CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES # J. Barja # C. RODRIGUEZ Homology groups $H_n^q(-)$ and eight-term exact sequences Cahiers de topologie et géométrie différentielle catégoriques, tome 31, n° 2 (1990), p. 91-120 http://www.numdam.org/item?id=CTGDC_1990__31_2_91_0 © Andrée C. Ehresmann et les auteurs, 1990, tous droits réservés. L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ # CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIOUES # HOMOLOGY GROUPS $H_n^q(\cdot)$ AND EIGHT-TERM EXACT SEQUENCES by J. BARJA and C. RODRIGUEZ **RÉSUMÉ.** Etant donné deux sous-groupes normaux N et M d'un groupe G tels que N·M = G. on obtient dans cet article une longue suite exacte d'homologie à coefficients dans \mathbb{Z}_q : $$\begin{split} \cdots & \to H^q_{n+1}(G) - H^q_{n+1}(G/N) \oplus H^q_{n+1}(G/M) - L_{n-1} \vartheta_2(\alpha,\gamma) \to \\ & H^q_n(G) - \cdots - L_0 \vartheta_2(\alpha,\gamma) - H^q_1(G) - H^q_1(G/N) \oplus H^q_1(G/M) = 0. \end{split}$$ On donne une description explicite des 8 derniers termes à l'aide de présentations libres. En particulier, si q = 0, on obtient $H_2(G)$ et $H_3(G)$. Pour M = G, cette suite se réduit à la longue suite exacte d'homologie associée à un homomorphisme surjectif de groupes $G \rightarrow G/N$. 1. Several authors have obtained an eight-term exact sequence of homology $$H_3(G) \to H_3(Q) \to V \to H_2(G) \to H_2(Q) \to N/[N.G] \to H_1(G) \to H_1(Q) \to 0$$ from a short exact sequence of groups $1-N-G-Q\rightarrow 1$, the term V varying from author to author. In this way. Eckmann & Hilton obtain an extension of this sequence to ten terms, associated to a central short sequence of groups. Eckmann, Hilton & Stambach in 1972 obtain an eightterm sequence for a central stem short sequence in [8], and drop the stem character in [9]. In the same direction we have the papers of Gut [14] and Gut & Stambach [15]. Brown & Loday [5] obtain an eight-term sequence, for integer homology, associated to two normal subgroups M and N of a group G. This sequence, for M = G, reduces to the one given above. Ellis [11] gives an algebraic proof of the sequence of [5]. The main purpose of this paper is to get two long exact sequences of homology with coefficients in $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$, one asso- ciated with a surjective group homomorphism $\alpha\colon G-Q$ (i.e., a group G and a normal subgroup $N=Ker\,\alpha$), and the other one associated to a group G and two normal subgroups N and M such that $N\cdot M=G$. Furthermore, interpretations of the last eight terms of these sequences by means of free presentations are given. The method consists. basically, in reducing the degree of the derived functor by changing the functor or even the domain category, and using simplicial techniques for deriving functors. The basic results employed can be found in [1.18,21.22]. Similar results have been obtained by Brown [2] and Brown & Loday [5], for integral homology, using algebraic and topological techniques, which do not apply here and as yet their methods have not yielded results on homology with non-integer coefficients. It would be interesting to establish the relationship between our results (for q=0) and those of [5.6]. It seems a "very interesting and challenging technical problem". In the last section we give a partial approximation (M=G). 2. In this section we recall several concepts and results about the homotopy of Kan complexes and the homology of their associated Moore complexes. A detailed exposition can be found in [20] or [18]. **DEFINITION 2.1.** A simplicial set **X** is said to be a *Kan complex* if for every collection of n+1 n-simplices $v_0, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{n+1}$ that satisfies $d_i v_j = d_{j-1} v_i$ if $k \neq i < j \neq k$ ($v_0, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{n+1}$ are called compatible), there exists an n+1-simplex $v_i \in X_{n+1}$ such that $d_i v_i = v_i$ if $i \neq k$. **DEFINITION 2.2.** Let **X** be a Kan complex and $x, y \in X_n$ $(n \ge 0)$: x and x' will be *homotopic* if there exists a $y \in X_{n+1}$ such that $$\begin{aligned} d_i(y) &= s_{n-1} d_i(x) = s_{n-1} d_i(x) &\text{ (for } i = 0.1.....n-1), \\ d_n(y) &= x \text{ and } d_{n+1}(y) = x^*. \end{aligned}$$ We will say that y is a homotopy from x to x' and will denote this as $y: x \sim x'$. Note that from this definition it follows that two homotopic simplices x and x' have the same boundary d(x) = d(x'). " \sim " is an equivalence relation in X_n , for $n \ge 0$. **DEFINITION 2.3.** A vertex $* \in X_0$ generates a subcomplex of X which has in each dimension exactly one simplex $s_{n-1} \cdots s_1 \cdot s_0(*)$ which will also be called * as well as the subcomplex that it generates in X. A pointed Kan complex (X,*) is a Kan complex X with a chosen vertex *. **DEFINITION 2.4.** For a pointed Kan complex (X,*) we define: $$\overline{X}_n = \{ \mathbf{x} \in \mathbf{X}_n \mid d\mathbf{x} = (*, \dots, *) \} \text{ and}$$ $$\prod_n (\mathbf{X}, *) = \overline{\mathbf{X}}_n / \sim (n \ge 1), \prod_n (\mathbf{X}, *) = \mathbf{X}_n / \sim.$$ $\prod_{n}(\mathbf{X},\star)$ is a group if $n \ge 1$, which is abelian if $n \ge 2$, $\prod_{\mathbf{0}}(\mathbf{X},\star)$ will be referred to as the *component set of* \mathbf{X} . In an obvious manner the \prod_n are functors from the category of pointed Kan complexes. KAN*, to the category of pointed sets SET*. More precisely: **DEFINITION 2.5.** A simplicial map $p: \mathbf{X} \rightarrow \mathbf{Y}$ will be called a *fibration* if for each compatible collection $(x_0, \dots, x_{k-1}, x_{k+1}, \dots, x_{n+1})$ of n+1 n-simplices of \mathbf{X} and for each $y \in Y_{n+1}$ such that $d_i y = p x_i$ $(i \neq k)$, there exists an $x \in X_{n+1}$ such that $$d_i x = x_i$$ $(i \neq k)$ and $p x = y$. Note that the case $\mathbf{Y} = +y$ yields the definition of a Kan complex \mathbf{X} . When we choose a base point + in \mathbf{Y} , then $\mathbf{F} = p^{-1}(+)$ will be called the fiber of the fibration. The simplicial set \mathbf{Y} is called the base complex. \mathbf{X} the total complex. **PROPOSITION 2.6.** (1) The fiber of a fibration is a Kan complex. - (2) The base complex of a surjective fibration is a Kan complex if the total complex is. - (3) If the base complex of a fibration is a Kan complex. then so is the total space. **PROPOSITION 2.7.** (Long exact sequence of a fibration). Let $p: X \rightarrow Y$ be a fibration. * a vertex of Y, $F = p^{-1}(*)$ the fiber. * $\in F$ $\in \mathbf{X}$ a vertex of \mathbf{F} . Then the following sequence is exact $$\cdots \rightarrow \prod_{n} (\mathbf{F}, *) \rightarrow \prod_{n} (\mathbf{X}, *) \rightarrow \prod_{n} (\mathbf{Y}, *) \rightarrow \prod_{n-1} (\mathbf{F}, *) \rightarrow \cdots \rightarrow \prod_{1} (\mathbf{Y}, *) \rightarrow \prod_{0} (\mathbf{F}, *) \rightarrow \prod_{0} (\mathbf{X}, *) \rightarrow \prod_{0} (\mathbf{Y}, *) \rightarrow *.$$ **PROPOSITION 2.8.** Every simplicial group is a Kan complex and every surjective simplicial group homomorphism is a fibration. **DEFINITION 2.9.** From a simplicial group G we can derive a chain complex MG, the Moore chain complex, as follows: $$(\mathbf{MG})_{0} = G_{0}$$. $(\mathbf{MG})_{n} = \bigcap_{i=1}^{n} \operatorname{Ker} d_{i}$. $n \ge 1$. Since for $\mathbf{v} \in (\mathbf{MG})_{n+1}$ we have $$d_i d_{n+1} x = d_n d_i x = 1, i = 0, ..., n,$$ the map d_0 can be restricted to a map $d: (\mathbf{MG})_{n+1} \to (\mathbf{MG})_n$ which we take as the boundary map of the complex. **PROPOSITION 2.10.** The homotopy groups of a simplicial group coincide with the homology groups of its Moore chain complex $\prod_n(\mathbf{G}) = H_n(\mathbf{MG})$. **REMARK 2.11.** Keune in [18] introduces the Moore complex **M'G** associated to a simplicial group as follows: $$(\mathbf{M}'\mathbf{G})_0 = G_0$$, $(\mathbf{M}'\mathbf{G})_n = \bigcap_{i=0}^{n-1} \operatorname{Ker} d_i$, $n \ge 1$. the boundary map $(\mathbf{M'G})_{n+1} \to (\mathbf{M'G})_n$ being the restriction of d_{n+1} . In [23] it has been proved that $H_n(\mathbf{M}'\mathbf{G}) = H_n(\mathbf{M}\mathbf{G})$. 3. This section is dedicated to the introduction of the categories of Rinehart and of the simplicial method to derive functors from categories of Rinehart to the category of groups. An exhaustive study of these topics can be found in [21,22]. **DEFINITION 3.1.** Let C be a category and ϵ a projective class of epimorphisms of C (C is assumed to possess sufficient ϵ -projectives). The pair (C, ϵ) is called a *base category* if the following statements hold: - **B.1.** If $A \rightarrow B \in \mathbf{E}$ and $C \rightarrow B$ is any morphism in \mathbf{C} , then \mathbf{C} contains the fiber product $A \times_B C$. - **B.2.** ϵ is closed under composition. - **B.3.** If the composition $A \rightarrow B \rightarrow C \in \varepsilon$, then $B \rightarrow C \in \varepsilon$. - **B.4.** If $A' \rightarrow A$, $A \rightarrow B$ and $C \rightarrow B$ are morphisms of C such that $A' A \rightarrow B \in \varepsilon$, then $A' \times_B C \rightarrow A \times_B C \in \varepsilon$ iff $A' \rightarrow A \in \varepsilon$. **DEFINITION 3.2.** A Rinehart category is a base category $(C.\epsilon)$ in which the following statements hold: - **R.1.** If P is the class of ϵ -projectives, a finite number of elements of P have a coproduct in C. - **R.2.** The
morphisms of ε have their kernels in C. - **R.3.** For any commutative diagram with $B_i \neg A \in \epsilon$ and K_i the kernel of $B_i \neg A$, $\alpha \in \epsilon$ iff $\beta \in \epsilon$. **REMARK 3.3.** Let **C** be an algebraic category with a zero object, and let ϵ be the class of surjective morphisms. Then (C, ϵ) is a category of Rinehart. **DEFINITION 3.4.** Let $(C.\epsilon)$ be a base category. The category C_1 is defined as follows: The class of objects of C_1 is the class ϵ . Let α : A-B and α ': A'-B' be objects in \mathbf{C}_1 . A \mathbf{C}_1 -morphism $h: \alpha - \alpha'$ is a pair (h_0, h_1) of \mathbf{C} -morphisms such that the square $$\begin{array}{cccc} A & \xrightarrow{h_0} & A' \\ & & & | \alpha & & | \alpha' \\ & & & h_1 & & B' \end{array}$$ is commutative. Let $\mathbf{\epsilon_1}$ be the class of $\mathbf{C_1}$ -morphisms such that h_1 and $(h_0,\alpha): \mathbf{A} \rightarrow \mathbf{A'} \cdot \mathbf{B} \mathbf{B}$ are morphisms of $\mathbf{\epsilon}$. Inductively we define $(\mathbf{C_n},\mathbf{\epsilon_n})$. **PROPOSITION 3.5.** If (C, ε) is a base category, then so is (C_n, ε_n) and if (C, ε) is a Rinehart category, then (C_n, ε_n) is a Rinehart category. **REMARK 3.6.** We denote by G_{1n} . $n \ge 0$, the category of Rinehart (G_{1n}, ε_n) introduced in Definition 3.4. starting with the Rinehart category (G_{1n}, ε_n) (see Remark 3.3). **PROPOSITION 3.7.** Let $(C.\epsilon)$ be a Rinehart category. Then P_n , the class of ϵ_n -projectives in $(C_n.\epsilon_n)$ is given by $$\mathbf{P}_n = \{\mathbf{P}_0 \rightarrow \mathbf{P}_1 \in \mathbf{\epsilon}_{n-1} \text{ such that } \mathbf{P}_0, \mathbf{P}_1 \in \mathbf{P}_{n-1} \}.$$ **DEFINITION 3.8.** Let (C, ε) be a Rinehart category. **D** a category with kernels and $F: C \rightarrow D$ a functor. For $n \ge 0$. $F_n: C_n \rightarrow D$ is defined as follows: $$F_0 = F$$. $F_1(\alpha) = \text{Ker } F_0$. $F_1(h_0, h_1) = F_0(h_0)|_{F_1(\alpha)}$. $F_n = (F_{n-1})_1$ $(n \ge 2)$ where α is an object of \mathbf{C}_1 and $h = (h_0, h_1): \alpha - \alpha'$ is a \mathbf{C}_1 -morphism. **DEFINITION 3.9.** Let ϵ be a class of epimorphic maps in a category C (with simplicial kernels) and let X be a (semi)-simplicial object. If in the diagram below all the ε_n are in $\mathbf{\varepsilon}$, where ε_n denotes the factorization through K_n , the simplicial kernel of $d_i \colon X_n \to X_{n-1}$, $i = 0, \dots, n$, then we say that the (semi-)simplicial object \mathbf{X} is exact. **DEFINITION 3.10.** Let $(C.\epsilon)$ be a category of Rinehart. and A an object of C. An ϵ -exact (semi-)simplicial object (\mathbf{X},d) , with the X_n ϵ -projective $(n \ge 0)$ together with a morphism $$d_0: X_0 - A.$$ $d_0 \in \varepsilon$, such that $d_0 d_1 = d_0 d_0$ will be called a (semi-)simplicial &-resolution of A. If X_n is not ϵ -projective, then we will say that (X,d) is an ϵ -exact augmented (semi-)simplicial object of A. **PROPOSITION 3.11.** Let (C, ε) be a Rinehart category. Then every object A of C has a simplicial ε -resolution. **PROOF.** We give here an explicit description of the first two terms of this resolution, which will be used later. Modi [21, page 64] provides a complete description of a modified form of the procedure developed by André [1]. Let $d_0\colon X_0\to A$ be an ϵ -projective presentation of A. R_1 = Ker d_0 and $\omega\colon X_1\to R_1$ an ϵ -projective presentation of R_1 . Then the diagram $$X_0 * X_1 \xrightarrow{d_0 = \begin{pmatrix} 1 \\ \omega \end{pmatrix}} X_0 \xrightarrow{d_0} A$$ holds, where X_0*X_1 denotes the free product (coproduct) of X_0 and X_1 . **DEFINITION 3.12.** Let $(\mathbf{C}, \mathbf{\epsilon})$ be a Rinehart category and $F: \mathbf{C} \rightarrow Gr$ a functor such that F(0) = 0. If A and A' are objects in \mathbf{C} , $d: \mathbf{X} \rightarrow \mathbf{A}$ is a simplicial $\mathbf{\epsilon}$ -resolution and $f: \mathbf{A} - \mathbf{A}'$ is a morphism in \mathbf{C} , then the derived functors of F. $L_n^{\epsilon}F$, are defined for $n \ge 0$ by $$L_n^{\varepsilon} F(A) = \prod_n (FX), L_n^{\varepsilon} F(f) = \prod_n (F\overline{f})$$ where (F**X**) is the simplicial image of **X** in Gr, \prod_n is the n^{th} homotopy group and \overline{f} a lifting of f to the simplicial resolutions of A and A'. The simplicial comparison theorem [18, page 44] ensures the validity of this definition. **REMARK 3.13.** From Proposition 2.10, $\prod_n(FX) = H_n(MFX)$. **PROPOSITION 3.14.** Let $(C.\epsilon)$ be a category of Rinehart. and $F' \rightarrow F \rightarrow F''$ a sequence of zero preserving functors from C to Gr, exact on ϵ -projectives of C. i.e., we have an exact sequence $$O \rightarrow F'(P) \rightarrow F(P) \rightarrow F''(P) \rightarrow O$$. in Gr. for each ϵ -projective object P of C. Then, for each object A of C, there is a natural exact sequence of groups $$\cdots - L_n^{\varepsilon} F'(A) - L_n^{\varepsilon} F(A) - L_n^{\varepsilon} F''(A) - L_{n-1}^{\varepsilon} F'(A) - \cdots - 0.$$ **PROOF**. Apply Proposition 2.7. **PROPOSITION 3.15.** Let (C, ϵ) be a Rinehart category, $F: C \rightarrow Gr$ a functor such that F(0) = 0. Then the derived functors $L_n^{\varepsilon}F_m$: $\mathbf{C}_m - Gr$ $(n, m \ge 0)$ are characterized by the following properties: - i) $L_0^{\varepsilon} F_m(P) = F_m(P)$, for every ε_m -projective P. - ii) $L_0^{\varepsilon}(L_0^{\varepsilon}F_m) = L_0^{\varepsilon}F_m \ (m \ge 0).$ - iii) $L_n^{\varepsilon} F_m(P) = 0$ for every ε_m -projective $P(n \ge 1, m \ge 0)$. - iv) If $\alpha: A \to B \in \mathbf{\epsilon}_m$ $(m \ge 0)$, then there exists a long and natural exact sequence $$\cdots - L_n^{\varepsilon} F_{m+1}(\alpha) - L_n^{\varepsilon} F_m(A) - L_n^{\varepsilon} F_m(B) \rightarrow L_{n-1}^{\varepsilon} F_{m+1}(\alpha) \rightarrow \cdots \rightarrow L_n^{\varepsilon} F_m(B) \rightarrow 0$$ 4. In this section we obtain the exact sequence for homology with coefficients in $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$. associated with two normal subgroups M and N of G such that M·N = G. Let ϑ be a variety of groups. We denote by V(G) the verbal subgroup of a group G with respect to ϑ and consider the functors V: Gr-Gr which take G to V(G), and $\vartheta: Gr-Gr$ taking G to G/V(G). With this notation, the derived functors L_nV_m and $L_n\vartheta_m$ are also defined for $n,m\geq 0$. (Definition 3.12). **PROPOSITION 4.1.** Let M and N be two normal subgroups of a group G. $L=M\cap N$ and ϑ a variety of groups. Now consider the following object in the Rinehart category Gr_2 Then we obtain a commutative diagram with exact rows and columns (Figure 1). **PROOF.** It is a consequence of Proposition 3.15. **PROPOSITION 4.2.** On the hypothesis of Proposition 4.1. we have: For each $x \in L_n \vartheta(G)$ such that $\gamma_n \beta_n'(x) = 1$, there exist elements $y \in L_n \vartheta_1(\delta)$ and $z \in L_n \vartheta_1(\gamma)$ such that $$\lambda_n(y) = \alpha_n'(x), \ \mu_n(z) = \beta_n'(x), \ \Theta_{n-1}(y) \eta_{n-1}(z) = 1.$$ **PROOF.** Let be a simplicial ϵ_2 -resolution of (α, γ) in Gr_2 (Definition 3.10). If $M \vartheta X$ denotes the Moore chain complex associated with the simplicial group ϑX (similarly $M \vartheta_1$ and $M \vartheta_2$), then the proof is a simple diagram chase using connecting homomorphism in the following exact diagram of Moore chain complex: **REMARK 4.3.** In the particular situation that $M \cdot N = G$, since $L_n \vartheta(G/M \cdot N) = 1$, μ_n and λ_n are isomorphisms and we can assure that, for every $\mathbf{v} \in L_n \vartheta(G)$, $\Theta_{n-1} \alpha_n'(\mathbf{v}) \cdot \eta_{n-1} \beta_n'(\mathbf{v}) = 1$, $n \ge 1$ (where λ_n^{-1} and μ_n^{-1} have been omitted for simplicity). **PROPOSITION 4.4.** Let M and N be two normal subgroups of a group G such that $M \cdot N = G$. Let $L = M \cap N$. (α, γ) the object of Gr_2 $$G \xrightarrow{\alpha} + G/N = M/L$$ $$\beta \downarrow \qquad \qquad \downarrow \delta$$ $$N/L = G/M \xrightarrow{\gamma} + 0$$ and H_n^q denotes the n-th homology group G with coefficients in $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$. Then, if ϑ is a variety of Abelian groups of exponent q, there exist a long exact sequence: $$\begin{split} \cdots & \to \operatorname{H}^q_{n+1}(G) \to \operatorname{H}^q_{n+1}(\mathsf{M}/\mathsf{L}) \oplus \operatorname{H}^q_{n+1}(\mathsf{N}/\mathsf{L}) \to \operatorname{L}_{n-1} \vartheta_2(\alpha,\gamma) \to \\ & \operatorname{H}^q_n(G) \to \cdots \to \operatorname{H}^q_3(G) \to \operatorname{H}^q_3(\mathsf{M}/\mathsf{L}) \oplus \operatorname{H}^q_3(\mathsf{N}/\mathsf{L}) \to \operatorname{L}_1 \vartheta_2(\alpha,\gamma) \\ & \to \operatorname{H}^q_2(G) \to \operatorname{H}^q_2(\mathsf{M}/\mathsf{L}) \oplus \operatorname{H}^q_2(\mathsf{N}/\mathsf{L}) \to \operatorname{L}_0 \vartheta_2(\alpha,\gamma) \\ & \to \operatorname{H}^q_3(G) \to \operatorname{H}^q_3(\mathsf{M}/\mathsf{L}) \oplus \operatorname{H}^q_3(\mathsf{N}/\mathsf{L}) \to 0. \end{split}$$ **PROOF.** Diagram chase on Figure 1 and application of Remark 4.3 yield a long exact sequence: $$\cdots \to L_{n}\vartheta(G) \xrightarrow{(\alpha_{n}^{\prime},\beta_{n}^{\prime})} L_{n}\vartheta(M/L)\oplus L_{n}\vartheta(N/L) \xrightarrow{\left(\begin{array}{c}\Theta_{n-1}\\\eta_{n-1}\end{array}\right)} L_{n-1}\vartheta_{2}(\alpha,\gamma)$$ $$\xrightarrow{\Delta_{n-1}} L_{n-1}\vartheta(G) \to L_{0}\vartheta(M/L)\oplus L_{0}\vartheta(N/L) \to 0.$$ The isomorphisms $H_{n+1}^q(G) = L_n \vartheta(G)$,
for $n \ge 0$, give the result. 5. This section is dedicated to the computation of the groups $L_1\vartheta_2(-,-)$ and $L_0\vartheta_2(-,-)$ to give an interpretation of the last eight terms of the exact sequence of homology of Section 4 in terms of a free presentation of G. **PROPOSITION 5.1.** Let ϑ be the variety of Abelian groups of exponent q. V the verbal subgroup functor. I the identity functor of Gr and (α,γ) the object in the Rinehart category Gr_2 . Then, since $1 \to V_n \to I_n \to \vartheta_n \to 1$ is a sequence of functors. $Gr_n \to Gr$, exact over \mathfrak{E}_n -projectives. $n \ge 0$. We get an exact sequence of derived functors $$\cdots \to \mathsf{L}_m \vartheta_n - \mathsf{L}_{m-1} \mathsf{V}_n - \mathsf{L}_{m-1} \mathsf{I}_n \to \mathsf{L}_{m-1} \vartheta_n \to \cdots$$ Since $\mathsf{L}_m \mathsf{I}_n = \left\{ \begin{matrix} \mathsf{I}_n & \text{if } m = 0 \\ 1 & \text{if } m \ge 1 \end{matrix} \right\}$ we obtain, for $n = 2$. $$L_1 \vartheta_2(\alpha, \gamma) = \text{Ker} (L_0 V_2(\alpha, \gamma) \to I_2(\alpha, \gamma)).$$ $$L_0 \vartheta_2(\alpha, \gamma) = \text{Coker} (L_0 V_2(\alpha, \gamma) \to I_2(\alpha, \gamma)).$$ Consequently the calculation of $L_0V_2(\alpha,\gamma)$ leads to $L_1\vartheta_2(\alpha,\gamma)$ and $L_0\vartheta_2(\alpha,\gamma)$. Next. consider M. N two normal subgroups of a group G such that $M \cdot N = G$. Put $L = M \cap N$. Let $\epsilon \colon F \not \to G$ be a free presentation of G. R the kernel of the composition morphism $\beta \epsilon \colon F \to G \to N/L$ and S the kernel of $\alpha \epsilon \colon F \to G \to M/L$. Thus we have a diagram Given two groups A and B. A † B will denote the free product (coproduct) of A and B. Now consider the following object in Gr_2 : $$(\alpha_0, \gamma_0) = \begin{cases} X_0 & \frac{\alpha_0}{\beta_0} + R \\ \beta_0 & \frac{1}{\beta_0} \\ S & \frac{\gamma_0}{\beta_0} + R \end{cases}$$ where $X_0 = (R \cap S)' \cdot R \cdot S$, $(R \cap S)'$ being an isomorphic copy of $(R \cap S)$ and α_0 and β_0 are the projections killing the first and last, and the first and second cofactors, respectively, so $$\alpha_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \beta_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$ If we write d_0 for the morphism $\begin{pmatrix} \varepsilon k \\ \varepsilon i \\ \varepsilon j \end{pmatrix}$: $X_0 - G$ and T its kernel then there is an object $$(\alpha_{0}^{\cdot},\gamma_{0}^{\cdot}) = \begin{cases} T & \xrightarrow{\alpha_{0}^{\cdot}} & R \cap S \\ \beta_{0}^{\cdot} & \downarrow \\ R \cap S & \xrightarrow{\gamma_{0}^{\cdot}} & \downarrow \end{cases}$$ obtained by restricting a_0 and β_0 to T and an obvious map $\underline{\it u}: (\alpha_0',\gamma_0') \! \rightarrow \! (\alpha_0,\gamma_0)$ in Gr_2 that is and an epimorphism $(\alpha_0, \gamma_0) \rightarrow (\alpha, \gamma)$ that is Similarly we have the object in Gr₂: $$(\alpha_{1}, \gamma_{1}) = \begin{cases} X_{1} & \alpha_{1} \\ \beta_{1} \\ S + (R \cap S)^{*} & \gamma_{1} \\ \end{cases} \rightarrow 0$$ where $X_1=X_0+T$. T being an isomorphic copy of T. $\alpha_1=\alpha_0+\alpha_0'$ and $\beta_1=\beta_0+\beta_0'$ and maps \underline{d}_i : $(\alpha_1,\gamma_1)\to(\alpha_0,\gamma_0)$ (i=0.1): this means that $$\begin{array}{c|c} X_1 & \xrightarrow{\alpha_1} & R \cdot (R \cap S)' \\ \downarrow & & \downarrow \\ S \cdot (R \cap S)' & & \downarrow \\ d_{2i} & & & \downarrow \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$ where $$d_0 = \begin{pmatrix} 1 \\ u \end{pmatrix}, \quad d_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad d_{10} = \begin{pmatrix} 1 \\ u_1 \end{pmatrix}, \quad d_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad d_{20} = \begin{pmatrix} 1 \\ u_2 \end{pmatrix}, \quad d_{21} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$ Then we have the diagram $$(\alpha_1, \gamma_1) \xrightarrow{} (\alpha_0, \gamma_0) \xrightarrow{} (\alpha, \gamma)$$ that is **PROPOSITION 5.2.** With the above notation: i) $(\alpha_0, \gamma_0) \rightarrow (\alpha_0, \gamma_0) \rightarrow (\alpha, \gamma)$ is a projective presentation in Gr_2 . $$(\alpha_1,\gamma_1) \xrightarrow{} (\alpha_0,\gamma_0) \xrightarrow{} (\alpha,\gamma)$$ are the first two terms of a simplicial resolution of (α,γ) in the Rinehart category Gr_2 . **PROOF**. i) (α_0, γ_0) is an ϵ -projective object (Proposition 3.7). Since $(\alpha_0, g_0) \rightarrow (\alpha, \gamma) \in \epsilon_2$ (Definition 3.4) and $(\alpha_0', \gamma_0') \rightarrow (\alpha_0, \gamma_0)$ is the kernel, the result follows. ii) It follows from Proposition 3.11. **DEFINITION 5.3.** Let M and N be two subgroups of a group G and $q \in \mathbb{N}$. We use the symbol $\mathrm{M}_q = \mathrm{N}$ to denote the subgroup of G generated by $$[m,n]t^{q}=mnm^{-1}n^{-1}t^{q},\ m\in M,\ n\in N,\ t\in M\cap N.$$ Note that if M and N are normal subgroups of G, so is $M *_{G}N$. If N is a subgroup of G, then $N*_qG$ is the subgroup of G defined by Stammbach in [25, page 2]; and clearly $G*_qG$ is the verbal subgroup of G for the variety of Abelian groups of exoponent q. **LEMMA 5.4.** Let A and B two groups and $q \in \mathbb{N}$. Then, if B^{A*B} denotes the smallest normal subgroup of A+B containing B then a) $$[B^{A*B}, A*B]$$ is the subgroup of $A*B$ generated by $\{[b,a], [b_1,b_2] \mid b,b_1,b_2 \in B, a \in A\}.$ b) $$(A*B)*_q B^{A*B}$$ is the subgroup of $A*B$ generated by $\{[b,a],[b_1,b_2],\ b^q\mid b,b_1,b_2\in B,\ a\in A\}.$ **PROOF.** a) The result follows from $[B^{A*B}, A*B] = [B,A*B]$. $$[b, \prod_{1}^{n} a_{i}b_{i}] = [b, \prod_{1}^{n-1} a_{i} b_{i}] \cdot [b, a_{n}b_{n}]^{\prod_{1}^{n-1} a_{i} b_{i}} =$$ $$\begin{bmatrix} n-1 \\ [b, \prod_{i \neq i} a_i b_i] \cdot [b, a_n] \end{bmatrix}^{n-1} \stackrel{(n-1)}{\prod_{i \neq i} a_i b_i} \cdot [b, b_n] \stackrel{(n-1)}{\prod_{i \neq i} a_i b_i} \cdot a_n$$ and $$[b.a]^{b_1} = [b_1b.a] \cdot [a.b_1].$$ $[b.a]^{a_1} = [a_1.b] \cdot [b.a_1a].$ $[b.b_1]^a = [a.[b.b_1]] \cdot [b.b_1]$ and $[b_1,b_2]^b = [b_1^b.b_2^b].$ b) $(A*B)*_q B^{A*B}$ is the smallest subgroup of A*B containing $[A*B, B^{A*B}]$ and the set $\{\chi^q | \chi \in B^{A*B}\}$. The result follows from (a) and the equalities $$(b^a)^q = (b^q)^a = [a, b^q] \cdot b^q$$. **LEMMA 5.5.** Let A and B be two groups and $q \in \mathbb{N}$. Then: $$A^{\mathbf{A}*\mathbf{B}} \cap ((A*\mathbf{B}) \#_{\mathbf{G}} (A*\mathbf{B})) = (A*\mathbf{B}) \#_{\mathbf{G}} A^{\mathbf{A}*\mathbf{B}}.$$ **PROOF.** Clearly, the left side contains the right side. Conversely, let $$\beta \colon A * B \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} B \xrightarrow{\mu} A * B$$ μ being the inclusion homomorphism of B in the free product. Let $x_i, y_i, z_i \in A*B$, with $\prod_{i=1}^{n} [x_i, y_i] z_i^q \in A^{A*B}$; then $$\beta(\prod_{i=1}^{n} [x_i, y_i] z_i^q) = 1$$ and $$\prod [x_i, y_i] z_i^q = \prod [x_i, y_i] z_i^q \cdot (\prod [\beta x_i, \beta y_i] \beta z_i^q)^{-1} =$$ $$\prod [\beta x_i (\beta x_i)^{-1} x_i, \beta y_i (\beta y_i)^{-1} y_i] (\beta z_i (\beta z_i)^{-1} z_i)^q \cdot (\prod [\beta x_i, \beta y_i] \beta z_i^q)^{-1}$$ $$\equiv 1 \mod (A * B) \#_q A^{A*B}, \text{ because } (\beta x_i)^{-1} x_i \in \text{Ker } \beta = A^{A*B}.$$ Note that if q = 0, we get $$A^{A*B} \cap [A*B, A*B] = [A^{A*B}, A*B].$$ It should be emphasized that these results are true for any variety (not only Abelian groups and Abelian groups of exponent q) as shown by Modi [21, page 109], under the unneeded hypothesis of A and B being free groups. **PROPOSITION 5.6.** With the notations of 5.2. if $A = (R \cap S)^* * S$. $B = (R \cap S)^* * R$. ϑ is the variety of Abelian groups of exponent q and V is its verbal subgroup functor, then $$\begin{split} L_0 V_2(\alpha, \gamma) &=
\frac{(X_0 *_q A^{X_0}) \cap (X_0 *_q B^{X_0})}{T *_q (A^{X_0} \cap B^{X_0}) ((T \cap A^{X_0}) *_q B^{X_0}) ((T \cap B^{X_0}) *_q A^{X_0})} \\ &= \frac{(X_0 *_q A^{X_0}) \cap B^{X_0}}{(T *_q (A^{X_0} \cap B^{X_0})) [(T \cap A^{X_0}), B^{X_0}] [(T \cap B^{X_0}), A^{X_0}]} \cdot \end{split}$$ **PROOF.** Application of the functor V_2 : Gr_2 —Gr to the simplicial resolution of (α, γ) yields the simplicial group : $$\underbrace{ \begin{array}{c|c} \alpha_1 \\ \hline \end{array} }_{V_2(\underbrace{ \begin{array}{c|c} \alpha_1 \\ \hline \\ \beta_1 \end{array} }_0)} \underbrace{ \begin{array}{c|c} V_2(d_0,d_{10},d_{20},0) \\ \hline V_2(d_1,d_{11},d_{21},0) \end{array} }_{V_2(\underbrace{ \begin{array}{c|c} \alpha_0 \\ \hline \\ \hline \end{array} }_0)$$ The Moore chain complex associated with this simplicial group is $$\cdots - \mathbf{M_1} = \text{Ker} \left(\mathbf{V_2}(d_1, d_{11}, d_{21}, 0) \rightarrow \mathbf{M_0} = \mathbf{V_2} \left(\left| \frac{\mathbf{G_0}}{\mathbf{G_0}} \right| \right) \right),$$ and the homology group of this complex in M_0 is the group $L_0V_2(\alpha,\gamma)$. Calculation of the groups M_0 and M_1 shows that $$\begin{array}{lll} \boldsymbol{M_0} &=& \operatorname{Ker} \left(V \alpha_0 \right) \cap \operatorname{Ker} \left(V \beta_0 \right) &=& V X_0 \cap \operatorname{Ker} \alpha_0 \cap \operatorname{Ker} \beta_0 \\ &=& V X_0 \cap \left((R \cap S)^* + S \right)^{\times 0} \cap \left((R \cap S)^* + R \right)^{\times 0}. \end{array}$$ $$\mathbf{M_1} = \mathbf{VX_1} \cap \mathbf{Ker} \, \alpha_1 \cap \mathbf{Ker} \, \beta_1 \cap \mathbf{Ker} \, d_1$$ $$= \mathbf{V}(((\mathbf{R} \cap \mathbf{S})' + \mathbf{R} + \mathbf{S}) + \mathbf{T}') \cap \mathbf{Ker} \, \alpha_1 \cap \mathbf{Ker} \, \beta_1 \cap \mathbf{Ker} \, d_1.$$ Thus $$L_0V_2(\alpha,\gamma) = \frac{VX_0 \cap ((R \cap S)^* + S)^{\times_0} \cap ((R \cap S)^* + R)^{\times_0}}{d_0(V(((R \cap S)^* + R + S) + T') \cap Ker \alpha_1 \cap Ker \beta_1 \cap Ker d_1)}$$ Furthermore. $$\begin{split} & d_0(V(((R\cap S)'+R+S)+T') \cap \operatorname{Ker}\alpha_1 \cap \operatorname{Ker}\beta_1 \cap \operatorname{Ker}d_1) \\ = & [T.\operatorname{Ker}\alpha_0 \cap \operatorname{Ker}\beta_0] \cdot [T \cap \operatorname{Ker}\alpha_0 \cdot \operatorname{Ker}\beta_0] \cdot [T \cap \operatorname{Ker}\beta_0 \cdot \operatorname{Ker}\beta_0] \cdot \\ & \cdot ((T \cap \operatorname{Ker}\alpha_0 \cap \operatorname{Ker}\beta_0) \#_q (T \cap \operatorname{Ker}\alpha_0 \cap \operatorname{Ker}\beta_0)). \end{split}$$ In fact, let [t, x] be a generator of any of the first three factors of the right hand side, then $$d_0[t', x] = [t, x]$$, where $t' \in T'$ and $x \in X_0 + X_0 + T' = X_1$. Furthermore. $t \in T \cap \operatorname{Ker} \alpha_0 \cap \operatorname{Ker} \beta_0$: then $d_0(t'^q) = t^q$. We thus have an inclusion. Conversely, since Ker $d_1 = T^{X_1}$, from Lemma 5.5 we obtain $$V(((R \cap S)^* kR + S) + T^*) \cap \operatorname{Ker} \alpha_1 \cap \operatorname{Ker} \beta_1 \cap \operatorname{Ker} d_1) = \{(((R \cap S)^* kR + S) kT^*) \#_{\alpha} T^*((R \cap S)^* kR + S) kT^*) \cap \operatorname{Ker} \alpha_1 \cap \operatorname{Ker} \beta_1 \}$$ If $$\mathcal{F} \in \{(((R \cap S)' + R + S) + T') \#_{\mathbf{q}} T'^{((R \cap S)' + R + S) + T'}\} \cap \operatorname{Ker} \alpha_1 \cap \operatorname{Ker} \beta_1 :$$ then, from Lemma 5.4. $$y = \prod_{i=1}^{n} [t_{i}^{+}, v_{i}]^{\sigma_{i}} [t_{1i}^{+}, t_{2i}^{+}] (t_{3i}^{+})^{q}$$ with $$t_i^*, t_{1i}^*, t_{2i}^*, t_{3i}^* \in T^*, \ \ \chi_i \in (R \cap S)^* + R + S, \ \ \sigma_i = \pm 1, \ \alpha_1(y) = 1, \ \beta_1(y) = 1.$$ But $$\alpha_1(y) = \prod [(\alpha_0(t_i)), \alpha_0(x_i)]^{\sigma_i} \cdot [(\alpha_0(t_{1i})), (\alpha_0(t_{2i}))] \cdot (\alpha_0(t_{3i}))^{q}$$ where $(\alpha_0(t))$ and $\alpha_0(x)$ denote the elements and also $$\beta_{1}(x) = \prod [(\beta_{0}(t_{i}))^{*}, \beta_{0}(x_{i})]^{\sigma_{i}} \cdot [(\beta_{0}(t_{1i}))^{*}, (\beta_{0}(t_{2i}))^{*}] \cdot (\beta_{0}(t_{3i}))^{*q}$$ with $(\beta_{0}(t))^{*}$ and $\beta_{0}(x)$ as above. If we consider the canonical injection $$(R \cap S)' + R + \longrightarrow (R \cap S)' + R + S$$ we have $$\begin{split} d_0(y) &= d_0(y) \cdot \alpha_1(y) = \prod [t_i, x_i]^{\sigma_i} [t_{1i}, t_{2i}] (t_{3i})^q \cdot \\ & \cdot \prod [(\alpha_0(t_i))^*, \alpha_0(x_i)]^{\sigma_i} \cdot [(\alpha_0(t_{1i}))^*, (\alpha_0(t_{2i}))^*] \cdot (\alpha_0(t_{3i}))^{*q}. \end{split}$$ Since $[t_i, x_i]^{\sigma_i}$, $[t_{1i}, t_{2i}]$, $t_{3i} \in T$ and $[\alpha_0(t_i))', \alpha_0(x_i)]^{\sigma_i}$, $[\alpha_0(t_{1i}))', (\alpha_0(t_{2i}))']$, $\alpha_0(t_{3i}))' \in \text{Ker}\alpha_0 \cap \text{Ker}\beta_0$, the following congruences mod. $[T, \text{Ker}\alpha_0 \cap \text{Ker}\beta_0]$ hold: $$\begin{split} d_{0}(y) &= \prod [t_{i}, x_{i}]^{\sigma_{i}} \cdot [(\alpha_{0}(t_{i}))^{*}, \alpha_{0}(x_{i})]^{\sigma_{i}} \cdot [t_{1i}, t_{2i}] \cdot \\ & \cdot [(\alpha_{0}(t_{1i}))^{*}, (\alpha_{0}(t_{2i}))^{*}] \cdot (t_{3i})^{q}, (\alpha_{0}(t_{3i}))^{q} \end{split}$$ $$&= \prod [t_{i}, x_{i}]^{\sigma_{i}} \cdot [(\alpha_{0}(t_{i}))^{*}, \alpha_{0}(x_{i})]^{\sigma_{i}} \cdot [t_{1i}, t_{2i}] \cdot \\ & \cdot [(\alpha_{0}(t_{1i}))^{*}, (\alpha_{0}(t_{2i}))^{*}] \cdot (t_{3}(\alpha_{0}(t_{3i}))^{*})^{q}. \end{split}$$ If we consider the homomorphism $$T \xrightarrow{\alpha_0} R \cap S \xrightarrow{++} R \xrightarrow{----} R \cdot (R \cap S)$$ then, for $t \in T$, $x \in (R \cap S)' + R + S$, we get $$(\alpha_0(t))^*$$. $x^{-1}\alpha_0(x)\beta_0(x) \in \operatorname{Ker} \alpha_0 \cap \operatorname{Ker} \beta_0$. [$t.\beta_0(x)$]. $\alpha_0(t)^{-1}(\alpha_0(t))^*t \in T \cap \ker \alpha_0$ and $\alpha_0(x) \in \ker \beta_0$: thus, the following congruences mod. $[T.Ker\alpha_0 \cap Ker\beta_0]$ $[T \cap Ker\alpha_0 . Ker\beta_0]$ hold: $$\begin{bmatrix} t, \mathbf{x} \end{bmatrix} = \begin{bmatrix} t, \alpha_0(\mathbf{x}) \beta_0(\mathbf{x}) \beta_0(\mathbf{x})^{-1} \alpha_0(\mathbf{x})^{-1} \mathbf{x} \end{bmatrix} = \begin{bmatrix} t, \alpha_0(\mathbf{x}) \beta_0(\mathbf{x}) \end{bmatrix}.$$ $$\begin{bmatrix} t, \mathbf{x} \end{bmatrix} \cdot \begin{bmatrix} \alpha_0(t) \end{bmatrix} \cdot \begin{bmatrix} \alpha_0(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} t, \alpha_0(\mathbf{x}) \beta_0(\mathbf{x}) \end{bmatrix} \cdot \begin{bmatrix} \alpha_0(t) \end{bmatrix} \cdot \begin{bmatrix} \alpha_0(t) \end{bmatrix} \cdot \begin{bmatrix} \alpha_0(t) \end{bmatrix} = \begin{bmatrix} t, \alpha_0(\mathbf{x}) \end{bmatrix}$$ $$= [t.\alpha_{0}(\mathbf{x})] \cdot [t,\beta_{0}(\mathbf{x})]^{\alpha_{0}(\mathbf{x})} \cdot [(\alpha_{0}(t))^{*}, \alpha_{0}(\mathbf{x})] =$$ $$= [t.\alpha_{0}(t)) \cdot [\alpha_{0}(t)^{*}, \alpha_{0}(\mathbf{x})] \cdot [t,\beta_{0}(\mathbf{x})] = [(\alpha_{0}(t))^{*}, t,\alpha_{0}(\mathbf{x})] \cdot [t,\beta_{0}(\mathbf{x})] =$$ $$= [\alpha_{0}(t)(\alpha_{0}(t)^{-1}(\alpha_{0}(t))^{*}, t,\alpha_{0}(\mathbf{x})] \cdot [t,\beta_{0}(\mathbf{x})] =$$ $$= [\alpha_{0}(t),\alpha_{0}(\mathbf{x})] \cdot [t,\beta_{0}(\mathbf{x})] \cdot$$ $$= [\alpha_{0}(t),\alpha_{0}(t)] \cdot [\alpha_{0}(t)] \cdot (\alpha_{0}(t)) \cdot (\alpha_{0}(t)) \cdot$$ $$= [t_{1},t_{2}] \cdot [(\alpha_{0}(t_{1})^{*},\alpha_{0}(t_{2})] \cdot [(\alpha_{0}(t_{1})^{*},(\alpha_{0}(t_{2}))^{*}] \cdot (\alpha_{0}(t_{2})) \cdot]$$ $$= [t_{1},t_{2}] \cdot [(\alpha_{0}(t_{1})^{*},\alpha_{0}(t_{2})] \cdot [(\alpha_{0}(t_{1})^{*},(\alpha_{0}(t_{2}))^{*}] \cdot (\alpha_{0}(t_{2})) \cdot]$$ $$= [\alpha_{0}(t_{1}),\alpha_{0}(t_{2})] \cdot [\alpha_{0}(t_{1})^{*},(\alpha_{0}(t_{2})) \cdot [\alpha_{0}(t_{1}),\alpha_{0}(t_{2})] \cdot (\alpha_{0}(t_{2})) \cdot]$$ $$(t(\alpha_{0}(t))^{*}) = (t(\alpha_{0}(t))^{*},\alpha_{0}(t_{2})] \cdot [(\alpha_{0}(t_{1})^{*},\alpha_{0}(t_{2})) \cdot [\alpha_{0}(t_{1}),\alpha_{0}(t_{2})] \cdot (\alpha_{0}(t_{1}),\alpha_{0}(t_{2})) \cdot (\alpha_{0}(t_{2})) (\alpha_{0}(t_{2}$$ mod. $[T. Ker \alpha_0 \cap Ker \beta_0] \cdot [T \cap Ker \alpha_0, Ker \beta_0]$. Similarly. Finally, since $t(\alpha_n(t))'\alpha_n(t)^{-1}(\beta_n(t))'\beta_n(t)^{-1} \in T \cap Ker\alpha_n \cap Ker\beta_n, \beta_n(t) \in Ker\alpha_n$ we obtain the following congruences: $$\begin{split} (t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot})^q\\ &=(t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot}\cdot\beta_0(t)^{-1}\cdot\beta_0(t))^q\\ &=(t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot}\cdot\beta_0(t)^{-1})^q\cdot(\beta_0(t))^q\\ &=(t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot}\cdot\beta_0(t)^{-1})^q\cdot(\beta_0(t))^q\\ &=(\beta_0(t))^q\\ &=(T\cap \operatorname{Ker}\beta_0,\operatorname{Ker}\alpha_0].((T\cap \operatorname{Ker}\alpha_0\cap \operatorname{Ker}\beta_0)\sharp_q(T\cap \operatorname{Ker}\beta_0\cap \operatorname{Ker}\alpha_0)),\\ &=(t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot}\cdot\beta_0(t)^{-1}\cdot\beta_0(t))^q\\
&=(t\cdot(\alpha_0(t))^{\cdot}\cdot\alpha_0(t)^{-1}\cdot(\beta_0(t))^{\cdot}\cdot\beta_0(t)^{-1}\cdot\beta_0(t$$ $$\begin{split} d_0(y) & \equiv \prod [(\beta_0(t_i))^*, \beta_0(x_i)]^{\sigma} \cdot [\beta_0(t_{1i}), \beta_0(t_{2i})] \cdot (\beta_0(t_{3i}))^{\sigma} \\ & \text{mod. } [T, \text{Ker}\alpha_0 \cap \text{Ker}\beta_0] \cdot [T \cap \text{Ker}\alpha_0, \text{Ker}\beta_0] \cdot [T \cap \text{Ker}\beta_0, \text{Ker}\alpha_0] \cdot \\ & \cdot ((T \cap \text{Ker}\alpha_0 \cap \text{Ker}\beta_0) \#_q(T \cap \text{Ker}\beta_0 \cap \text{Ker}\alpha_0)). \end{split}$$ If now we consider the homomorphism $$\tau_2: S*(R\cap S)' \xrightarrow{\binom{1}{u_1}} S + (R\cap S)'*R*S.$$ we have $d_0(y) = \tau_2(\beta_1(y)) = 1$, and consequently. $d_{\mathbf{n}}(y) \in [\mathsf{T}.\mathsf{Ker}\alpha_{\mathbf{n}} \cap \mathsf{Ker}\beta_{\mathbf{n}}] \cdot [\mathsf{T} \cap \mathsf{Ker}\alpha_{\mathbf{n}}.\mathsf{Ker}\beta_{\mathbf{n}}] \cdot [\mathsf{T} \cap \mathsf{Ker}\beta_{\mathbf{n}}.\mathsf{Ker}\alpha_{\mathbf{n}}]$ $\cdot ((T \cap \operatorname{Ker} \alpha_0 \cap \operatorname{Ker} \beta_0) *_{\sigma} (T \cap \operatorname{Ker} \alpha_0 \cap \operatorname{Ker} \beta_0)).$ The result now follows from Lemma 5.5 and $$\operatorname{Ker} \alpha_0 = A^{\times 0}, \operatorname{Ker} \beta_0 = B^{\times 0}.$$ # REMARK 5.7. Note that $$\begin{split} & [T. Ker\alpha_0 \cap Ker\beta_0] \cdot [T \cap Ker\alpha_0. \ Ker\beta_0] \cdot [T \cap Ker\beta_0, \ Ker\alpha_0] \cdot \\ & \qquad \qquad \cdot ((T \cap Ker\alpha_0 \cap Ker\beta_0) *_q (T \cap Ker\beta_0 \cap Ker\alpha_0)) = \\ & = & (T*_q (Ker\alpha_0 \cap Ker\beta_0)) \cdot ((T \cap Ker\alpha_0) *_q Ker\beta_0) \cdot ((T \cap Ker\beta_0 *_q Ker\alpha_0)) \cdot (T \cap Ker\beta_0) \cdot$$ $[T. Ker \alpha_0 \cap Ker \beta_0]$. $[T \cap Ker \alpha_0, Ker \beta_0]$. $[T \cap Ker \beta_0, Ker \alpha_0]$ and the elements t^q , with $q \in \mathbb{N}$ and $t \in T \cap \ker \alpha_0 \cap \ker \beta_0$. **PROPOSITION 5.8.** Under the hypothesis of Proposition 5.6: i) $$L_0 \vartheta_2(\alpha, \gamma) = (M \cap N)/(M \#_q N)$$. ii) $$L_{1}^{\mathfrak{G}_{2}}(\alpha,\gamma) = \frac{T \cap (X_{0} *_{q} A^{X_{0}}) \cap B^{X_{0}}}{(T *_{q}(A^{X_{0}} \cap B^{X_{0}}))[T \cap A^{X_{0}} \cdot B^{X_{0}}][T \cap B^{X_{0}} \cdot A^{X_{0}}]}$$ **PROOF.** ii) It is a consequence of Propositions 5.1 and 5.6. i) From Proposition 5.1. since $$L_0 I_2(\alpha,\gamma) = I_2(\alpha,\gamma) = \operatorname{Ker} \alpha \cap \operatorname{Ker} \beta = M \cap N,$$ and $L_0\vartheta_2(\alpha,\gamma)$ is a quotient of $(X_0\#_q A^{X_0})\cap B^{X_0}$, it is sufficient to show that $$d_0(X_0 *_q A^{X_0}) \cap B^{X_0}) = M *_q N.$$ Let $m \in M$. $n \in N$. $t \in M \cap N$. Then there exist $r \in \mathbb{R}$. $s \in \mathbb{S}$ and $k \in \mathbb{R} \cap \mathbb{S}$. such that $\varepsilon(r) = m$. $\varepsilon(s) = n$ and $\varepsilon(k) = t$. Then $$d_0([r,s]k^{\cdot q}) = [m,n]t^q:$$ therefore $[r,s] \cdot k'^q \in (X_0 \#_q A^{X_0}) \cap B^{X_0}$ since $r \in B$. $s \in A$. $k' \in (A \cap B)'$. Let $y \in (X_0 *_q A^{X_0}) \cap B^{X_0}$. Then, from Lemma 5.4. $$y = \prod_{i=1}^{n} [a_i, r_i] \cdot [a_{1i}, a_{2i}] \cdot (a_{3i})^q$$ with $\beta_0(y) = 1$. If we consider ε_i : S-G. we get $$1 = \varepsilon j \beta_0(y) = \prod [\varepsilon j \beta_0(a_{1i}), \varepsilon j \beta_0(a_{2i})] \cdot (\varepsilon j \beta_0(a_{3i}))^q$$ so that $$d_0(y) = d_0(y) \cdot (\varepsilon j \beta_0(y))^{-1} = \prod [d_0(a_i), d_0(r_i)]$$ $$[\epsilon j \beta_0(a_{1i}) \epsilon j \beta_0(a_{1i})^{-1} d_0(a_{1i}). \epsilon j \beta_0(a_{2i}) \epsilon j \beta_0(a_{2i})^{-1} d_0(a_{2i})].$$ $$(\varepsilon j\beta_{0}(a_{3i})\varepsilon j\beta_{0}(a_{3i})^{-1}d_{0}(a_{3i}))^{q}\cdot(\prod [\varepsilon j\beta_{0}(a_{1i}),\varepsilon j\beta_{0}(a_{2i})]\cdot(\varepsilon j\beta_{0}(a_{3i}))^{q})^{-1}.$$ Then, since $d_0(a)$, $\epsilon j\beta_0(a) \in \mathbb{N}$, $d_0(r) \in \mathbb{M}$, $\epsilon j\beta_0(a)^{-1}d_0(a) \in \mathbb{M} \cap \mathbb{N}$, we have $d_0(y) \in \mathbb{M} \neq_q \mathbb{N}$. 6. In this section we obtain the long exact sequence of homology with coefficients in \mathbb{Z}_q . associated to a surjective group homomorphism. **PROPOSITION 6.1.** Let N be a normal subgroup of a group G and we consider M = G. Then we have the exact sequence: $$\begin{array}{c} \cdots \to \operatorname{H}^q_{n+1}(G) \to \operatorname{H}^q_{n+1}(G/N) = \operatorname{L}_{n-1}\vartheta_2(\alpha,\gamma) = \operatorname{H}^q_n(G) = \cdots \\ \to \operatorname{H}^q_3(G) \to \operatorname{H}^q_3(G/N) = \operatorname{L}_1\vartheta_2(\alpha,\gamma) = \operatorname{H}^q_2(G) = \operatorname{H}^q_2(G/N) = \\ \operatorname{L}\vartheta_2(\alpha,\gamma) \to \operatorname{H}^q_1(G) = \operatorname{H}^q_1(G/N) = 0 \end{array}$$ where (α, γ) denotes the object of the Rinehart category Gr_2 : **PROOF.** Since G/M = 0, the result follows from Proposition 4.4. **LEMMA 6.2.** Let N be a normal subgroup of a group G. $\epsilon: F + G$ a free presentation of G. S the kernel of $$\alpha \epsilon \colon F \longrightarrow G \longrightarrow G/N$$ and T the kernel of $(\stackrel{\epsilon j}{\epsilon}): S'+F-G$. Then $$(\alpha_0, \gamma_0) \longrightarrow (\alpha_0, \gamma_0) \longrightarrow (\alpha, \gamma)$$ that is is an \mathbf{e}_2 -projective presentation of (α, γ) in the Rinehart category Gr_2 . **PROOF.** α_0 and γ_0 are projective objects in Gr_1 and, since $(\beta_0, \delta_0): \alpha_0 \rightarrow \gamma_0$ is an epimorphism in Gr_1 , we have that (α_0, γ_0) is a projective object in Gr_2 . Furthermore, since $(\alpha_0, \gamma_0) - (\alpha, \gamma)$ is an epimorphism in Gr_2 we get the result. **LEMMA 6.3.** With the same notation as above, the first two terms of a simplicial resolution of (α, γ) in the Rinehart category Gr_2 are where $$\alpha_1 = \alpha_0 + \alpha_0', \quad d_0 = \begin{pmatrix} 1 \\ u \end{pmatrix}, \quad d_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad d_{10} = \begin{pmatrix} 1 \\ j \end{pmatrix}, \quad d_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$ **PROOF.** This is a particular case of Proposition 5.2, ii. **PROPOSITION 6.4.** With the same notation as above: $$L_0V_2(\alpha,\gamma) = \frac{((S'*F)\#_qS^{\cdot S'*F})}{(T\#_qS^{\cdot S'+F})((S'+F)\#_q(T\cap S^{\cdot S'+F}))}$$ **PROOF.** From Proposition 5.6. we have $$L_0V_2(\alpha,\gamma) =$$ $$=\frac{(S'*F)\#_{q} \operatorname{Ker}\alpha_{0}) \cap \operatorname{Ker}\beta_{0}}{(T\#_{q} (\operatorname{Ker}\alpha_{0} \cap \operatorname{Ker}\beta_{0})) \cdot [T \cap \operatorname{Ker}\alpha_{0}. \operatorname{Ker}\beta_{0}] \cdot [T \cap \operatorname{Ker}\beta_{0}. \operatorname{Ker}\alpha_{0}]}$$ The result follows from $$\operatorname{Ker} \alpha_0 = S^{*S^* + F}$$ and $\operatorname{Ker} \beta_0 = S^* + F$. **PROPOSITION 6.5.** With the same notation as above: i) $$L_0 \vartheta_2(\alpha, \gamma) = N / (N *_q G)$$, $$L_1 \vartheta_2(\alpha, \gamma) = \frac{T \cap ((S'*F) \#_q S'^{S'*F})}{(T \#_q S'^{S'*F})((S'*F) \#_q (T \cap S'^{S'*F}))}$$ **PROOF**. This is a consequence of Propositions 5.8 and 6.4. 7. In this section we obtain Hopf formula for H_2^q and a "kind of" Hopf formula for $H_3^q(G)$. **PROPOSITION 7.1.** Let G be a group. $$R \xrightarrow{i} F \longrightarrow G$$ a free presentation of G. and T the kernel of $\binom{i}{1}$: R'+F-F. Then i) $H_2^q(G) = (R \cap (F = F))/(R = F)$. $$H_3^q(G) = \frac{T \cap ((R'+F) \#_q R'^{R'*F})}{(T \#_q R'^{R'*F})((R'*F) \#_q (T \cap R'^{R'*F}))}.$$ PROOF. As in Section 6 we have the following diagram $$F \xrightarrow{\alpha} F/R = G$$ $$\downarrow \beta \qquad \qquad \downarrow \delta$$ $$O \xrightarrow{\gamma} O$$ From Proposition 6.1, since $H_n^q(F) = 0$, $n \ge 2$, we get $H_2^q(F/R) = Ker(L_0\vartheta_2(\alpha,\gamma) \to H_1^q(G)) \text{ and } H_3^q(G) = L_1\vartheta_2(\alpha,\gamma).$ Thus - i) $H_2^q(G) = \text{Ker}(R/(R *_q F) \to F/(F *_q F)) = (R \cap (F *_q F))/(R *_q F)$. - ii) Since, in this case, $Ker(F \rightarrow F/R) = R$ we have the result by Proposition 6.5.ii. 8. In this section we prove that for the particular case of (q = 0) and only a subgroup $N \triangleleft G$ (M = G) we have that $L_0V_2(\alpha,\gamma)$ coincides with the exterior product $N \wedge G$ (Proposition 8.3) and therefore $V = Ker([.]: N \wedge G \rightarrow G)$ [6. Corollary 4.6] coincides with $L_1V_2(\alpha,\gamma)$ (Corollary 8.15). Moreover, in Remark 8.16 we show that the expression of $H_3(G)$ in Proposition 7.1 is a particular case of Theorem 1 of [3]. Let Θ be a variety of Abelian groups. N a normal subgroup of G and $(\beta, \delta) = (\alpha, \gamma)$ the following object of the category of Rinehart Gr_2 :
$$\begin{array}{c|c} G & & & 0 \\ \alpha & & & & \\ \alpha & & & & \\ GYN & & & & 0 \end{array}$$ Then, by Proposition 3.15, we have $$\cdots \to \mathsf{L}_{m+1} \mathsf{V_1} \ (\gamma) \to \mathsf{L}_n \mathsf{V_2} (\beta, \delta) \to \mathsf{L}_n \mathsf{V_1} (\alpha) \to \mathsf{L}_n \mathsf{V_1} (\gamma) \to \cdots$$ Since $L_m V_1(\gamma) = 0$, $n \ge 0$ and $(\beta, \delta) = (\alpha, \gamma)$, we have $$L_n V_2(\alpha, \gamma) = L_n V_1(\alpha)$$. **REMARK 8.1.** If N is a normal subgroup of G and if we consider $\alpha: G \rightarrow G/N$ and $\epsilon: F \rightarrow G$ a free presentation of G. letting S be the kernel of $\alpha\epsilon: F \rightarrow G \rightarrow G/N$ and T the kernel of $\binom{\epsilon i}{\epsilon}: S'*F \rightarrow G$ (Proposition 6.4. for a=0) $$L_0 V_1(\alpha) = \frac{[S'^{S'*F}, S'*F]}{[S'^{S'*F}, T] \cdot [T \cap S'^{S'*F}, S'*F]}$$ **DEFINITION 8.2.** Brown & Loday in [5.6] introduce the tensor product $M \otimes N$ and the exterior product $M \wedge N$ for two groups M and N equipped with an action of M on the left of N and an action of N on the left of M. It is always understood that a group acts on itself by conjugation: $y^N = yy^{-1}$. In the particular case of M and N being two normal subgroups of G we can consider that the actions of M on N and of N on M are by conjugation, and therefore: the tensor product $M\otimes N$ is the group generated by symbols $m\otimes n$. $m\in M$, $n\in N$, with relations - (a) $mm' \otimes n = (m'm \otimes n^m)(m \otimes n)$. - (b) $m \otimes n n' = (m \otimes n) (m^n \otimes n'^n)$. for all $m.m' \in M$. $n, n' \in N$. The (non-Abelian) exterior product $M \wedge N$ is obtained from the tensor product $M \otimes N$ by imposing the additional relations $t \otimes t = 1$ for all $t \in M \cap N$, the image of a general element $m \otimes n$ in $M \wedge N$ is written $m \wedge n$. **PROPOSITION 8.3.** Let N be a normal subgroup of G and consider $\alpha: G \rightarrow G/N$. Then $L_0V_1(\alpha) = N \wedge G$. To prove this result we will construct two homomorphisms, inverse to each other. $\Psi\colon N\wedge G\to L_0V_1(\alpha)$ (Corollary 8.7) and $\tau\colon L_0V_1(\alpha)\to N\wedge G$ (Corollary 8.14). **LEMMA 8.4.** With the same notations as in 8.1. let $\mu\colon G\to F$ be a section of ϵ (i.e., μ is a map such that $\epsilon\,\mu=I_G$). For each $n\,\epsilon\, N$ we have $\mu\,(n)\,\epsilon\, S$, and we consider $N-S\to S'$ given by $n\to \mu\,(n)'$. Then $$h: N \cdot G \longrightarrow L_0 V_1(\alpha) = \frac{[S'^{S'+F}, S'+F]}{[S'^{S'+F}, T] \cdot [T \cap S'^{S'+F}, S'+F]}$$ given by $h(n,g) = [\mu(n)^*, \mu(g)] \cdot H$. where $H = [S^{(S')*F}, T] \cdot [T \cap S^{(S')*F}, S^{(S')*F}]$ is a crossed pairing (or biderivation) [6. Definition 2.2]. **PROOF.** $$h(n_1n_2,g) = [\mu(n_1n_2)',\mu(g)] \cdot H =$$ $$= [\mu(n_1)'\mu(n_2)'(\mu(n_1)'\mu(n_2)')^{-1}\mu(n_1n_2)',\mu(g)] \cdot H$$ $$= [\mu(n_1)'\mu(n_2)')^{-1} \mu(n_1n_2)',\mu(g)]^{\mu(n_1)'\mu(n_2)'} \cdot [\mu(n_1)'\mu(n_2)',\mu(g)] \cdot H$$ $$= [\mu(n_1)'\mu(n_2)',\mu(g)] \cdot H$$ because $$\mu(n_1)'\mu(n_2)')^{-1}\mu(n_1n_2)' \in T \cap S'^{S'*F}.$$ So $$h(n_1 n_2, g) = [\mu(n_2)^{\cdot \mu(n_1)^{\cdot}}, \mu(g)^{\mu(n_1)^{\cdot}}] \cdot [\mu(n_1)^{\cdot}, \mu(g)] \cdot H$$ $$= [\mu(n_2^{n_1})^{\cdot \mu}(n_2^{n_1})^{\cdot -1}\mu(n_2)^{\cdot \mu(n_1)^{\cdot}}, \mu(g^{n_1})\mu(g^{n_1})^{-1}\mu(g)^{\mu(n_1)^{\cdot}}] \cdot [\mu(n_1)^{\cdot \cdot}, \mu(g)] \cdot H$$ $$= \llbracket \mu(n_2^{n_1})^{\boldsymbol{\cdot}}, \mu(g^{n_1}) \rrbracket \cdot \llbracket \mu(n_1)^{\boldsymbol{\cdot}}, \mu(g) \rrbracket \cdot \mathsf{H}$$ since $$\mu(n_2^{n_1})^{-1} \mu(n_2)^{\cdot,\mu(n_1)'} \in T \cap S^{\cdot S' + F}, \ \mu(n_2^{n_1})' \in S^{\cdot S' + F}$$ and $$\mu(g^{n_1})^{-1}\mu(g)^{\mu(n_1)'} \in T$$ then $$h(n_1n_2,g) = h(n_2^{n_1}.g^{n_1}) \cdot h(n_1,g).$$ Analogously $$h(n.g_1g_2) = h(n.g_1) \cdot h(n^{g_1}.g_2^{g_1}).$$ taking into account that $$\mu(n^{g_1})^{*-1}\mu(n^*)^{\mu(g_1)} \in T \cap S^{:S^* * F}, \ \mu(n^{g_1})^* \in S^{:S^* * F}$$ and $$\mu(g_2^{g_1})^{-1}\mu(g_2)^{\mu(g_1)} \in T.$$ **REMARK 8.5.** h is independent of the μ we choose, for if ν is also a section, then for each $g \in G$, $(\nu(g)^{-1}\mu(g)) \in T$: and for n in N, $(\nu(n)^{-1}\mu(n)^{*}) \in T \cap S^{*S^{*}*}F$. This way $$[\mu(n)',\mu(g)] \cdot H = [\nu(n)'\nu(n)'^{-1}\mu(n)',\mu(g)] \cdot H = [\nu(n)'^{-1}\mu(n)',\mu(g)] \cdot H = [\nu(n)'^{-1}\mu(n)',\mu(g)]^{\nu(n)'} \cdot [\nu(n)',\nu(g)\nu(g)^{-1}\mu(g)] \cdot H = [\nu(n)',\nu(g)] \cdot H$$ as $$(\nu(n)'^{-1}\mu(n)') \in T \cap S^{\cdot S'+F}, \ \nu(n)' \in S^{\cdot S'+F}, \ \nu(g)^{-1}\mu(g) \in T.$$ **COROLLARY 8.6.** The biderivation $h: N \cdot G - L_0 V_1(\alpha)$ determines a group homomorphism $$h^*: N \otimes G - L_0 V_1(\alpha)$$ such that $h^*(n \otimes g) = [\mu(n)^*, \mu(g)] \cdot H$. [6] **COROLLARY 8.7.** $h^*: N \otimes G - L_0 V_1(\alpha)$ determines a homomorphism $\Psi: N \wedge G - L_0 V_1(\alpha)$ such that $\Psi(n \wedge g) = [\mu(n), \mu(g)] \cdot H$. **PROOF**. It is enough to realize that $$h'(n \otimes n) = [\mu(n)', \mu(n)] \cdot H =$$ $$= [\mu(n)', \mu(n)' \mu(n)'^{-1} \mu(n)] \cdot H = [\mu(n)', \mu(n)'] \cdot H,$$ as $\mu(n)^{-1} \in S^{S'*F}$. $\mu(n)^{-1}\mu(n) \in T$ and therefore $h^*(n \otimes n) \in H$ and h^* induces Ψ . REMARK 8.8. Let S' and F be groups and consider their free product S'*F. If $$\mathbf{v} = \prod_{i=1}^{n} s_{i}' f_{i} \in [\mathbf{S}^{\cdot \mathbf{S}^{\cdot} + \mathbf{F}}, \mathbf{S}^{\cdot} + \mathbf{F}],$$ then $$\prod f_i = 1$$, $\prod s_i' \in [S', S']$. **PROPOSITION 8.9.** With the notations of 8.1. let $$d = \binom{\varepsilon i}{\varepsilon} \colon \mathbf{S}' \setminus \mathbf{F} - \mathbf{G}. \ \binom{1}{0} \colon \mathbf{S}' \setminus \mathbf{F} - \mathbf{S}', \ \mathbf{A} \in \mathbf{S}' \setminus \mathbf{S}' \setminus \mathbf{F}. \ \mathbf{J} \in \mathbf{S}' \setminus \mathbf{F}.$$ Then $[x,y] = \prod_{i=1}^{K} s_i f_i$ and we have $$d(x) \wedge d(y) =$$ $$d(\mathbf{x}) \wedge d(\mathbf{y}) = \prod_{i=1}^{k-1} \left(d(\prod_{j=1}^{i} s_j) \wedge d(\prod_{j=1}^{i} f_j) \right) \left((d(\prod_{j=1}^{i} s_j) \wedge d(\prod_{j=1}^{i+1} f_j))^{-1} \right) \cdot \left(d(\binom{1}{0})(\mathbf{x}) \wedge d(\binom{1}{0})(\mathbf{y}) \right)$$ in $\mathbb{N} \wedge \mathbb{G}$. **PROPOSITION 8.10.** With the same notations. if $\prod_{i=1}^{n} [s'_{1i}, s'_{2i}] = 1$. s'_{1i} , $s'_{2i} \in S'$, we have $$\prod_{i=1}^{n} d(s'_{1i}) \wedge d(s'_{2i}) = 1 \text{ in } N \wedge G.$$ **PROOF.** The map $$[S',S'] \rightarrow S' \wedge S', [s'_1,s'_2] -- s'_1 \wedge s'_2$$ is an isomorphism [11, Proposition 2]. Moreover $$S' \wedge S' \rightarrow N \wedge G$$. $s'_{1} \wedge s'_{2} \rightarrow d(s'_{1}) \wedge d(s'_{2})$ is a group homomorphism. COROLLARY 8.11. $$\prod_{i=1}^{n} [s'_{1i}, s'_{2i}] = \prod_{i=1}^{m} [s'_{3i}, s'_{4i}]$$ then we have $$\prod_{i=1}^{n} (d(s'_{1i}) \wedge d(s'_{2i})) = \prod_{i=1}^{m} (d(s'_{3i}) \wedge d(s'_{4i})).$$ As a consequence, for $x = \prod_{i=1}^{n} [s'_{1i}, s'_{2i}]$, we denote by $\varphi(x)$ the element $\prod_{i=1}^{n} (d(s'_{1i}) \wedge d(s'_{2i}))$ of $N \wedge G$. **PROPOSITION 8.12.** With the above notations we have the following $\varphi: [S'^{S'*F}, S'*F] \rightarrow N \wedge G$ so that, for $\prod s'_i f_i \in [S'^{S'*F}, S'*F]$, $$\varphi(\prod_{i=1}^k s_i^{\boldsymbol{\cdot}} f_i) = \prod_{i=1}^{k-1} \left((d(\prod_{j=1}^i s_j^{\boldsymbol{\cdot}}) \wedge d(\prod_{j=1}^i f_j)) ((d(\prod_{j=1}^i s_j^{\boldsymbol{\cdot}}) \wedge d(\prod_{j=1}^{i+1} f_j))^{-1} \right) \cdot \varphi(\prod_{i=1}^k s_i^{\boldsymbol{\cdot}})$$ is a group homomorphism. **PROOF.** φ defines a mapping since $\varphi(\prod_{i=1}^{k} s_i)$ is uniquely determined. Moreover, denoting $d(s_i) = n_i$, $d(f_i) = g_i$, we have $$\begin{split} \varphi(\prod_{i=1}^{K} s_i' f_i) &\; \varphi(\prod_{i=k+1}^{t} s_i' f_i) = \\ &= \prod_{i=1}^{k-1} \left(((\prod_{j=1}^{i} n_j) \wedge (\prod_{j=1}^{i} g_j)) \cdot ((\prod_{j=1}^{i+1} n_j) \wedge (\prod_{j=1}^{i} g_j))^{-1} \right) \cdot \left(\prod_{i=k+1}^{t} ((\prod_{j=k+1}^{i} n_j) \wedge (\prod_{j=k+1}^{i} g_j)) \cdot (\prod_{j=k+1}^{i} g_j) \right) \cdot \left(\prod_{j=k+1}^{t} n_j \right) \wedge \left(\prod_{j=k+1}^{i} g_j \right) \cdot \left(\prod_{j=k+1}^{t} \prod_{j=k+1}^{t$$ as for $r, r \in \mathbb{N} \wedge \mathbb{G}$ we have $rr'r^{-1} = r'^{\lambda r}$ [6, Proposition 2.3]. As a consequence, from $\prod_{i=1}^{k} f_i = 1$ it follows $\prod_{j=k+1}^{i} g_j = \prod_{j=1}^{i} g_j$. and using that for $n_1, n_2, n \in \mathbb{N}$, $g \in \mathbb{G}$, $$((n_1 \land g)(n_2 \land g)^{-1})^n = (n_1 \land g)(n_2 \land g)^{-1}$$ we have $$\varphi(\prod_{i=1}^k s_i^{\boldsymbol{\cdot}} f_i) \varphi(\prod_{i=k+1}^t s_i^{\boldsymbol{\cdot}} f_i) \ = \ \varphi((\prod_{i=1}^k s_i^{\boldsymbol{\cdot}} f_i) (\prod_{i=k+1}^t s_i^{\boldsymbol{\cdot}} f_i)).$$ **REMARK 8.13.** From Proposition 8.9 it follows that, for $x_i \in S^{*S^* + F}$, $y_i \in S^{*} + F$, i = 1, ..., k, $\sigma_i = \pm 1$. $$\varphi(\prod_{i=1}^k [x_i, y_i]^{\sigma_i}) = \prod_{i=1}^k (d(x_i) \wedge d(y_i))^{\sigma_i}.$$ COROLLARY 8.14. The map Ψ of Cor. 8.7 is an isomorphism. **PROOF.** With the notation of 8.1 we have that $$\varphi([S^{\cdot S'+F},T]\cdot[T\cap S^{\cdot S'+F},S'*F])=1.$$ because, if $x \in T$, then d(x) = 1 and $m \wedge 1 = 1$, $1 \wedge g = 1$. Therefore we have a $\tau: L_0V_1(\alpha) \to N \wedge G$ induced by φ . It is clear now that τ is the required inverse of Ψ . This result ends the proof of Proposition 8.3. **COROLLARY 8.15** ([5]. Corollary 3). For any given free presentation of G. α : F-G. if R = Ker α and T the kernel of $\binom{i}{1}$: R'+F \rightarrow F. then we have $$H_3(G) \approx Ker([,]: R \wedge F \rightarrow F) \approx$$ $$L_1 \vartheta_1(\alpha) = \frac{T \cap [R^{(R'+F)},
R'+F]}{[R^{(R'+F)}, T] \cdot [T \cap R^{(R'+F)}, R'+F]}$$ PROOF. We have the following commutative diagram and since τ is an isomorphism. $V \approx L_1 \vartheta_1(\alpha)$. **REMARK 8.16.** Brown & Ellis in [3. Theorem 1] give the following expression for $H_r(G)$. Let R_1, \ldots, R_n be normal subgroups of a group F such that $F/\prod_{k \neq n} R_k \approx G$. and for each proper subset A of $\langle n \rangle = \{1, \ldots, n\}$ the groups $$\mathsf{H}_r(\mathsf{F}/\underset{i\leq \mathbf{A}}\prod \mathsf{R}_i),\quad r=\left\{\begin{matrix} |\mathsf{A}|+1\,,\,|\mathsf{A}|+2 & \mathsf{if} & \mathsf{A}\neq\emptyset\\ 2 & \mathsf{if} & \mathsf{A}=\varnothing \end{matrix}\right.$$ are trivial (for example, these groups $F/\prod_{i\in A}R_i$ are free). Then there is an isomorphism $$H_{n+1}(G) \approx \bigcap_{i=1}^{n} R_i \cap [F,F] / \prod_{\leq n \geq p} [\bigcap_{i \in A} R_i \cdot \bigcap_{i \not\in A} R_i].$$ Our expression for $H_3^{q}(G)$ in Proposition 7.1 (for q=0) is a particular case of Brown & Ellis's result because is a commutative diagram whose rows and columns are short exact sequences, and therefore $$G \approx R'*F/T \cdot (R'^{R'*F})$$ and $R'*F/T \approx F \approx R'*F/R'^{R'*F}$ are free groups. Moreover $$\frac{T \cap R^{(R'+F)} \cap [R'+F,R'+F]}{[R^{(R'+F)},T] \cdot [T \cap R^{(R'+F)},R'+F]} \approx \frac{T \cap [R^{(R'+F)},R'+F]}{[R^{(R'+F)},T] \cdot [T \cap R^{(R'+F)},R'+F]}$$ # REFERENCES. - M. ANDRE. Méthode simpliciale en Algèbre Homologique et Algèbre Commutative. Lecture Notes in Math. 32. Springer (1967). - 2. R. BROWN, Coproducts of crossed P-modules: Applications to second homotopy groups and to the homology of groups. *Topology* 23 (3) (1984). 337-345. - 3. R. BROWN & G. J. ELLIS. Hopf formulae for the higher homology of a group. U.C.N.N. Pure Math. Preprint 87. 6. Bangor 1987. - 4. R. BROWN, D.L. JOHNSON & E. F. ROBERTSON. Some computations of Non-Abelian tensor products of groups. *J. of Algebra* 111 (1987), 177-202. - 5. R. BROWN & J. LODAY. Excision homotopique en basse dimension. C.R.A.S. Paris 298 (1984), 353-356. - 6. R. BROWN & J. LODAY. Van Kampen Theorems for diagrams of spaces. *Topology* 26 (3) (1987). 311-335. - 7. B. ECKMANN & P. HILTON. On central group extensions and homology. Comment. Math. Helv. 46 (1971), 345-355. - 8. B. ECKMANN. P. HILTON & U. STAMMBACH. On the homology theory of central group extensions. I. Comment. Math. Helv. 47 (1972), 102-122. - 9. B. ECKMANN. P. HILTON & U. STAMMBACH. On the homology theory of central group extensions. II. Comment. Math. Helv. 47 (1972). 171-178. - 10. G. J. ELLIS. Crossed modules and their higher dimensional analogues, Ph.D. Thesis, University of Wales, 1984. - 11. G.J. ELLIS. Non-Abelian exterior products of groups and exact sequences in the homology of groups. *Glasgow Math. J.* 29 (1987). 13-19. - 12. G.J. ELLIS. Non-Abelian exterior products of Lie algebras and exact sequences in the homology of Lie algebras. *J. Pure & Appl. Algebra* 46 (1987), 111-115. - A. FROHLICH. Baer-invariants of algebras. Trans. A. M. S. 109 (1963), 221-244. - 14. A. GUT. A ten-term exact sequence in the homology of a group extension. J. Pure & Appl. Algebra 8 (1976), 243-260. - 15. A. GUT & U. STAMMBACH. On exact sequence in homology associated with a group extension. J. Pure & Appl. Algebra 7 (1976). 15-34. - K. GRUENBERG. Cohomological topics in group theory. Lecture Notes in Math. 143. Springer (1970). - 17. K. GRUENBERG. A permutation theoretic description of group cohomology (unpublished). - 18. F. KEUNE. Homotopical algebra and algebraic K-theory. Ph.D. Thesis, University of Amsterdam, 1972. - 19. W. MAGNUS. A. KARRASS & D. SOLITAR. Combinatorial group theory, Interscience 1966. - J. MAY, Simplicial objects in Algebraic Topology. Van Nostrand 1967. - 21. K. MODI. Simplicial methods and the homology of groups. Ph. D. Thesis, University of London, 1976. - 22. C. RINEHART, Satellites and cohomology. J. of Algebra 12 (1969). 295-329. - 23. C. RODRIGUEZ, Invariantes de Baer y cohomologia en variedades de Ω -grupos. Alxebra 28. Santiago (1980). - 24. C. RODRIGUEZ. L. FRANCO & J. BARJA. An exact sequence in the homology of groups. *Comm. in Algebra* 15 (4) (1987), 827-844. - 25. U. STAMMBACH. Homology in group theory. Lecture Notes in Math. 359. Springer (1973). ## MATHEMATICAL SYMBOLS USED: | | Morphism or functor | |---|--| | | Monomorphism or injective function | | | Normal monomorphism | | | Surjective function or element of a projective class of epimorphisms in a category | | | Degeneracy operators of a simplicial object | | $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ | Induced morphism from a free product by α and β | DEPARTAMENTO DE ALGEBRA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA SANTIAGO DE COMPOSTELA. SPAIN