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NILPOTENT CROSSED MODULES AND

Pro-C COMPLETIONS 

by F. J. KORKES and T. PORTER

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

VOL. XXXI-4 (1990)

R6SUM6. Cet article donne deux r6sultats sur les pro-C
compl6tions de groupes simpliciaux, ob C est une sous-

cat6gorie pleine de la cat6gorie des groupes finis; on 6tu-
die leurs relations avec les pro-C compl6tions de modules
crois6s et les actions nilpotentes.

In a earlier paper [2], we have considered the algebraic
problem of studying the pro-C completion of a crossed module
and gave a "cofinality condition" that guaranteed that the pro-C
completion of the crossed module could be performed levelwise,
i. e., by completing the two groups making up the crossed mo-
dule individually.

It is a result of Mac Lane and Whitehead that certain

equivalence classes of crossed modules correspond via an equi-
valence of categories with homotopy 2-types. i. e., with homotopy
types that have zero homotopy groups above level 2. Any con-
nected homotopy type, X, can be represented by a simplicial
group G(X), and any simplicial group G gives rise to a reduced

simplicial set W(G), so that these two functors, G and W, give
an equivalence on homotopy categories. The work of Bousfield
and Kan [1] on p-profinite completions of homotopy types in-
cludes the possible use of this adjointness to define such a

completion functor algebraically. They also study nilpotent ac-

tions and nilpotent fibrations and the interplay of these ideas
with their completion processes.

In this paper we investigate the connection between pro-C
completions of crossed modules, levelwise constructions of

pro-C completion of simplicial groups and nilpotent actions.

1. PRELIMINARIES.

In what follows C will denote a non-trivial full subcate-

gory of the category of finite groups. This category is assumed
to be closed under the formation of subgroups, quotients and
finite products. For any group G we let O(G) be the directed set
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of normal subgroups N of G such that G/N E C. With this nota-
tion the group theoretic pro-C completion of G is given by

G = Liin G/N
-

where the inverse limit is taken over the normal aubgroupe 

N E O(G).

A crossed module consists of two groups C and G, an

action of G on C and a homomorphism c): C-G satisfying the
two conditions:

for all

for all

Morphisms of crossed modules are pairs of homomor-

phisms preserving the action and giving a commutative square in
the obvious way.

A crossed module is said to be a pro-C crossed module if
both groups are pro-C groups, that is inverse limits of groups
in C, and the action and homomorphism are continuous in the
inverse limit topology. Morphisms between two pro-C crossed
modules are continuous morphisms of the algebraic crossed
modules underlying them.

There is an obvious forgetful functor from the category
of pro-C crossed modules to that of crossed modules, and in
[2] we showed that that functor had a left adjoint which is a

pro-C completion functor. This completion functor is not just
the group theoretic pro-C completion of the two groups. The
"bottom" group (G in the above) is sent to its pro-C comple-
tion, but the "top" group on which G acts does not, in general,
go to its pro-C completion. This does happen, however, if the
crossed module satisfies the following cofinality condition:

Let °G(C) be the directed subset of H(C) given by those
N E H(C) which are G-equivariant. We say (C, G, a ) satisfies the
cofinality condition if °G(C) is a cofinal subset of H(C) .

We will also need some facts about simplicial groups. We
recall that given a simplicial group G., the Moore complex
(NG,c)) of G. is the chain complex defined by

with 0 : NGn-&#x3E;7NGn-1 given by a n = dno restricted to (NG),,,. The
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image of an+1 is normal in Gn and the homotopy groups of G.
can be calculated using this complex (NG,6); in fact,

From G. we can also form a crossed module

in which the "boundary" map a is induced by that of the Moore
complex. We will denote this crossed module by M(G.,1) as it

represents the 2-type of G. The cokernel of this crossed module
is xo(G,) and the kernel is 1t 1(G.) as is easily seen from the

quoted facts about the Moore complex.

Given a simplicial group G., its pro-C completion will be
taken to be the pro-C simplicial group obtained by applying the
group theoretical pro-C completion in each dimension. (Although
this ties in with the definition of Bousfield and Kan, see [1] pa-
ge 109, the reader should be warned that it does not necessarily
coincide with the Artin-Mazur type completion which aims to

pro-C complete the homotopy groups rather than an algebraic
model of the homotopy type. The two definitions will coincide
in the presence of finiteness conditions.)

Finally we recall (again cf. [1] the notion of a nilpotent
action of a group G on a group C. An action of G on C is said
to be nilpotent if there is a finite sequence

C = C1 &#x3E; ... &#x3E; C i &#x3E; - - - &#x3E; Cn = {e}
of subgroups of C such that for each j

(i) Cj is closed under the action of G,
(ii) C j+ 1 is normal in C j and Cj/Cj+1 is abelian,

and (iii) the induced G-action on Cj/Cj+1 is trivial.

We will say that the G-nilpotent length of C in this case is
less than or equal to n (denoted ÀG  n).

2. pro-C COMPLETIONS OF SIMPLICIAL GROLIPS AND OF
CROSSED MODULES.

Bousfield and Kan proved (111 page 113): "the homotopy
type of R_X in dimensions  k" depends only on" the homotopy
type of X in dimensions  k". Here Reo is a completion functor
and we will only be looking at this for the case of a pro-C
completion. For k=1, as the 1-type of X is determined by the
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fundamental group, this is clear and relatively uninteresting. The
next simplest case of this is given by the 2-type and thus, by
Mac Lane and Whitehead, by a crossed module. One way of

assigning a crossed module to a 2-type is via simplicial groups
and tne M(-,i) construction recalled eariier.

Our situation is not identical with that studied by Bous-
field and Kan but we can view their result in a different light
representing the 2-type by a crossed module, so it is natural to

ask what is the exact relationship between the representing
crossed module M(G.,1) of the 2-type of the pro-C completion
of a simplicial group G., and M(G,,1)"’, the crossed module pro-C
completion of M(G,,1) as introduced by us in [2]. The answer is
as nice as it could be.

PROPOSITION. There is a natural isomorphism

pROOF. The nerve functor

E: CMod -&#x3E; Simp.Groups
is defined as follows: If M =(C,G, a) is a crossed module, then
E(M) is the simplicial group given as the nerve of the associated
cat 1-group, which is an internal category in the category of

groups (see Loday [3]). In dimension 0, E(M) is just G, in di-
mension 1, it is Cxl G, and in higher dimensions it is a multiple
semi-direct product with many copies of C.

This simplicial group has Moore complex isomorphic to

--- -&#x3E; 0 -&#x3E; 0 -&#x3E; - - - -&#x3E; C -&#x3E; G,

i. e., essentially giving us back M. Now let T.1] be the full (re-
flexive) subcategory of the category Simp.Groups defined by the
condition that G. is in it if and only if the Moore complex of G.
has trivial terms in dimensions 2 and above, i. e., N(G)i= {1} for
each i &#x3E;2 . The reflector t1]: Simp.Groups -&#x3E; T1] is defined by the
condition that N( t1]G.) is the same as the truncation of N(G.)
given by:

N(G) o in dimension 0,
N(G)1/ d0N(G) 2 in dimension 1,
1 in dimensions &#x3E; 2.

One easily checks that t1]G. is isomorphic to EM(G.,1) and that
M(-,l) and E set up an equivalence of categories between CMod
and T1]. Of course a similar thing happens with pro-C crossed
modules and a reflexive subcategory of pro-C simplicial groups.
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(The notation we will use for the various categories will, it is

hoped, be self explanatory.)

Suppose that G. is a (discrete/abstract) simplicial group
and M is a pro-C crossed module, then

Simp.Groups (G.,U(EM)) = Simp. pro-C(G,EM)
since EM is a simplicial pro-C group. This set is itself naturally
isomorphic to- T1]C(t1]C (G),EM). Since

this gives a natural isomorphism

Simp.Groups(G.,U(EM))= pro-C. CMod(M(G,1), M) .
The forgetful functor U: pro-C -&#x3E; Groups, or more exactly its

simplicial and crossed modules extensions, satisfies UE = EU, so
one also has

Simp.Groups (G.,U(EM)) = Simp.Groups (G,,E(LIM))
= CMod(M(G.,1), u= pro-C .CMod(M(G.,1)-, M)).

We thus have that there is a natural isomorphism

as required.
This clarifies and extends Bousfield and Kan’s result in

the case k = 2, since for a reduced homotopy type X, the pro- C
completion WGX of X has a 2-type represented by M (G X.,1 )
which is isomorphic to the pro-C completion of the crossed
module M(GX.,1), that represents the 2-type of X.

3. NILPOTENT CROSSED MODULES, COFINALITY CONDITIONS
AND pro- C COMPLETIONS.

Crossed modules occur in the work of Loday [3], linked

closely to the study of fibrations: if p: E-4B is a fibration with
connected fibre F then the induced map from n1(F) to n1(E) ma-
kes (n1(F), n1 (E), P*) into a crossed module. The preservation of
certain crossed module structures by termwise pro-C completion
is thus reminiscent of the preservation of nilpotent fibrations by
completions as exemplified by the nilpotent fibration lemma of
Bousfield and Kan [11, and suggests there should be a link
between nilpotent actions and cofinality conditions. The link is
the following:

PROPOSITION. If M =(C,G,a) is a cr-ossed module in which the
action of G on C is nilpotent, then M satisfies the cofinality
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condition and hence M- is isomorphic to (C ,G, a) .
PROOF. The proof is by induction on the G-nilpotent length of
C. First we note that if W C is such that C/W is in C, it is
sufficient to prove that ng W = V, say, is such that C/V is in C.
If ÀG= 1, the group C is trivial. If XG(C) = 2, then the group C
is abelian with trivial G-action. In neither case is there any dif-

ficulty.
Next suppose we have that the conclusion holds provided

that ÀG(C)  n, more precisely we assume that if W is normal in
C and C/W E C, then V = ngW is also such that C/V is in C.
Now if C is such that ÀG(C) = n , there is a sequence

as in the definition of Section 1. Taking the normal subgroup C2
we get a short exact sequence

in which XG(C2)  n and C 1/C2 is abelian with trivial G-action.
Now suppose W4 C is such that W/C E C. For any g E G,

p(gW) = p(W) , since the G-action on C 1/C2 is trivial. Moreover

since C2 is closed under the G-action. Thus setting V = ngW, we
get

p(V) = p(W) and vnc2 = g(WnC2).
As C2/C2nW E C, we apply the induction hypothesis to conclude
that C2/C2nV E C. Similarly the quotient of C1/C2 by p(V) is in

C as it is the same as that by p(W). The group C/V is thus

part of an exact sequence, the other groups of which are in C,
hence it also is in C as required.
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