly independent subset
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LH of Homp(Vt, V 2) making H into a partial polyspace. We first
show that the Hg8 have well ordered bases Lg8 whose order is
determined by the orders on L 1 and L2. Taking the union of the

Lg8 we obtain the well l ordered linearly independent subset LH
ul n .

From the basis L 1 (resp. L2), we obtain a basis L1g =
L 1f1 Vlcp (resp. L2 8 = L1n V2 8 ) consisting of ng=diMkV1g ele-
ments for V1cp (resp. consisting of m8 = dimk V28 elements for

V28)- In this way one obtains a unique isomorphism

of vector spaces. Let

The map ’¥ 1 is a vector space isomorphism.
An element f E Homp(kng, km8). has coordinates polyno-

mials fj in the xi (iEL1g, jEL28). Let M denote the collection
of monomonials in k[xi]iEL1, the polynomial ring in the ATy
( j E L 1). Let

Let m2&#x3E; m 1 if degm2&#x3E;deg m1 or qu &#x3E; pu or m 2 = mt. Then &#x3E;
is a well ordering (reverse lexicographic) on M and also Mcp =
Mnk[xi]iEL where L = L1g . Now fj, for jE L2D, can be written

and Qg8 be the set 

((aij) I (aij) E Tg8 and, for fixed j, aij t- 0 for only finitely many i).

There is then a canonical vector space isomorphism

sending f to ( a jl ) . The set

is clearly a basis for Qgs. Let yg8= y3Oy2OY1. Then L,s =
yg8-1(Ng8) is a basis for Hcps. The set Lg8 is clearly well or-

dered first by jE L28 and then according of iE M9’ Next to com-
plete our construction we show:

LEMMA 2.6. The set LH=ULg8 (1t1cpeP1’ n2gEP2) consists of

linearly independent vectors in Homp (V1, V2) . Furthermore, the
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orders on Ll and L2 induce in a natural way a well ordering on
LH .
PROOF. One needs to show that if ng&#x3E;n1g’ and n28;&#x3E;n28’,
then L 9."CLcp,s 5 C Lg8 since, using Lemma 2.5, the Lg8 are up-directed.
There is a commutative diagram

where p = p(g,8,g’,8’), u = u(g,8,g’,8’), where the various y’ are de-
fined in the same way as the various y and S, X are the unique
maps defined by commutativity (as the various y and T’ are iso-

morphisms). Using the notation preceding Lemma 2.3 we see

that u sends f E Homp(V1g,V28) to (1.2ofojt. Using coordinates
and the definitions of a2 and j 1 we see that S sends an element
(fi(,vj)) to (gp(xp)) where gp(xq) = f’j(xj) for p E L28’ and p = i

and furthermore f’i(xj) is obtained from fi(xj) by setting x:j = 0
in fj(xj) for j E L1g- L1g’. But then )c(aij) = (bqp) E Qg’8’ where

bqp = aij if p = j, q = i and i E Mg’, p E L28’. From this descrip-
tion it is clear that X has a right inverse 91 satisfying

where 32: Hg8 -&#x3E; Hg’8’ is the inclusion. But then

By construction 8

Since each v E LH is non-zero in only one coordinate cor-
responding to a vector of L2, it is clear that LH can be well
ordered first according to j E L2 and then according to i E M . The

proof is complete.

We cover Qg8 by the sets

where 1 = ( I j) j E L’ E (Mg)L and L’ - L28 . Let (Hg8)1 = y 3-1((Qg8)1)
and (tg8)1: Hg8-&#x3E;(Hg8)1 be the projection induced by the evident

projection (vg8)1: Qg8-&#x3E;(Qg8)1. Recall that the basis on Qg8
chosen induces one on Hg8. It is clear that since the (vg8)1
(n1g E P1, n2 8 E P2) satisfy the condition of Definition 0.1, so do
the (tg8)1. Hence, using Lemma 2.5, we obtain:
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PROPOSITION 2.7. The triple (Homp(V1,V2), LH,--’) together with

forms a partial polyspace.

We must show that the assignment of

to two polyspaces V, and V2 determines a bifunctor

LEMMA 2.8. The assignment W-Homp(WIV3) determines a con-
travariant functor P-&#x3E;SP.

PROOF. Let f : V1 -&#x3E;V2 be a map of polyspaces. There is an indu-
ced map

f*: H2-&#x3E;H, where H2=Homp(V2,V3) and Ht=Homp(Vt,V3).
First we show that, provided 7r, is sufficiently large, the diagram

commutes where

and, if i2: H203BC8-&#x3E; H2 is the inclusion, then f°=n1of*oi2. Let a in

H2. The single superscripted inclusions and projections are those
for Vi, V2 and V 3 . We have

Since the image of L38 has only finitely many coordinates, for

n203BC and hence x large enough, this last expression equals
n1ot3o8on38oaof= t38on38on38oat1goon1g = n1of*(a).

Thus, to show that f is a stratawise polymap, it suffices to

show that f° is a stratawise polymap. Note that H203BC8 (resp.
H1g8 g acquires a polyspace structure from the partial polyspace
structure of H2 (resp. H1). Let t21: (H203BC8)1-&#x3E; H203BC8 be the inclu-
sion corresponding to a projection in PL (L = H203BC8). We need to

show that fo u21 is a partial polymap. If p1m :H1g8-&#x3E; (H1g8)m is a

projection in PM (M = H1g8), we must show that p1mofoi21 is a

primitive polymap. Taking coordinates one must show that the

composition r of the maps in the chain
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corresponding to the composition P1mofoi21 is a polynomial
map. Let n3g03BC: Hom p (W1, W2)-&#x3E;H3g03BC be a projection in PH3 for
the partial polyspace H3= Hom p(W1,W2). Let (aij)E(Q203BC8)1 cor-
respond to the associated map (Eai ji). Then

provided m is sufficiently large. Since the bqp are polynomials
in the aij, Y is a polynomial map for m large enough. However,
since projection is a polynomial map, T is always a polynomial
map.

The proof for the covariant variable is almost identical
and omitted.

LEMMA 2.9. The assignment W-&#x3E; Hom p(V, W) extends to a cova-
rian t functor P- PP.

From Lemmas 2.8 and 2.9 and, since the result holds on
the set level, we obtain:

THEOREM 2.10. The assignment

e.,’t(tends to a bifunctor PolyopxPoly -&#x3E; SPoly.

We note that, if V2 is finite dimensional, then

Homp(VI,V2) is a polyspace. Furthermore one has the readily
proven result:

PROPOSITION 2.11. Let (V,L,P,) and (V, L’, P’, ’) be two partial
polyrspaces such that the vector space generated by L is the
same as the vector space generated by L’ . Then the identity,
iv : V- V is an isomorphism in SPoly,.

3. WEAK CARTESLKN CLOSEDNESS OF POLYSPACES.

. We prove Theorem 0.5.

Let V1, V2 and V3 be vector spaces. There is a set iso-

morphism

03BC: Hom Sets(V1xV2 V3)-&#x3E; Hom Sets(V1,Hom Sets(V2, V3))
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where

Let now (V1,L1), (V2,L2) and (V3,L3) be polyspaces. Suppose that
f:V1xV2-&#x3E;V3 is a polymaps. We want first to show that

f(x): V2- V 3 is a polymap for each N E V1. Let 1t 2 E P2, 1t 3 E P3 and
choose some n1 E P 1 so that n1: V1-&#x3E; V°1 and X E V°1 . Note that the
union of elements in Fv 1 is V1= V1, so that the last possibility
exists. If n 1 and TC2 are large enough, there is a primitive poly-
nomial f’ such that

commutes. Restricting one has a commutative diagram

where f(.) is a primitive polymap. We thus have:

LEMMA 3.1. The map v restricts to a map

which is necessarily injective.

We will first show that (1’ maps onto f(V1,Homp(V2,V3»
via the following lemma.

LEMMA 3.2. Let f() be a polymap mapping into to strata. Then
f is a polymap.
PROOF. In order to show that each coordinate of the map f:

VIXV2-V3 involves only a finite number of variables, it suffices
to assume that V3 is one-dimensional. Then fo () maps into the
strata. Hence, for V* = V1, f(V*) c (Hg8)1 for some cp, ö, 1. Thus

f(x) = (ai1 (x)) ( i E Mg) and, if y1 is the coordinate on V 3, then

y1 =Eai1 (x) i (i E Mcp) involves only a finitely many variables of
the product V1xV2.

LEMMA 3.3. Suppose that f is a polymap. Then fo is a pol.y-
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map.

PROOF. Let n103BC E P1, n2 g E P2 and n3 8 E P3. Choose n103BC, n2g lar-

ge enough so that the diagram

commutes with f’ a primitive polymap. Let I

Define g’ : V103BC-&#x3E; Hg8 by sending x to g’(x) where
the inclusion.

We show that, in fact, g’( x) E Hg8’ For this first check that, for
y E V 1(1, the diagram

commutes. But

Since f’ is a primitive poln,map, clearly f*(x) is also. Hence

g’(x) E Hg8 for X E V 1(1..
Next we verify that

commutes. Let x E V1. Then, referring to Lemma 2.5, one finds

Finally we show that for 1 E M’’=(Mg) L’ (L’=Lg8) with 1
sufficiently large and hence for all 1 E M", the composite

is a primitive polymap. Taking coordinates f’ becomes a map F":
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k103BCxkng-&#x3E; km8 which can be written, since f’ is a primitive poly-
map, f" =(EQiji) (iEMg) with j E L38 and with the Qij polyno-
mials in the variables of k-103BC But then f’(x) and thus also g’
corresponds to the map f"(x): k103BC-&#x3E; Hom p(kng, kmg) defined bv

sending AT to (Qij(x)) where i EM g and i EL 38- Since, for j EL 33,
Qij(x) # 0 for only finitely many i , g’ maps V103BC into (Hps) for
some 1 E M" sufficiently large. Since f’(x) is a primitive polymap,
so is g’ .

The final lemma that we need for Theorem 0.5 is:

LEMMA 3.4. If f: V1xV2 -&#x3E; V3 is a polJrmap, then

is a pot),map mapping into the strata.

PROOF. We need only show that F( ) maps into the strata. Let

V’3 be a one-dimensional subspace of V 3 generated by an ele-
ment of L3. There is a factorization

with 7t. arising from the projection n: V3-&#x3E;V’3. If g did not map
into the strata, then nof: V1xV2-&#x3E;V3-&#x3E;V’3 would not be a poly-
map as one sees from the argument in the proof of Lemma 3.2.
But since x is a polymap, this is a contradiction.

Thus the proof of Lemma 3.4 and hence Theorem 0.5 is

complete.

4. NBL’S TOPOLOGICAL UNIVERSE COMPLETION.

Let k be an algebraically closed field of characteristic 0.
Let Proj be the category whose objects are normal projective va-
rieties of finite type over k and whose morphisms are mor-

phisms of schemes over k. See Hartshorne [8]. Let X be an

object in Proj. A covering of X is a singleton set containing a

surjective map f: Y-&#x3E;X in Proj. We show that the pair (Proj,Cp)
where Cp consists of all coverings of objects in Proj is a pre-
universe. The requirement for Proj to be a pre-universe are

introduced as we go along. See Nel [11] for more information.

First one must show that a covering 1 f 1 with f: X-&#x3E; Y is
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final. This means that if g: Y-&#x3E;Z is a set map and gof is a map
in Proj, then g is also a map of varieties. For this look at the

graphs r( g) , r(gof) and r( f ) of g, gof and f, respectively.
Then 

is readily seen to be a closed subset of YxZ. The projection of
r(g) onto Y is one-one and onto. Hence, by Zariski’s Main
Theorem 181, this projection has an inverse h: Y-&#x3E;r(g) which is a

map of varieties. But then 9 = P2oh, where p2 is a projection
onto the second coordinate, is a map of varieties.

Clearly the identities are coverings. Suppose that one has
two maps g, f E Proj with g a covering. One must show that
there is a commutative diagram

with h a covering. But one can take

Then W has the structure of a projective variety. Let h be the

projection to X. Since g is surjective, so is h. Thus Proj is
stable under "push-backs". Finally, the composition of two cove-
rings is clearly a covering. Thus (Proj,Cp) is a pre-universe.

We note that a similar construction unfortunately does
not work for affine varieties since the covering families need
not be final. However here one can replace Proj by the category
AF of affine schemes of finite type over k and let CA be the
collection of singleton sets whose only morphism is an isomor-

phism in AF. Then, in this case (AF, CA) is readily seen to be a
pre-universe.

In the following, we use the word ’imprint" rather than
the word "native" used in [11] since it seems to better represent
the construction looked at here. A topological universe is much
more than a Cartesian closed category. For instance it has arbi-

trary limits and colimits.

To Proj we associate a topological universe Llp where the
objects of LIp are the pairs (X,§) such that X is an arbitrary set
and § is a collection of maps B-&#x3E;X called imprints with B an

object of Proj subject to the conditions:
(1) Every constant map B-&#x3E; X with B an object of Proj is an

imprint.
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(2) If a:B-&#x3E;X is an imprint, and (3 E Proj, then ex oB is an im-

print.
(3) Given a map q: B-&#x3E; X such that, for some covering p:

B’-B, the composite q o p is an imprint, then q is an imprint.
A morphism in the topological universe up is a map r=:

(X,§)-(Y,§’) such that if a: B-&#x3E;X is in §, then f oa is in §’. This
definition has its origin in differential geometry where structure
on a differentiable manifold is often defined in terms of curves
in it. The definition also suggests that stratawise polymaps are

more likely to provide a Cartesian closed category than poly-
maps. An example in Llp that one might want to study is (X,§)
where X is a complete variety and § is the non-empty set

(Chow’s Lemma 181) of maps f: X*-&#x3E; X where X* is projective
and f is an onto map of varieties.

For (AF, CA) the corresponding topological universe UA
contains, for instance, algebraic spaces (see Knutson [9]) if, for
an algebraic space X, we identify X with (X,§) where § is the
set of all maps f: Y-&#x3E;X where Y is an object of AF and f is an
etale map.

As further motivation we mention the LI structure on

H - = Homu«X,çx),(Y,çy»
which makes LI into a Cartesian closed category. This is simply
defined. A map s: A-&#x3E;H is an imprint if and only if, for the eva-
luation map ev: XxH--aY and every imprint t: B-X, the composite
evo(sxt):AxB-&#x3E;Y is in U.

EXAMPLE 4.1. Consider H = Homu((A1,§),(A1,§)) where U = UA
and § consists of all maps f: X-4At in AF. If At -&#x3E; Hom U(A1,A1 )
is an mprint, then for all imprints t: A1-&#x3E;A, the composite
h: A1xA -&#x3E;A1 defined by sending (a, b) to s(a)( t( b)) is a map in

LIA. But then h must be a polynomial map.

5. RELATIVE CARTESIAN CLOSEDNESS OF PARTIAL
POLYSPACES.

Let T denote the collection of stratawise polymaps. Before
proving Theorem 0.7, we show:

LEMMA 5.1. The categoci, SPolj- has T-products.
PROOF. A little diagram chasing below shows that products
exist in PPoly-. Let V1 and V2 be two partial polyspaces. As the
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projection maps p1: V1xV2-&#x3E; V1 and p2: V1xV2-&#x3E;V3 are in PPoJ.y,
they are also in SPol".J’. Let f: V-&#x3E;V1 and g: V-&#x3E;V2 be two maps in

SPoly and h: W -&#x3E; VtxV2 be the unique map such that p1oh = f
and p2o h = g. Let W’ E Fw and L: W’-W the inclusion. Then f ot
and got are polymaps. Since VlxV2 is the product of V1 and V2
in PPoly , hot is in PPol)". Thus h is in SPoly and the proof is

complete.

It is clear that the product x defines a bifunctor PxP-&#x3E; P.
For a polyspace (V3, L3) and finite dimensional vector spaces V1
and V2, since T-maps from a finite dimensional vector space are

the same as P maps, we conclude from Theorem 0.5 that there
is a natural equivalence
(3) HomT(V1xV2’ V3) = HomT(V1,HomT(V2,V3))
where the right and left hand sides are functors in V3 from P
to Sets with the following proviso: Let W be a one-dimensional

subspace of V3 generated by one element of L3. Let 0 be a T-

map (here a polymap) which is the composite of a T-map from
V1 to HomT(V 2’ V 3) followed by a projection to HomT( V 2’ W) .
Then, for (3), one must show that B maps into the strata.

To show that B maps into the strata, one must show that
B(V1) is contained in a finite dimensional subspace of

HomT(V 2’ W). Since HomT(V 2’ W) is of infinite countable dimen-
sion, by looking at the coordinates of P, we see that it suffices
to prove:

LEMMA 5.2. A finite ditmensional vector space V over an infinite
uncountable field cannot be covered bj, countabl)’ manfj hjper-
surfaces.

PROOF. If V is one-dimensional, since a hypersurface then con-
sists of finitely many points, we are done. Otherwise, it is easy
to see that there are uncountably n1any hyperplanes. Suppose
that V is covered by countably many hypersurfaces. Then there
is a hyperplane L which is not contained in one of the countably
many hypersurfaces covering V. The hyperplane L is in turn

covered by countably many hypersurfaces. Applying induction we
obtain a contradiction.

Clearly, if the field in Lemma 5.2 were countable, then V
could be covered by countably many hypersurfaces.

Let now V1 be finite dimensional and (V2,L2), (V3,L3) be

arbitrary polyspaces. One readily shows that HomT(V 2’ V 3) is a
vector space under pointwise addition and scalar multiplication.
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Clearly
Homp(V2,V3) c HomT(V 2’V 3).

We wish to make HomT(V2, V3) into a partial polyspace. For this
note the following readily proven result.

LEMMA 5.3. 1. Let V be a partial polyspace and t be the inclu-
sion right inverse to some 7t E Pv . Suppose that f is in T . Then,
whenever f OL or fon is well defined. it lies in T.

2. Let g be a morphism in PP and f belong to T . If g o f is
defined then go f is in T.

In particular, in Lemma 5.3 (2), g could be n E Pv or its

right inverse L.

Repeating the construction of §2 almost word for word,
one shows that HomT(V 2’V 3) is a partial polyspace whose linea-
rly independent set is the same as the linearly independent set

of Homp (V2,V3 ) and whose projections are extensions of those

belonging to Homp(V2,V3). Furthermore, as in §2, using Lemma
5.3 (2), the assignment V3-&#x3E; HomT(V2, V3) extends to a functor
from P to PP.

be the restriction map. Using (3) pof determines a map 03BC(f) :
V1xV’2-&#x3E;V3 in Poly. The 03BC(f), for V’2 E F2, extend to a map

g: V1xV2-&#x3E;V3 such that g(x,y) = f(x)(y). The map g is in T since
elements of Fw, where W = V1xV2, are of the form V,xV2
(V’2 E F2) .

Conversely let g: V1xV2-&#x3E;V3 be a T-map and goO the res-
triction of g to VtxV’2’ Then goO determines a map

inducing a map f: V1 -&#x3E;HomT(V2,V3) such that f(x)(y) = g(x,)’).
Since the projections of HoMT(V2,V3) are just the extensions of
the projections of Homp(V2,V3) , clearly f is a polymap.

In order to complete the proof of Theorem 0.7 let ( V1,L 1)
be an arbitrary polyspace. We write T-dirlim F to denote the T-
direct limit of a subcategory F of LP whose arrows are contain-
ed in T. One easily shows:

LEMMA 5.6. 1. The set F1 = Fv1 can be viewed as a subcategory
of LP with arrows inclusions. Then T-dirlim F 1= V1.

2. Let V2 be a polyspace and G the subcategor.y of LP
whose objects are of the form V’IxV2 ( V’1 E F 1) and whose ar-
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rows are inclusions. Then

T-limG = V1XV2 - T-dirlim (V’1x V2) (V’1E F 1).
One then has (V’1E F1):

HomT(V1xV2’V3) = HomT(T-dirlim(V’txV2,V3»)
= lim(HomT(V’1xV2,V3= lim(HomT(V’1,HomT-(V2,V3)))

(using our previous result)
= HomT(V1,HomT(V 2’V 3).

Thus Theorem 0.7 is proven.

6. WEAK CARTESIAN CLOSEDNESS IN AFFINE VARIETIES.

We prove Theorem 0.8 by combining various lemmas. Let
B again denote the collection of basic maps between affine va-

rieties.

LEMMA 6.1. The category AF has B- products.
PROOF. Let V1 (resp. V2) be a subvariety of W 1 (resp. W2).
Then it is easy to see that V1XV2= V(J), where if V1 =V(I1) and

V2 = V(I2) , then

Clearly the projections p 1 and P2 from VlxV2 to V1 and V2 are
in B. Suppose that there are B-maps f:V3-&#x3E;V1, g: V3-&#x3E; V2 with

V3 a subvariety of the partial polyspace W3. Since f, g are in-
duced by stratawise polymaps f*:W3-&#x3E;V1, g*: W3-&#x3E;W-&#x3E;, the uni-

que morphism h: V3-&#x3E;V1xV2 such that p 1oh= f and P2oh = g is
induced from a stratawise polymap h*:W3-&#x3E;W1xW2 such that

p 1oh* = f* and P20h* = g* ( p 1 and p2 extended to W1xW2). The
proof is complete.

Suppose that V2 is an affine subvariety of a polyspace W2
and that W3 is a polyspace. Then HomB( V2,W3) can be given the
structure of a vector space via pointwise operations. We suppose
first that W3 is one-dimensional. Since the linearly independent
set associated with W2 has a well l ordering , from Lemma 2.6,
the linearly independent set LH of

is ilso well ordered. Note that, as we saw in §5, HomT(V 2’W 3)
and Hom p(V2 , V3) have, as partial 1 polyspaces., the same linearly
independent set. There is a restriction map
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Applying transfinite induction one can choose a linearly indepen-
dent subset L’ of LH such that

1 p(L) is a maximal linearly independent subsets of 9(L!-!L
2. If L" is a subset of L and p( L") is a maximal linearly inde-

pendent subset of p(LH), then L L". The condition L’i L"
means the following: If 1"E L", then p(1") is a linear combina-
tion of p(1j) (1; EL’) where 1 x  1" for each i .

REMARK. The above procedure provides a method for assigning
to A[W], where W is an usual affine variety of finite type over
k, a canonical basis. As an object in PPols v the structure on

HomB(V2,W3) depends on the well ordering on w’2.

We let p(L’) be the maximal linearly independent subset of
p(LH) making it into a polyspace. Taking products one can ex-

tend this construction to place a polyspace structure on

HomB(V2,W3) for W3 a finite dimensional vector space with a

well ordered basis. Finally, if W3 is an arbitrary polyspace, as in

§2, using the projections of W3, one can define a partial polys-
pace structure on HomB(V2,W3). In fact it is easier here since

one need only worry about the range variable. The well ordering
is given first according to the coordinates determined by L3 and
then in each coordinate using the case where W3 is one-dimen-
sional.

We need to show that the assignment W3-&#x3E;HomB(V2,W3)
extends to a functor P - SP. Let f : V’- V be in P,

Q=HomB(V2V), Q’ = HomB(V2,V’), K E F Q and K’EFQ’
We need to show that the map h =nKof*oi, where i:K’-&#x3E;Q’ is
the inclusion, nK E PQ and f* is induced from f, is a primitive
polymap. But, from our choice of basis, one can rewrite h as

the composite

where e 1 is a vector space isomorphism of K’ with an element
of FN. (N’ = HomB(V2,V’)) and e2 equals some n: (n E PN,
N = HomB(V2,V)) followed by a vector space isomorphism with
K. Since f * in the diagram has been shown to be in SPolj-, we
obtain:

LEMMA 6.2. Let V2 be an object of AFA. Then the assignment

W3 -&#x3E; HomB(V2,W 3)
extends to a functor P -&#x3E; SP.
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Next, let V3 be a subvariety of a polyspace W3. Then, in

the evident way, one can view HomB(V2,V3) as a subset of

HomB(V2,W3). Now, if Q = HomB(V2,W3) and J E FQ, then J can

be identified with J’ E FR (R = HomB(W2’ W3)). But J’, using the
notation of §2, is contained in some (HcpS)l.

Before continuing with our main argument we show:

LEMMA 6.3. Let x E W 3. The evaluation map

evil.: HomB(W2,W3)-&#x3E;W3
sending f to f (v) is a basic stratawise polvmap.
PROOF. For Tr 29 E Pw2, TE 38 E Pw3 the composition

is also evaluation at v and a primitive polynomial map.

As a consequence one obtains:

COROLLARY 6.4. The evaluation map

sending f to f (x) is a stratawise polymap L,B E V2) .

Let V3=V(I), a E I and evx:HomB(V2,W3)-&#x3E;W3 be the eva-
luation map. Since a E ACW3J, a: W3-&#x3E; k is a stratawise polymap.
As ev x sends (Hg8)1 to W 38 , clearly aoevx is again a basic stra-

tawise polymap. Let

Then J is an ideal in A[HoMB(V2-W3)] and clearly HoMB(V2,V3)
= V(J). Thus HomB(V2, V3) is an affine subvariety of

HomB(V2,W3),

Using the definition of morphisms in AF" and Lemma 6.2,
one readily obtains:

PROPOSITION 6.5. Let V2 be a fi.Bed object of AF^ . The assign-
ment of HoMB(V2,W3) to an object W3 of AF" extends to a

functor AF^-&#x3E; AF.

Next we show that, for V1, V2 in AF" and W3 in Poly,
one has the bijection
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required to prove Theorem 0.8. Let f belong to the left side of
(4). There is a commutative diagram

with i the inclusion of VIXV2 as a subvariety of the polyspace
W,XW2 and g a basic stratawise polymap. From Theorem 0.7

there is an induced map g’: W1-&#x3E;HomB(W2 ,W3) in T. There is

also a sequence of maps

whose composite equals «f) where i’ is the inclusion and p’ the
restriction map. Since the linearly independent set defining
HomB(V2,W3) can be identified with a subset of the one defi-

ning HomB(W2,W3) and since g’ is a stratawise polymap, p’ og’
is a stratawise polymap. Hence «f) is in B.

Conversely, let d: V1 -&#x3E; HomB(V2, W3) be in B. Then there is
a commutative diagram 

with d’ a stratawise polymap. We want a commutative diagram

where d" is a stratawise polymap. In the common coordinate of
d’ and d" we let d’ and d" agree. Otherwise we set the coordi-
nates of d" to zero. One sees immediately that d" is then a

stratawise polymap. Hence, by Theorem 0.7, there is an induced

map m: W1xW2-&#x3E;W3 in SPoJ.yand then a commutative diagram
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with the left hand arrow an inclusion. Hence T-1(d) is in B.

Let now V3 be an arbitrary object of AF" . Since it is es-

sentially just a matter of mapping into V3 on the left hand side
of (4) and correspondingly into HOmB(V2,W3) on the right hand
side of (4). it is clear that (4) restricts to the natural isomor-

phism required to prove Theorem 0.8.

7. CARTESIAN CLOSEDNESS OF SPoly AND AF.

Let T again be the collection of basic stratawise poly -
maps. First we show:

LEMMA 7.1. The categot y SPoly of strataH’ise polymaps has pro-
ducts.

PROOF. Let V1 and V2 be partial poly spaces. Since the projec-
tions P1: V1x (V2-&#x3E;V1 and p2: V1xV2-&#x3E;V2 are polymaps: they are

stratawise polynaps. Let g: V-VI and h: V-&#x3E; V2 be two strata-

wise polymaps. Then h= hnO---Oh1 and g = gmO---Og1 with each
function in the compositions a T-map. Let g: V-&#x3E;V’1 and

h: V...,.V’2. Since T-products exist (Lemma 5.1), there is a T-map
l1: V-&#x3E;V’1xV2 which when followed by the projections p’, and p’2
to V’1 and V’2 yields g i and hl. respectively . We can replace
V by V’t’" V’2’ g 1 by pet, and g’2 by p’2. But since 92op’, and
h2oP’2 are in T, applying induction, we obtain a clearly unique
map I = l1O---O) lj in SPois r such that p1ol= g and p2 ol = h .
thus completing the proof.

Thus we have a bifunctor x: SPolf sSPoIi -?SPoJ) . Using
the construction in §2, aside from Lemma 7.2 below, one obtains
a partial polyspace structure on Homsp(V1,V2) for partial polis-
paces V, and V2. 

LEMMA 7.2. The pointtiise addition of two elements h . g in

Hom SP(V1, V2) belongs to SPoly.
PROOF. Let

with each function in the compositions a T-111ap. Using the argu-
ment of Lemma 7.1 one has

with 11, h2op’2 and g2op’1 in T (Lemma 5.3 (2)). But then one
need only show that the sum of
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is in SPoly which is possible, using induction, since we saw ear-
lier that the sum of two T-maps between the same polyspaces
is again a T-man. The oroof is complete.

To show that the assignment (W,V)-&#x3E;Hom SP(W,V) deter-
mines a bifunctor SPoPxSP -SP it suffices to prove the next

two lemmas. We use the notation of §2.

LEMMA 7.3. The assignment W-Homsp(W,V) determines a con-

tra varian t functor SP -SP .

PROOF. Let f: W1-&#x3E; W2 be in T. There is an induced map

The composite map fot103BC: W103BC-&#x3E;W1-&#x3E;W2. by definition, is a po-
lymap for each n103BC: W1-&#x3E;W103BC in Pwl with t103BC the inclusion right
inverse to n103BC. Hence, by Lemma 2.8, the composite

is in T. Using the notation of §2. let j: (Hg8)1-&#x3E;Hom SP(W2,V)
be an inclusion map. Using the construction of §2, the linearly
independent set of Homsp(W 1’V) is the union of the images of
the linearly independent sets of the Hom SP(W103BC,V) under (n103BC)*
(n 03BC1 E PW1). It is then clear that, since the composite t103BC*of’Ot1,
is a polymap, that f* is in T. Since every element f in SP is a
composite of elements in T, one can complete the proof in an

evident fashion.

Using the same type of argument one has:

LEMMA 7.4. The assignment W-Homsp(V,W) induces a functor
SP -&#x3E; SP.

Finally we obtain the main result of the paper:

THEOREM 7.5. 1. The category SPoly of stratawise polymaps is

Cartesian closed.
2. The category AF of affine varieties is Cartesian closed.

PROOF. Using the results and methods of §6, one can prove the
analogs of Lemmas 7.1-7.4. Then, using Theorem 0.8 instead of
Theorem 0.7, the proof of part 2 will be similar to the proof of
part 1 given below.

Let f E Hom SP(V1xV2, V3) . One has a factorization
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with the fx E T. Using Theorem 0.7, corresponding to fj () one ob-
tains a map go : V1 -&#x3E;Hom SP(V2,V’3) in T. Corresponding to the

f; (7 = 1,..., n) one obtains maps

in T ( i =1,...,n). Hence g = gn o gn- 1o --- o g is in SP and evidently
g: V1 -&#x3E; Hom SP(V2,V3) satisfies g(x)(y) = f(x,y.).

Let now f E HomSP (V1, Hom SP(V2,V3)). There is a factori-
zation

with the f; in T. Corresponding to f,,, using Theorem 0.7. one

obtains a inap gn: Vn1 x V2-&#x3E;V3 in T. There are natural maps fnxI:
Vi1xV2-&#x3E;Vi1+1xV2 in T ( i =0,...,n). Hence the map g:V1xV2-&#x3E;V3
corresponding to f (g(x,y)= f (x) (y)) can be rewritten

with factors in T. Again note that the natural equivalence arises
from that on the sets level.
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