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GLUEING ENRICHED MODULES AND

COMPOSITION OF AUTOMATA1

by S. KASANGIAN and R. ROSEBRUGH

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFPRENTIELLE

CATÉGORIQUES

VOL. XXXI- 4 (1990)

RBSUMB. Le recollement de modules entre categories
enrichies appropri6es conduit a des constructions pour les
operations régulières sur les langages qui interviennent
comme comportements d’automates non-déterministes
consid6r6s comme categories enrichies. On obtient une

condition suffisante pour qu’une paire d’automates et un

module d6finissent un automate par recollement.

1. INTRODUCTION.

The dynamics of non-deterministic automata have been

fruitfully described as categories enriched in a monoidal category
(11,2,41, and see [3] for the (bicategory-enriched) extension to

tree automata). Automata are then described as certain compo-
sable pairs of modules with behaviour given by composition of
modules. The purpose of this paper is to show how the regular
operations on behaviours in a monoid may all be obtained using
constructions of automata which result from a categorical tool,
namely glueing of modules.

We first review the definitions and basic results needed.
Let X be a monoid with identity e. The category (qua preorder)
of subsets of X, here denoted X- , has a (biclosed, see 121) mo-
noidal structure defined by

An X--enriched category Q can be viewed as the dynamics of a
non-determ,inistic automaton with input monoid X as follows.
The objects of Q are states of the automaton. If q and q’ are

objects, Q( q, q’) in X- is the set of elements of X which act on

q with result q’ . Composition and identity in Q make the action
associative and unitary. Conversely, a non-deterministic dynamics
determines an X--enriched category.

Recall that if Q’ and Q are X--categories then a module

1. Research partially supported by grants from NSERC Canada.
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from Q’ to _Q, (D: Q’ -l-&#x3E; Q consists of an object O(q, q’) in X-
for each pair q, q’ in QXQ, and associative and unitary left and

right actions

Q(p,q)+O(q,q’) -&#x3E; O(p,p’) and O(p,p’) +Q (q,q’) -&#x3E; O( q, r’)
for p in Q and r’ in Q’. Modules can be composed according to
the well-known coend formula which here, since X- is partially
ordered, reduces to a sum. Further, an X--functor F:Q-&#x3E;Q’ in-
duces a pair of adjoint modules

(see e.g. [81 for notations and terminology).

A set of initial states I for a non-deterministic automaton
with states the objects of Q and input monoid X determines an
X--module I: .Q-l-&#x3E;1 (1 is the terminal X--category) by defining
1(*. q) to be the set of all inputs which reach q from an initial
state (* is the unique object of 1) . Similarly, terminal states T
determine an X--module T: 1 -l-&#x3E;Q. Motivated by these con-

structions, a (generalized) automaton is defined to be a triple
Q,I,T) where Q is an X"-category, and I: Q-l-&#x3E;1 and T: 1 -l-&#x3E;Q
are X--modules. The behaviour, denoted B(Q,I,T), of the (gene-
realized) automaton (Q,I,T) is the object of X- (= module from
to 1) given by the composite module IT.

in what follows, we will be interested in dynamics obtai-
ied by glueing certain modules. We first describe the glueing of
modules as applied to the enriched categories of interest. If Q’
dnd Q are X"-categories and O:-l-&#x3E;Q is an X"-module, we
obtain a new X--category O as follows: the objects of (D are

the disjoint union of those of Q and Q;

composition in (D is given by that in Q’, Q and by the actions of
0 on Q and Q’. Moreover, there are X"-functors

given by inclusion, and a transformation y:KO=&#x3E;J which is uni-

versal, i.e., composing with y determines an isomorphism

The adjoint modules J* and K* and transformations y* are dual-
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ly universal for modules to (D. In more detail, and referring to

the diagram below, for each pair of modules y: Q’ -l-&#x3E; P , 0:

Q-l-&#x3E; P and transformations y:RO=&#x3E;y there is a unique

Moreover, the correspondence extends to transformations E =&#x3E; E’

say, and if y and 0 are X"-functors so is E. On the other side,
the data r, A and 8 correspond to modules A:R -l-&#x3E; O with

y*A=8 (although here the correspondence does not restrict to

X- -f unctors) .

2. GLUEING AUTOMATA.

Since our interest is in the case when Q, Q’ and (D are the

dynamics of automata, we will usually take P = R = 1. Our firs
example of a regular operation is union of behaviours. The mo-
dule used is the most trivial, namely the zero-module Z, defined
by Z( q, q’)= O for all objects q in Q, q’ in Q’ . Note that then Z
is the direct sum of Q and Q’ in the bicategory of X- -modules.
Moreover Z is a local zero object, i.e., its pre- or post-compo-
site with any module is the corresponding zero-module, so there
are unique transformations to and from any composite with Z.

DEFINITION 1. Let (-Q,I,T) and (9,I,T") be automata. Define a

new automaton (Q.+,Q’, IU,TU) by Q+Q’=Z, for Z:Q-l-&#x3E;Q’, and

Iu and TU defined by the following diagram
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PROPOSITION 1. The behaviour of (Q+Q’,IU,TU) is

PROOF. The behaviour ) is by definition

The second equality uses the definition of lu and TU as mor-

phisms out of, and to, a direct sum.

The reader will have observed that the X--category 7- did
not appear in the calculation of the above proposition. In fact,
any O: Q-l-&#x3E;Q’ for which the required transformations I’ O=&#x3E;I
and OT=&#x3E;T’ exist (there can be at most one transformation) will
induce Iu and TU making (O,IU,TU) an automaton with behaviour

B(Q,I,T)UB(Q’,I’,T’). However Z is easily seen to be the initial (in

X"-categories) dynamics with induced behaviour as above.

The next regular operation we consider is concatenation of
languages. In this case we ought, intuitively, to join the output
from the first automaton to the input for the second. This is

precisely what we do. That is, let (Q,I,T) and (Q’,I’,T’) be X-au-
tomata. Define O=TI’.

PROPOSITION 2. The au tomaton (O,IK*,JT’) has behaviours

(with the notation above, K and J as at the end of the last
section for O= TI’).

PROOF. The behaviour of (0,IK*,JT’) is by definition IK*JT’(*,*).
The computation is easy if we recall that K*J = TI’, so that

We remark first that the diagram defining the automaton
(O ,IK* ,JT’) above is the following one, where the indicated iso-

morphic transformations use I*J = TI’, and (1) and (2) commute

since
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As the remarks af ter Proposition 1 show, we get only one beha-
viour by using only I, I’, T and T’ to define modules to and from
0. Here we have used transformations

We shall see a similar case below.

We should also remark that automata have been viewed as
a special case of gamuts (i . e., diagrams of the form

in a bicategory of modules [4]); that gamuts as above corres-

pond to cofibrations from B to A [7,6] and that the "series

composition" of automata we have just described is a special ca-
se of the composition of gamuts (which corresponds to the

composition of cofibrations 161).

The third regular operation is Kleene star. Let (Q,I,T) be
an automaton. The module (D: Q -l-&#x3E;Q is defined by
TB(Q,I,T)*I+1, where 1 is the constant module with value {e}EX-
and + is taken in modules from Q to Q (where it is defined by
union).

PROPOSITION 3. For Q as defined above, the behaviour

B(O,IK*,JT) is B(Q,I, T)+.
PROOF. Again, we observe that

Finally, we can obtain B(Q,I,T)* as the union of 1 and

B(Q,I,T)+. 



288

All examples above are of a common type. There are X-
automata (Q,I,T) and (Q’,I’,T’) together with O:Q’-l-&#x3E;Q. We ob-
tain an X-automaton with dynamics O when there are languages
L and E, and transformations O T’=&#x3E; TL and IO=&#x3E;EI’ as in

As the results above show, such L and E are by no )l1eanS

unique. We will first seek sufficient conditions on the modules
1,1’, r, T’ and O to guarantee that at least one pair L, h does
exist, and then describe the behaviours. which result.

We first consider a sufficient condition for the esistence
of E. Since X- is partially ordered, it is enough that for all q’
in Q we have IoO(*,q’) C EoI’(*,q’). Using the definition of com-

position for X"-modules, we thus require that

the latter juxtaposition being tensor in X- of E and I’(*, q’), i.e.,
their concatenation as languages. Hence we require that for all

q in Q, q’ i n Q

Denoting, for any B, A in X-,

[B,A] = {zy E B, y Z E A}
(this is one of the internal homs mentioned above), our critcnon
for existence of E is

Exactly analogous considerations show that there is an L

provided that

(where, for B, A in X- ,

which is the other internal hom). This is the first part of the

following.

THEOREM 4. If (Q,I,T) and (Q’,I’,T’) are X-automata and (-b:
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9-l-&#x3E; Q, then there is an X-automaton (O,Ig,Tg) satisfying
IgK = I and T’=J*Tg provided that conditions (*E) and (*L) are

satisfied. Moreover, if E and L satisfy (*E) and (*L), and TL=

= K*T g and EI’ = IgJ, the behaviour of (O,Ig,Tg) is

PROOF. By definition

Since O has objects the disjoint union of those of Q and Q’, we
have

Now the definitions of Ig and Tg, along with K and J show that
for q in Q, Ig(*,q&#x3E; =I(*,q) and for q’ in Q’, Tg(q’,*)=T(q’,*).
Similarly for q in Q,

and for q’ in Q’,

Thus

RBMARKS. (1) Observe that E (and L) as above provide an ex-
tension (and lifting) which need not be Kan, since it lacks the
universal property.

(2) Recall that tree automata can be viewed as categories
enriched in a bicategory B(T) (see [3,5]) obtained from a Lawve-

re theory T (a category whose objects are finite sets

[n] = {1,2,..., n}, n = 0,1, 2, ... and which has the category of finite
sets as subcategory, such that CmJ is the m-fold coproduct of
[1]) by taking the same objects and as 1-cells subsets of the
homsets; 2-cells are just inclusions. B(T)-categories satisfying
suitable conditions are then (possibly non-deterministic) T-alge-
bras. If we call [n]0 the trivial one object category over Inl,
a tree automaton is a T-algebra X with an initial module i from
X to CO]Q and a final module t from [1]0 to X (see again 131 or
[5] for details). The composite module i - t is the behaviour of
the automaton, i.e., the set of terms (or trees) which are reco-
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gnizable. In this setting there is no longer a description of

regular operations, but some of the previous constructions still
make sense. In particular, an analogue of Proposition 1 provides
the union of behaviours and even the general situation described
iu dlctgl-dill (-) tjctn use interpreted it we notice that E, now to

and from [010, is trivial, while L, to and from 1110, represents
a set of unary operations of the algebra (see L5]).
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