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HOMOLOGY GROUPS Hqn(-) AND
EIGHT-TERM EXACT SEQUENCES

by J. BARJA and C. RODRIGUEZ

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

voL. XXXI-2 (1990)

RESUME. Etant donn6 dew sous-groupes normanB N et M
d’un groupe G tels que N.M = G. on obtient dans cet arti-

cle une longue suite exacte d’homologie a coefficients
dans Zq :

On donne une description explicite des 8 derniers termes

6 1’aide de prdsentations libres. En particulier. si q = 0, on
obtient H2(G) et H3(G) .

Pour M = G, cette suite se reduit 6 la longue suite
exacte d’homologie associée à un homomor-phisme surjectif
de gr-oupes G-G/N.

1.
Several authors have obtained an eight-term exact sequen-

ce of homolog)

H3(G)-H3(Q)-V-H2(G)-H2(Q)-N/[N.G]-H1(G)-H1(Q)-&#x3E;O
from a short exact sequence of groups 1-&#x3E;N-&#x3E;G-&#x3E;Q-&#x3E;1. the term
V varying from author to author.

In this waN. Eckmann &#x26; Hilton obtain an extension of this

sequence to ten terms, associated to a central short sequence of

groups. Eckmann, Hilton &#x26; Stambach in 1972 obtain an eight-
term sequence for a central stem short sequence in 181, and

drop the stem character in E9]. In the same direction we have
the papers of Gut 1141 and Gut &#x26; Stambach [15].

Brown &#x26; Loda) [5] obtain an eight-term sequence, for in-

teger homology, associated to two normal subgroups M and N
of a group G. This sequence. for M = G. reduces to the one gi-
ven above. Ellis [11] gives an algebraic proof of the sequence of
[5].

The main purpose of this paper is to get two long exact

sequences of 1-ioniolog) with coefficients in Zq=Z/qZ, one asso-
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ciated with a surjective group homomorphism a:G-Q (i.e., a

group G and a normal subgroup N = Kera), and the other one

associated to a group G and two normal subgroups N and M
such that N.M =G. Furthermore, interpretations of the last eight
terms or tnese sequences t)N means or free presentations are

given.
The method consists. basically . in reducing the degree of

the derived functor bN changing the functor or even the domain

category, and using simplicial techniques for deriving functors.
The basic results employed can be found in [1.18,21.22].

Similar results have been obtained bN Brown [21 and
Brown &#x26; Loda) [5]. for integral homology. using algebraic and

topological techniques, which do not apply here and as Net their
methods have not yielded results on homology with non-integer
coefficients. It would be interesting to establish the relationship
between our results (for q =0) and those of [5.6L It seems a

"very interesting and challenging technical problem". In the last
section we give a partial approxi mation (M =G) .

2.
In this section we recall several concepts and results

about the homotopy of Kan complexes and the homology of
their associated Moore complexes. A detailed exposition can be
found in [201 or [181.

DEFINITION 2.1. A sinlplicial set X is said to be a kan complex
if for every collection of n+1 n-simplices I o..... Ik,-1. I;+ 1.....
n+1 that satisfies di I j = dj-1Ij if k t i  j # k (B0.... Bk- 1.
Bk+ 1 ..., B n+1 are called compatible). there exists an n+1-siI11-

plex B t: X n+ 1 such that di B = Bi if i# k.

DEFINITION 2.2. Let X be a Kan complex and B, B R Xn (n &#x3E;- 0):
and .B’ will be homotopic if there exists a -1 E X n+ 1 such that

We will say that is a homotopy frorn B to B’ and will denote
this as y : B-,B I.

Note that from this definition it follows that two homo-

topic simplices B and B have the same boundary d(B)= d( B:0’).
"~" is an equivalence relation in Xn, for n &#x3E;- 0.
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DEFINITION 2.3. A vertex* E X 0 generates a subcomplex of X
which has in each dimension exactly one simplex s n- 1... s1. s 0( *)
which will also be called + as well as the subcomplex that it

generates in X. A pointed Kan complex (X,* ) is a Kan complex
X with a chosen vertex *.

DBFTNITION 2.4. For a pointed Kan complex (X,*) we define:

ITn(X. *) is a group if n &#x3E; 1. which is abelian if n &#x3E; 2. IT0(X.*)
will be referred to as the component set of X.

In an obvious manner the IIn are functors from the ca-

tegory of pointed Kan complexes. KAN* , to the category of

pointed sets SET*. More precisely :

DEFINITION 2.5. A sinlplicjal map p: X-rY will be called a fi-
bration if for each compatible collection (’0’ .... Bk-1, Bk+,1 ....
Xn+1) of n+1 n-simplices of X and for each -’- E Y n+1 such that

diy = pB; (i # k ). there exists an X E Xn+1 such that

Note that the case Y = i yields the definition of a Kan

complex X. When we choose a base point i in Y, then F=
p - 1(*) will be called the fiber of the fibration. The simplicial
set Y is called the base complex. X the total complex..

PROPOSITION 2.6. (1) The fiber- of a fibration is a Kan complex-.
(2) The base comple.x of a surjective fibration is a Kan

complex if the total comple.’. is.
(3) If the base complex of a fibration is a Kan complex.

then so is the total space.

PROPOSITION 2.7. (Long exact sequence of a fibration). Let p:
X-Y be a fibration. * a vertex- of Y, F = p-1(*) the fiber.*E F
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c X a verteB of F. Then the follotviiig sequence is e,act

PROPOSITION 2.8. Et ei-i Simplical group is a k’an complex and
ever:’ surjecti ve simplicial group homomorphism is a fibration.

DEFINITION 2.9. Fi-oiii a simplicial group G we can derive a chain
complex MG. the Moore chain complex. as follonvs:

n

Since for Be(MG)n+1 we have

the map do can be restricted to a map d: (MG)n+1 -(MG)n which
we take as the boundary map of the coniple,.

PROPOSITION 2.10. The homotopy groups of a simplicial gr-oup
coincide with the homologi groups of its Moor-e chain cOJl1ple.’B
ITn(G) = Hn(MG) .

RBMARK 2.11. Keune in 1181 introduces the Moorc complex M’G
associated to a simplicial group as follows:

the boundary map (M’G) n+ 1 -&#x3E; (M’G)n, being the restriction of

d,., 1.
In 1231 it has been proved that Hn(M’G) = H,,(MG).

3.
This section is dedicated to the introduction of the cate-

gories of Rinehart and of the simplicial method to derive func-
tors from categories of Rinehart to the category of groups. An
exhaustive study of these topics can be found in [21,22],

DEFINMON 3.1. Let C be a category and s a projective class of
epimorphisms of C (C is assumed to possess sufficient s-pro-
jectives). The pair (C.E) is called a base category if the follo-

wing statements hold:
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B.I. If A-BEe and C-B is anN morphism in C , then C con-
tains the fiber product A;v’BC,

B.2. e is closed under composition.
B.3. If the composition A-B-CEF;. then B-CEE..
B.4. If A’-A, A-B and C-B are morphisms of C such that

A’-A-BES. then A’x,BC-A BC E F iff A-&#x3E;A E .

DEFINITION 3.2. A Rinehart categol) is a base category (C.s) in

which the following statements hold:
R.1. If P is the class of s-projectives. a finite number of ele-

ments of P have a coproduct in C.
R.2. The morphisms of e have their kernels in C.
R.3. For any commutativ e diagram

with Bi-A E F. and Kj the kernel of Bi-A. a F E iff B E E.

REMARK 3.3. Let C be an algebraic category with a zero object.
and let s be the class of surjective morphisms. Then (C, E) is a

category of Rinehart.

DEFINTION 3.4. Let (C.e) be a base category. The category C 1
is defined as follows:

The class of objects of C1 is the class e.

Let a:A-B and oc’: A’-B’ be objects in C 1. A C1- morphism
h: a-a’ is a pair (h0.h1) of C-morphisms such that the square

1-1 -

is commutative.

Let E1 be the class of C1-morphisms such that h 1 and

(h0,a):A-A"BB are irorphisms of E . Inductively we define

(Cn. En) .
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PROPOSITION 3.S. If (C.£) is a base category. then so is (Cn,En)
and if (C . E ) is a Rinehart categoi-t. then (Cn.En) is a Rinehart

category 

REMARK 3.6. We denote "uN Gill’ n  O. the Category of Rinehart

(Gr n.En) introduced in Definition 3.4. starting with the Rinehart

category (Gr.E) (see Remark 3.3) .

PROPOSITION 3.7. Let (C.E) be a Rinehart category. Then P,.,,
the class of En-projectives in (Cn.En) is given by

such that

DEFINITION 3.8. Let (C.e) be a Rinehart category. D a category
with kernels and F:C-D a functor. For l1¿Û, Fn:Cn-D is defi-
ned as follows:

where a is an object of C 1 and h = ( h0 , h1) : a2013a’ is a

C1-morphism.

DBPINmON 3.9. Let e be a class of epimorphic maps in a cate-

gorn C (with simplicial kernels) and let X be a (semi)-simplicial
object. If in the diagram below

all the En are in s. where En denotes the factorization through
Kn. the simplicial kernel of di:Xn- Xn-1, i = 0 .... , n . then we
sa% that the (semi-&#x3E;simplicial object X is exact.

DEFINITION 3.10. Let (C.F) be a category of Rinehart. and A an
object of C. An a-exact (semi-)siinplicial object (X, d), with the

Xn e-projective (n z 0) &#x3E; together with a morphism

do : Xo-A. do E E, such that d0 d1 = do do
will be called a (semi-)simplicial E- resolution of A.

If Xn is not e-projective, then we will say that (X, d) is

an e-exact augmented (semi-)simplicial object of A.
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PROPOSITION 3.11. Let (C,r;) be a Rinehart categorJ. Then every

object A of C has a simplicial E-resolution.

PROOF. We give here an explicit description of the first two

terms of this resolution, which will be used later. Modi [21, pa-
ge 64] provides a complete description of. a modified form of
the procedure developed by Andr6 [1].

Let do:Xo-A be an e-projective presentation of A.

R1= Ker d0 and W: X1 -R1 an e-projective presentation of R1.
Then the diagram 

holds, where X0*X1 denotes the free product (coproduct) of Xo
and X.1.

DBFINmON 3.12. Let (C, s) be a Rinehart category and F: C -Gr
a functor such that F(0)= 0. If A and A’ are objects in C, d:
X-A is a simplicial a-resolution and f: A-A’ is a morphism in
C, then the derived functors of F. LEn F. are defined for fi &#x3E; 0 b)

where (FX) is the simplicial image of X in Gr, FTn is the nth

homotopy group and 1 a lifting of f to the simplicial resolu-
tions of A and A’. The simplicial comparison theorem [18, page
441 ensures the validity of this definition.

REMARK 3.13. From Proposition 2.10. ITn(FX) = H,,(MFX).

PROPOSITION 3.14. Let (C.E) be a categoJ) of Rinehart. and
F’-F-F" a sequence of zero preserving fui7ctoi-s froln C to Gr.
exact on E-projectives of C . i.e.. we have an eBact sequence

in Gr , for each e-projective object P of C . Then. for each object
A of C . there is a natural eBact sequence of groups

PROOF. Appl) Proposition 2.7.

PROPOSITION 3.15. Let (C.E) be a Rinehart ca tegol). F:C-&#x3E;Gr a
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functor- such that F(O) = 0. Then the der-ived functors

Lsn Fm - Gr (n.m &#x3E;0) ar-e char-acterized by the following pro-
perties:

jjj) L sn Fm (P) = 0 for e"rel:B E m - projective P (n &#x3E;1. m &#x3E; 0 ) .

iv) If «: A-B C Em (m&#x3E;0). then there exists a l ong and natural
exact sequence

4.
In this section we obtain the exact sequence for homology

with coefficients in Zq = Z/qZ. associated with two normal

subgroups M and N of G such that M. N = G.

Let $ be a variety of groups. We denote bN V(G) the ver-
bal subgroup of a group G with respect to $ and consider the
functors V: Gr-Gr which take G to V(G). and ,a: Gr-Gr taking G
to G/V(G). With this notation. the derived functors LJJV 111 and

Ln 9 m are also defined for n. m z &#x3E;0 (Definition 3.12).

PROPOSITION 4.1. Let M and N be two norn1aJ subgroups of a
group G. L = MnN and &#x26; a variety of groups. Now consider the

following object in the Rinehat-t categoi-i Gr2

Then we obtain a commutative diagt-am with exact rows and co-
1 u 111ns (Figure 1).

PROOF. It is a consequence of Proposition 3.15.

PROPOSITION 4.2. On the h lt pothesis of Proposition 4.1. we ha-
ve: For each, E Ln9(G) such that ynBn( X) = 1. ther-e exist ele-

ments such that
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PROOF. Let

be a simplicial E2-resolution of (a,Y) in Gr2 (Definition 3.10). If
M4X denotes the Moore chain complex associated with the sim-
plicial group 9X (similarly M.&#x26; 1 and M’&#x26;2). then the proof is a

simple diagram chase using connecting homomorphism in the

following exact diagram of Moore chain complex:

REMARK 4.3. In the particular situation that M. N = G, since

Ln-&#x26;(G/M.N) = 1.un and Àn are isomorphisms and we can assure

that. for ever) B E Ln&#x26;(G). On-1;(X).nn-1Bn(X)= 1, /12.1 1 (where

L-1 n and u-1 n have been omitted for simplicity).

PROPOSITION 4.4. Let M and N be two normal subgroups of a
group G such that M.N = G. Let L = MIIN. (a. f) the object of
Gr2

and Hn denotes the n-th homologj gt-oup G ivith coefficients in

zq= Z/q Z . Then. if &#x26; is a varietJ of Abelian groups of expo-
nent q. there e.x-ist a long exact sequence:
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PROOF. Diagram chase on Figure 1 and application of Remark 4.3
yield a long exact sequence: 

The isomorphisms Hq n+1(G)= Ln9(G), for n&#x3E;0, give the result.

5.
This section is dedicated to the computation of the

groups Lt&#x26;2(-’-) and LO&#x26;2(---) to give an interpretation of the
last eight terms of the exact sequence of homology of Section 4
in terins of a free presentation of G..

PROPOSITION 5.1. Let $ be the variety, of Abelian groups of e’(-
ponent q. V the verbal subgroup functor. I the identity functor-
of Gr and (a,y) the object in the RI’ne.har-t categori Gr2. Then.
since 1 - V n -&#x3E; In -&#x3E; "n - 1 is a sequence of functors. Gr n-&#x3E; Gr.
exact over En-projectives. n&#x3E;0. we get an exact secitrence of
derived functor-s

Since we obtain, for

Consequently the calculation of L0V2(a,Y) leads to L1 v2(a.y) and
Lo9-2(a,y) .

Next. consider M. N two normal subgroups of a group G
such that M.N= G. Put L =MnN. Let 3:F-t- G be a free pre-
sentation of G. R the kernel of the composition morphism Bs:
F-G-N/L and S the kernel of as: F-G- M/L. Thus we have a

diagram
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Given two groups A and B. A,B will denote the free pro-
duct (coproduct) of A and B. Now consider the following object
in Gr2: 

n"

where X0 = (R nS)’ R’ S. (R r1S)’ being an isomorphic copy of
(RnS) and ao and flo are the projections killing the first and
last. and the first and second cofactors. respectively, so

If we wi-ite do for the morphism and T its kernel

then thei-e is an object

obtained bN restricting ao and B0 to T and an obvious map u:
(X0,Y0)-(a0,Y0) in Gr2 that is
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and an epimorphi sm (a0.Y0) - (a . y) that is

Similarly we have the object in Gr2:

where X 1= X0 T’. T’ being an isomurphic copy of T. a1= a0 +a0
and B1= B0+B0 and maps di: (a1.y1)- (aQ.Yo) ( i =0.1): this
means that

where

Then we have the diagram

that is
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PROPOSITION 5.2. With the above notation:
is a projective presentation in

are the first t wo terms of a silnplicial resol u tion of (a:y) in the
Rinehart category Gr2.
PROOF. i) (ao.Yo) is an s-projective object (Proposition 3.7). Sin-
ce (a0.g0)-(a.y) E 62 (Definition 3.4) and (a0.y0)-(a0,y0) is the
kernel, the result follows.

ii) It follows from Proposition 3.11.

DEFINITION 5.3. Let M and N be two subgroups of a group G
and q E IN. We use the symbol M#qN to denote the subgroup of
G generated b)

Cm.nJ tq - m n m-1n-1tq. m E M, n E N, t E M 1-B N .

Note that if M and N are normal subgroups of G, so is

M#qN.
If N is a subgroup of G. then N#qG is the subgroup of G

defined bN Stammbach in [25. page 2]: and clearly G=qG is the
verbal subgroup of G for the variety of Abelian groups of exo-

ponent q.

LEMMA S.4. Let A and B two groups and q E IN . Then. if
BA*B denotes the smallest normal subgroup of A B containing B
then

a) [BA*B.A*B] is the subgroup of A* B generated by

b) (A*B)# qB A*B is the subgroup of A’B generated bJ

PROOF. a) The result follows f rom [BA*B.A*B] = LB,A’Bl,

and
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b) (A* B)øqBA-*B is the smallest subgroup of At B contai-

ning [A*B.BA*B] and the set {xq|XEBA*B}. The result fol-
lows from (a) and the equalities

LEMMA 5.5. Let A and B be two groups and q E IN . Then:

PROOF. Clearly. the left side contains the right side. Conversely,
let 

g being the inclusion homomorphism of B in the free product.

and

= 1 mod (A*B) # qA A*B because
Note that if q =O. we get

It should be emphasized that these results are true for any va-
riety (not only Abelian groups and Abelian groups of exponent
q) as shown by Modi [21, page 109], under the unneeded hypo-
thesis of A and B being free groups.

PROPOSITION 5.6. With the notations of 5.2. if A = ( R n S )’ * S .
B = ( R n S)’*R .9 is the variety of Abelian groups of e.’-poneJJt q
and V is its verbal subgroup functor. then
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PROOF. Application of the functor V2: Gr2-Gr to the simplicial
resolution of (a.y) yields the simplicial group :

The Moore chain complex associated with this simplicial group
is

and the homolog) group of this compteB in Mo is the group
L0 V2(a.y), Calculation of the groups M0 and M1 shows that

Thus

Furthermore.

In fact. let [t. B] be a generator of an) of the fii-st three fac-
tors of the right hand side. then

where t’ E T’ and

Furthermore. t _ E TnKer a 0 Ker B0: then d0(t’q) = t q. We thus
have an iticlusion.

Converse!B. since Ker d1 = T x 1 . from Lemma 5.5 we obtain

then. from Lemma
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with

where (a0(t))’ and a0( B) denote the elements

and

also

with (0o(t))’ and P0(B) as above.
If we consider the canonical injection

we have

Since and

the following congruences mod. [T. Kera0 n Ker B0] hold:

If we consider the homomorphism

then. for tET. I E(RnS)’*R*S. we get

thus. the following congruences

hold:
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Thus

Since [

But considering the homomorphism

then

and consequently

Furthermore, since B1(y) = 1. we get:

but

and then
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Si milarly.

Finally, since

we obtain the following congruences:

and therefore

If now we consider the homomorphism

we have d0 (y) = t2(B1(y)) = 1, and consequently .

The result now follows from Lemma 5.5 and

REMARIC. 5.7. Note that

and it is the smallest subgroup containing

and the elements tq. with qE IN and
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PROPOSITION 5.8. Under the h 11 -pothesis of Proposition 5.6:

PROOF. ii) It is a consequence of Propositions 5.1 and 5.6.
i) From Proposition 5.1. since

and L09 2(a.y) is a quotient of (X0#qX0)nBX0. it is sufficientand L0v2 (a . .Y) is a quotient of ( X 0 #q A X0 ) n B X0 . it is sufficient 

to show that

Let m E M . n E N . t E M n N. Then there exist

r E R. sE S and K E RnS. such that s (i-) = m. Ic- (S) = 17 and 2(k) :.. t.

Then

thei-efoi-e

Let . Then. from Lemma 5.4.

If we consider

so that

6.
In this section we obtain the long exact sequence of ho-

mology with coefficients in Zq. associated to a surjective group
homomorphism.

PROPOSITION 6.1. Let N be a nornaal subgroup of a gr-oup G
and we consider- M = G . Then we have the exact sequence:
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whe.r-e (a.y) denotes the object of the Rinehar-t categoty Gr2:

PROOF. Since G/M = 0. the result follows froin Proposition 4.4.

LEMMA 6.2. Let N be a normal subgroup of a group G. 2: F--G
a free presentation of G. S the kernel of

and T the kernel of ( Then

tha t is

is an £2 -projective presentation of (a.y) in th e Rinehart category
Gr2’
PROOF. ao and Y0 are projective objects in Gr1 and. since

(B0. d0) : a0 -y0 is an epimorphism in Gr1. we have that (ao.yo) is
a projective object in Gr2. Furthermore. since (a0.y0)-(a.y) is an

epimorphism in Gr2 we get the result.

LEMMA 6.3. With the same nota tion as abol’e. the first ttvo

ter-ms of a simplicial resolution of (a.y) in the Rinehar-t category
Gr 2 ar-e
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where

PROOF. This is a particular case of Proposition 5.2, ii.

PROPOSITION 6.4. With the same notation as above:

PROOF. From Proposition 5.6. we have

The result follows from

PROPOSITION 6.5. With the same notation as above:

PROOF. This is a consequence of Propositions 5.8 and 6.4.

7.
In this section we obtain Hopf formula for H2 and a

"kind of" Hopf formula for Hq3(G) . 

PROPOSITION 7.1. Let G be a group.
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a free presentation of G . and T the kernel of (1 1): R’ t- F- F . Then

PROOF. As in Section 6 we have the following diagram

1--

From Proposition 6.1, since H q n (F) = 0, n&#x3E;2, we get

Thus
i) H q 2 (G)= Ke(R/(R#qf)-F/(Faqf)) = (Rn(F#qf))/(R#qF).
ii) Since, in this case. Ker(F-F/R) = R we have the result by

Proposition 6.S.ii . 

8.
In this section we prove that for the particu lar case of ( q

=0) and only a subgroup N 4 G (M = G) we have that L0V2(a.y)
coincides with the exterior product NAG (Proposition 8.3) and
therefore V = Ker([.]: N ^G-G) [6. Corollary 4.6] coincides with

L1V2(a,y) (Corollary 8.15).
Moreover, in Remark 8.16 we show that the expression of

H3(G) in Proposition 7.1 is a particular case of Theorem 1 of [3].

Let $ be a variety of Abelian groups. N a normal sub-

group of G and (B ,t) = (a, y) the following object of the category
of Rinehart Gr2:

Then. bN Proposition 3.15. we have

Si nce
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REMARK 8.1. If N is a normal subgroup of G and if we consider
a: G-G/N and s: F-G a free presentation of G. letting S be the

kernel of aE : F-&#x3E;G-&#x3E;G/N and T the kernel of (Ei E): S’*F-G (Propo-
sition 6.4. foi- a = 0)

DEFINITION 8.2. Brown &#x26; LodaN in LS.6] introduce the tensor

product M©N and the exterior product MAN for two groups M
and N equipped with an action of M on the left of N and an

action of N on the left of M. It is always understood that a

group acts on itself by conjugation: Yx = By B-I.

In the particular case of M and N being two normal sub-
groups of G we can consider that the actions of M on N and of
N on M are by conjugation, and therefore: the tensor product
M® N is the group generated by symbols m ® n . m E M. n E N.
with relations

(a) mm’®n = (m’mOnm)(mOn).
(b) m®nn’ = (m®n)(mn®n’n).

for all m. m’ E M. n. n’ E N .

The (non-Abelian) exterior product MAN is obtained from
the tensor product MON bN imposing the additional relations
t 0 t = 1 for all t E MnN. the image of a general element m ® n

in M /B N is written m ^ n .

PROPOSITION 8.3. Let N be a nol-inal subgroup of G anoC consi-
der a:G-G/N. Then L0V 1(a)= N,’,, G.

To prove this result we will construct two homomor-

phisms. inverse to each other. T:NAG-L0V1(a) ( Corol 1 ary 8.7)
and t: L0 V 1(a)-NIB G (Corollary 8.14).

LEMMA 8.4. With the same nota tions as in 8.1. let u: G-F be a
section of 2 (i.e.. (1 is a map such that E u = IG). For each n E N
We ha i,e u(n) E S. and me consider- N-S-S’ given by n-u(n)’.
Thefi

gl "Ien D)

h(l1.g) = [u(n)’ .(u(g)].H. J’J,-here H = [S’S’*F. T] [TnS’ S’*F. S*F]
is a crossed pairing (or biderivation) [6. Definition 2.2].
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because

So

since

then

Analogously

taking into account that

RBMARK 8.5. h is independent of the u we choose. for if v is

also a section. then for each g t G. (v(g)-1u.(g)) E T: and for 11

This " aN

COROLLARY 8.6. The biderivation h:N.-G-L0V1(a) deter/nines a

group homomorphism

COROLLARY 8.7. h* : NOG- L0 V1(a) determines a homomorphism 
W : N ^ G - L 0V 1 (a) such that w(n^g)= [u(n)’ .(u(g)] .H.
PROOF. It is enough to realize that
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and therefore h*(nOn) E H and
h’ induces T.

RB 8.8. Let S’ and F be groups and consider their free

product S *F. If 

then

PROPOSITION 8.9. With the nota tions of 8.1. let

Then and we ha ve

PROPOSITION 8.10. With the same notations.

S1i. S2i ES’. have

PROOF. The map

is an isomorphism L1L Proposition 2L Moreover

is a group homomorphism.

COROLLARY 8.11. If

then we ha ve

As a consequence, for . we denote by cp(X)

the element
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PROPOSITION 8.12. With the above notations we have the follo-

wing cp: [S’S*F,S’.F]-NAG so that. for ITSifiE [S.S*F,S’*F],

is a group homomorphism.
PROOF. cp defines a mapping since is uniquely determi-

ned. Moreover. denoting

, we have , Proposition 2.3]. 

As a consequence, from

and using that for .

we have

REMARK 8.13. From Proposition 8.9 it follows that, for

COROLLARY 8.14. The map ¥ of Cor. 8.7 is an isomorphism.
PROOF. With the notation of 8.1 we have that

because. if B E T. then d(B)= 1 and MA1 = 1. 1Ag = 1. Therefore
we have a t: L0 V1(a)-N /B G induced bB (p. It is clear now that i

is the required inverse of w.

This resu 1 t ends the proof of Proposition 8.3.

COROLLARY 8.15 ([5]. Corollary 3). For ant given free presenta-
tion of G. a: F-G. if R = Kera and T the kernel of (i 1): R’ *F - F ,
then we ha ve
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PROOF. We have the following commutative diagram

and since T is an isomorphism. V = L1&#x26;1(a).

REMARK 8.16. Brown &#x26; Ellis in [3. Theorem 11 give the follow-
ing expression for Hr(G).

Let R1.....Rn be normal subgroups of a group F such that
. and for each proper subset A of  n &#x3E; = {1 ..... n} the

groups

ai-e trivial (for example, these g!-oups are f ree) . Then

there is an isomorphism

Our expression for Hq3(G) in Proposition 7.1 (for q=0) is a

particular case of Brown &#x26; Ellis’s result because

is a commutative diagram whose c-ows and columns are shor-t
exact sequences. and therefore

are free groups. Moreover
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MATHEMATICAL SYMBOLS USED:

2013 Morphism or functor

2013!20132013 Monomorphism or injective function

2013II20132013 Normal monomorphism
2013I2013&#x3E; Surjective function or element of a projective class of epi-

morphisms in a category

-Degeneracy operators of a simplicial object
(a b) Induced morphism from a free product b) « and B 
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