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CAHIERS DE TOPOLOGIE VOL. XXXI-2 (1990)
ET GEOMETRIE DIFFERENTIELLE
CATEGORIQUES

HOMOLOGY GROUPS HI(-) AND
EIGHT-TERM EXACT SEQUENCES
by J. BARJA and C.RODRIGUEZ

RESUME. Etant donné deux sous-groupes normaux N et M
d'un groupe G tels que N-M=G. on obtient dans cet arti-
cle une longue suite exacte d'homologie a coefficients

dans Zg:
—~ HI, (G) — HL{(G/N)®HI, (G/M) — L,,_%5(ay) =
H(G) — -+ = Lg¥,(ay) = HYG) = HIG/N)&HY(G/M) — 0.

On donne une description explicite des 8 derniers termes
a l'aide de présentations libres. En particulier. si ¢ = 0, on
obtient H,(G) et H3(G).

Pour M =G. cette suite se réduit a la longue suite
exacte d’homologie associée a un homomorphisme surjectif
de groupes G—G/N.

1.
Several authors have obtained an eight-term exact sequen-
ce of homolog)

H3(G)—~H3(Q) = V—H,(G)~H,(Q) —N/IN.GI=H {(G)~H Q) =0

from a short exact sequence of groups 1-N—G—Q-1. the term
V varying from author to author.

In this way. Eckmann & Hilton obtain an extension of this
sequence to ten terms. associated to a central short sequence of
groups. Eckmann, Hilton & Stambach in 1972 obtain an eight-
term sequence for a central stem short sequence in [8]. and
drop the stem character in [9]. In the same direction we have
the papers of Gut [14] and Gut & Stambach [15]1.

Brown & Loday [5] obtain an eight-term sequence. for in-
teger homology. associated to two normal subgroups M and N
of a group G. This sequence. for M=G. reduces to the one gi-
ven above. Ellis [11] gives an algebraic proof of the sequence of
[51.

The main purpose of this paper is to get two long exact
sequences of homology with coefficients in Z,=2Z/qgZ. one asso-
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ciated with a surjective group homomorphism «:G—Q (i.e., a
group G and a normal subgroup N=Kera). and the other one
associated to a group G and two normal subgroups N and M
such that N-M=G. Furthermore. interpretations of the last eight
terms oOf these sequences by means of free presentations are
given.

The method consists. basically. in reducing the degree of
the derived functor by changing the functor or even the domain
category. and using simplicial techniques for deriving functors.
The basic results employed can be found in [1.18,21.22].

Similar results have been obtained by Brown [2]1 and
Brown & Loday [5]. for integral homolog)y. using algebraic and
topological techniques. which do not apply here and as yet their
methods have not yielded results on homology with non-integer
coefficients. It would be interesting to establish the relationship
between our results (for ¢ =0) and those of [5.6]. It seems a
“very interesting and challenging technical problem”. In the last
section we give a partial approximation (M=G).

2.

In this section we recall several concepts and results
about the homotopy of Kan complexes and the homology of
their associated Moore complexes. A detailed exposition can be
found in [20] or [181.

DEFINITION 2.1. A simplicial set X is said to be a Kan complex

if for every collection of n+l n-simplices \g. .... \j_p Vpeq
A+ that satisfies d;jn; = djogN; if K % Qi< # Kk (ngoonpoy
\Np#1 .-+ Np+q are called compatible). there exists an n+i-sim-

plex v « X4, such that d;x = \; if i*Kk.

DEFINITION 2.2. Let X be a Kan complex and v.\"¢X,, (n20):
and A" will be homotopic if there exists a ) ¢ X4+, such that
diy) = s,_4dirx) = s,_4d;(\) (for i =0.1.....n-1).
d,(v) = vand d,+4{3) = \".
We will say that 3 is a homotopy from \ to \' and will denote
this as 3: v~

Note that from this definition it follows that two homo-
topic simplices » and A’ have the same boundary d(x)= d(x').
“~" is an equivalence relation in X . for nz0.
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DEFINITION 2.3. A vertex *e¢Xg generates a subcomplex of X
which has in each dimension exactly one simplex s, s sy sg(*)
which will also be called + as well as the subcomplex that it
generates in X. A pointed Kan complex (X,x) is a Kan complex
X with a chosen vertex +.

DEFINITION 2.4. For a pointed Kan complex (X,*) we define:
X, = {x X, | dx=(x....#9)} and
[I,(X.x) =X, /~ (nz21). [[o(X.%x) =Xq/~.
[T,(X.+) is a group if n21. which is abelian if n=2. [[g(X.x)
will be referred to as the component set of X.

In an obvious manner the [], are functors from the ca-
tegory of pointed Kan complexes. KAN*. to the category of
pointed sets SET'. More precisely:

Ab
(nz2) V HEIS Gr v
N

KAN' SET*

DEFINITION 2.5. A simplicial map p: X-=Y will be called a fi-
bration if for each compatible collection ( ng, .... Vj—q Npgaqe .
Np+q) of n+l n-simplices of X and for each 3 ¢Y,., such that
d;v = px; (i¥k ). there exists an xe¢X,;,; such that

d;xn=v; (i+Kk) and px=).

Note that the case Y=+ yields the definition of a Kan
complex X. When we choose a base point ¢+ in Y. then F=
p~1(+) will be called the fiber of the fibration. The simplicial
set Y is called the base complex. X the total complex.

PROPOSITION 2.6. ({) The fiber of a fibration is a Kan complex.
(2) The base complex of a surjective fibration is a Kan
complex if the total complex is.
(3) If the base complex of a fibration is a Kan complex.
then so is the total space.

PROPOSITION 2.7. (Long e~xact sequence of a fibration). Let p:
X-Y be a fibration. * a vertex of Y, F= p~Y+) the fiber. *¢ F
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C X a vertex of F. Then the following sequence is exact
"'—‘Hn(F"“)_'Hn(x’*)-;'Hll(Y’*)_)Hn—-i(F*»)_'
=TT Y ) =TT (B ) =TT o (X +) =TT (Y. +)— +.

PROPOSITION 2.8. Every simplicial group is a Kan complex and
every surjective simplicial group homomorphism is a fibration.

DEFINITION 2.9. From a simplicial group G we can derive a chain

complex MG. the Moore chain complex. as follows:

(MG)[]:G‘]. (MG)“ = Jleerdi. n =z1.

A

Since for \<(MG),,; we have
did,, N = dydin =10 i=0,..., n.

the map dy can be restricted to a map d: (MG),,,; —(MG),, which
we take as the boundary map of the complex.

PROPOSITION 2.10. The homotopy groups of a simplicial group
coincide with the homology grcups of its Moore chain complex
I1,(G) = H,(MG).

REMARK 2.11. Keune in [18] introduces the Moorc complex M'G
associated to a simplicial group as follows:
n-1

(MG)g=Gy. (MG, = Q)Kerdi. nzi.
i=

the boundary map (M'G),,; — (M'G),, being the restriction of
dn*i'

In [23] it has been proved that H,(M'G) = H,(MG).

3.

This section is dedicated to the introduction of the cate-
gories of Rinehart and of the simplicial method to derive func-
tors from categories of Rinehart to the category of groups. An
exhaustive study of these topics can be found in [21,22].

DEFINITION 3.1, Let C be a category and & a projective class of
epimorphisms of C (C is assumed to possess sufficient e-pro-
jectives). The pair (C.,e) is called a base category if the follo-
wing statements hold:
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Bi. If A-Be¢e and C—B is any morphism in C. then C con-
tains the fiber product AxgC.

B.2. ¢ is closed under composition.

B.3. If the composition A—=B—>Cce. then B-C«<e.

B.4. If A'>A, A—-B and C—=B are morphisms of C such that
A'—A-Bce. then A'xgC—A-gCce iff A'~»Ace.

A \gC ———— A~gC C

A A B

DEFINITION 3.2. A Rinehart category is a base category (C.g) in
which the following statements hold:

R.1. If P is the class of e-projectives. a finite number of ele-
ments of P have a coproduct in C.

R.2. The morphisms of € have their kernels in C.

R.3. For any commutative diagram

Ko By A
o B
K, B, A

with B;—Ac<e and K; the kernel of B,—A. acg iff 5ce.

REMARK 3.3. Let C be an algebraic category with a zero object.
and let & be the class of surjective morphisms. Then (C.g) is a
categor) of Rinehart.

DEFINITION 3.4. Let (C.g) be a base category. The category C,
is defined as follows:

The class of objects of C,is the class €.

Let a: A—B and a': A'—B’ be objects in C;. A C morphism
h:a—a' is a pair (hg.hy) of C-morphisms such that the square

hg

A A

o o

hy

B
is commutative.

Let €, be the class of C;i-morphisms such that h, and
(hg,2): A=A"-gB are morphisms of €. Inductively we define
(C,.e,).
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PROPOSITION 3.5. If (C.¢) is a base categor). then so is (C.e,)
and if (C.g) is a Rinehart category. then (C,.g,) is a Rinehart
category.

REMARK 3.6. We denuwe Ly Gi,,. nm=20. the categor) of Kinehart
(Gr,,.€,,) introduced in Definition 3.4. starting with the Rinehart
category (Gr.g) (see Remark 3.3).

PROPOSITION 3.7. Let (C.e) be a Rinehart category. Then P,,
the class of g, -projectives in (C,.g,) is given by

P, = {Pg—P,:¢,,_, such that Pg.P;<P, 4}

DEFINITION 3.8. Let (C.g) be a Rinehart category. D a categor)
with kernels and F:C-D a functor. For n20. F,:C,—D is defi-
ned as follows:
FU F Fl(a)= Kel'Fn. F1(h0.h1) = Fu(ho)lFl(a).
Fo=1(F,-y)y (n22) :
where a is an object of C,; and h=(hg.h): a—a is a
C -morphism.

DEFINITION 3.9. Let € be a class of epimorphic maps in a cate-
gory C (with simplicial kernels) and let X be a (semi)-simplicial
object. If in the diagram below

all the z,, are in €. where :, denotes the factorization through
K,,. the simplicial kernel of d;: X,— X, i =0.....n. then we
say that the (semi-)simplicial object X is exact.

DEFINITION 3.10. Let (C.g) be a category of Rinehart. and A an
object of C. An e-exact (semi-)simplicial object (X,d). with the
X, e-projective (n20) together with a morphism

du 2X0"‘A. du€E. such that dﬂdl = dndg

will be called a (semi-)simplicial e- resolution of A.
If X, is not e-projective, then we will say that (X, d) is
an e-exact augmented (semi-)simplicial object of A.
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PROPOSITION 3.11. Let (C,e) be a Rinehart category. Then every
object A of C has a simplicial e-resolution.

PROOF. We give here an explicit description of the first two
terms of this resolution, which will be used later. Modi [21, pa-
ge 641 provides a complete description of. a modified form of
the procedure developed by André [1].

Let dg:Xg—=A be an e-projective presentation of A,
R;=Kerdy and w:X; —-R; an e-projective presentation of R,

Then the diagram
/ 13\
dg= ((o) dg

XX, T — S Xg —2—— A

1
df(o)
holds, where Xg*X, denotes the free product (coproduct) of Xjg
and X,

DEFINITION 3.12. Let (C,e) be a Rinehart category and F:C—Gr
a functor such that F(0)= 0. If A and A' are objects in C, d:
X-A is a simplicial e-resolution and f: A=A’ is a morphism in
C. then the derived functors of F. L, F. are defined for n20 by

LEF(A) = TI,(FX). Ly F(F) = I1,,(FF)

where (FX) is the simplicial image of X in Gr, [], is the nth
homotopy group and f a lifting of f to the simplicial resolu-
tions of A and A'. The simplicial comparison theorem [18. page
141 ensures the validity of this definition.

REMARK 3.13. From Proposition 2.10. [[,(FX) = H,,(MFX).

PROPOSITION 3.14. Let (C.e) be a category of Rinehart. and
F—F=F" a sequence of zero preserving functors from C to Gr.
exact on e-projectives of C. i.e.. we have an exact sequence

0 - F(P) = F(P) = F*(P)-0.

in Gr. for each g-projective object P of C. Then. for each object
A of C. there is a natural exact sequence of groups

- — L5, F(A) — L, F(A) — L5 F"(A) — L;_F(A) — - — 0.
PROOF. Apply Proposition 2.7.

PROPOSITION 3.15. Let (C.g) be a Rinehart category. F:C—Gr a
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functor such that F(0)=0. Then the derived functors
L$F,,:C,,—Gr (n.mz20) are characterized by the following pro-
perties:

i) L F,..(P) = F,..(P). for every &,,-projective P.

ii) Lg(L§F,) = LgF,,, (m=z 0).

iii) Lo, F(P) = O for every €,,-projective P (nz1, mz0).

iv) If «: A-B-g,, (m20). then there exists a long and natural
exact sequence

- — LEF,,. (@) — L5F, ,(A) — LEF, (B) = L5_4F,,, 4(0) —
~ L§F,,(B) - 0.

4.

In this section we obtain the exact sequence for homology
with coefficients in Z, = Z/qZ. associated with two normal
subgroups M and N of G such that M-N = G.

Let & be a variety of groups. We denote by V(G) the ver-
bal subgroup of a group G with respect to ® and consider the
functors V:Gr—Gr which take G to V(G). and $: Gr—Gr taking G
to G/V(G). With this notation. the derived functors L,V,, and
L,9,, are also defined for n.m=0. (Definition 3.12).

m

PROPOSITION 4.1. Let M and N be two normal subgroups of a
group G. L=MNN and & a variety of groups. Now consider the
following object in the Rinehart category Gr,

G —% +— G/N
B‘\' N
&M —L . G/MN

Then we obtain a commutative diagram with evact rows and co-
lumns (Figure 1).

PROOF. It is a consequence of Proposition 3.15.

PROPOSITION 4.2. On the hyvpothesis of Proposition 4.1. we ha-
ve: For each x» «L,MG) such that v,B,'(\)=1. there evist ele-
ments v «L,9,8) and z <L, %(y) such that

A =o, (N u (2)=0,(x). O, (v)n,_(2)=1.
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PROOF. Let
\ ——————I— Y

\m
Lﬁ* [

M —L—— G/MN

be a simplicial e,-resolution of (a,y) in Gr, (Definition 3.10). If
M9X denotes the Moore chain complex associated with the sim-
plicial group %X (similarly M9, and M#%9,). then the proof is a
simple diagram chase using connecting homomorphism in the
following exact diagram of Moore chain complex:

(M8 (o)), — (M9 4B)),, (M9 (),

(M$,0a' v,y — = (M9E)),_, — — (M),
.
(MS (o)), (M$X) , Z_ (MSY)
(MY o),y ———— (M$X),,_ ne1
Bn
(MY ('), | ———— (M¥2),,

(Mai(Y n-1 n-1
REMARK 4.3. In the particular situation that M-N= G. since
L,3G/M-N)=1. ¢y, and A, are isomorphisms and we can assure
that for every \ ¢L,%G). O, o, (x)n,_Hv)= 1. n21 (where
X, tand p; ! have been omitted for simplicity).

PROPOSITION 4.4. Let M and N be two normal subgroups of a
group G such that M-N = G. Let L = MNN. (a.y) the object of
Gr,

G —%*—+4— G/N=M/L

Bl | 1[8

N/L = GM—L—+ 0

and HF denotes the n-th homology group G with coefficients in
Z4= Z/qZ. Then. if ® is a variety of Abelian groups of expo-
nent q. there exist a long exact sequence:
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- HZ, (G) = H7,(M/L)®H?, (N/L) - L,,_ o) =
HY(G) - -+ = HYG) = HIM/L)®HIN/L) = LBy(a,y)
- HUG) » HAM/DSHIN/L) = Lg%,(a,y)
- HYG - HYM/L)®H)(N/L) - 0.

PROOF. Diagram chase on Figure 1 and application of Remark 4.3
yield a long exact sequence:

. en-—i
(e)).B; -
o L,806 2afd, | s v/LeLs(N/L) —271 5 L8 (ay)

Ap-
21, L G = Lg®(M/L)®Ly$(N/L) = 0.

The isomorphisms H2, ;(G) = L,%G), for nz0, give the result.

S.

This section is dedicated to the computation of the
groups L9,(-.-) and Lg%,(-.-) to give an interpretation of the
last eight terms of the exact sequence of homology of Section 4
in terms of a free presentation of G.

PROPOSITION S.1. Let & be the variety of Abelian groups of ex-
ponent q. V the verbal subgroup functor. 1 the identity functor
of Gr and (a,y) the object in the Rinehart category Gr,. Then.
since 1 -V, =1, — %, -1 is a sequence of functors. Gr,- Gr.
exact over g,-projectives. n20. we get an evact sequence of
derived functors

=Ly T L= aVa  Lp-aly 2 Lg% —
Since L, I, = {11” :g Tn:lo we obtain. for n= 2.

L®oy(a.y) = Ker(LgVla,y)=1x(a.v)).
Lg9s(e,v) = Coker (LgV (o, v) = 1x(a,v)).

Consequently the calculation of LgV,(a,v) leads to L95(a.y) and
Lg¥ole,y).

Next. consider M. N two normal subgroups of a group G
such that M:N= G. Put L =MNN. Let z:F+ G be a free pre-
sentation of G. R the kernel of the composition morphism Bs:
F-G-N/L and S the kernel of as: F=G—-M/L. Thus we have a
diagram
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M/L

,//\@/ \f‘ G/L

Given two groups A and B. AtB will denote the free pro-
duct (coproduct) of A and B. Now consider the following object
in Gr,:

O

o

s—0 1+ ¢
where Xg=(RMNS)'*R+*S, (RNS)" being an isomorphic copy of

(RNS) and ag and [, are the projections Kkilling the first and
last. and the first and second cofactors. respectively, so

/0 \
we(t) we (o)

(do,Yu):’

, ek,
If we write dg for the morphism '\si ): Xg — G and T its kernel
€j
then there is an object

T —%{  RNS
(ag.vg) = ‘l}ib AL
RNS — 10—+ ¢

obtained by restricting ag and [y to T and an obvious map u:
{ag.vp)—(ag.vg) in Gr, that is

[
R fz\i "

S Yp

-

o=
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and an epimorphism {og.yg)—(o.v) that is

“___n___|___ R
4“ -

o o

N/L—————F—

Similarly we have the object in Grj:

X; ——4— R«(RAS)

(.= 417(31 l

S+(RNSY —2——0
where X, =Xt T . T being an isomorphic copy of T. aj=wugtay
and (4= [g*+Bg and maps d;: (agvy) — (xg.vg) (i =0.1): this
means that

X, ———1—+— R+ (RMS)

Xy
A

s — Yo 29
where

doz 1

1 - 1 _ i i ot
(u)‘ d:‘\o)- dm‘(‘ui)- dy= \0)- dzu'(\u2>- dy 4= (0)
Then we have the diagram

(og.vq) (o)

that is
XO*T ———f—— R+« (RNS)

%(Rnsnms #

S+ (RAS) LU\/\ \K,\
% G — M/L
S »]

N/L
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PROPOSITION 5.2. With the above notation:

i) (ap,vg)—lag.vg)=ta.y) is a projective presentation in
Gr,.

ii)

(v . ~ )
a’ v 3

are the first two terms of a simplicial resolution of (a.y) in the
Rinehart category Gr,.

PROOF. i) (ag.vg) is an e-projective object (Proposition 3.7). Sin-
ce (ag.gg)—(a.y) ce, (Definition 3.4) and (ag.vyp)—(ag,yg) is the
kernel, the result follows.

ii) It follows from Proposition 3.11.

DEFINITION 5.3. Let M and N be two subgroups of a group G
and g «IN. We use the symbol M#;N to denote the subgroup of
G generated by

(m.n1t9 = mnm " 1%9. m «M, n «N. t ¢ MNN.

Note that if M and N are normal subgroups of G, so is
M= gN.

If N is a subgroup of G. then N#gG is the subgroup of G
defined by Stammbach in [25. page 21: and clearly GsqG is the
verbal subgroup of G for the variety of Abelian groups of exo-
ponent q.

LEMMA 5.4. Let A and B two groups and q <N. Then. if
BA*B denotes the smallest normal subgroup of A+B containing B
then

a) [BA*B AxB1 is the subgroup of A*B generated by

{(Lb.al.lb, byl b.b,.bycB. a cA}.
b) (A*B)quA*B is the subgroup of A+B generated b)
{{b,al,lbyby]). b9 | b.by,byeB. a <Al

PROOF. a) The result follows from [BA*B A+B] = [B.A+BI.
n-1 n—1a. b
i bj

n
[b.MTa;b]=1bT]a; bi]-[b.a,,b,,]q
1 1

ran

1 nm1 (n“‘l b)

n- b a;i bi

(b.Tha;b1 [b.a, 2% 1b.b,] Wi bi
1

and
[b.alb1= [byb.al-la.bl. [b.al 1= [a,.b]l-[b.a,al.

[b.b)%= [a.[b.b11-[b.b,] and [by, b= [bP.bLI.
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b) (A*B)tth“\*"B is the smallest subgroup of AxB contai-

ning [A*B.BA*Bl and the set {x9|xe BAYB}. The result fol-
lows from (a) and the equalities

(b3)9 = (b9 = [a.b9] - b9.

LEMMA 5.5. Let A and B be two groups and q ¢«IN. Then:
AA*BN((AxB)s (A*B)) = (A¥B)s AAYE,

PROOF. Clearly. the left side contains the right side. Conversely,
let

() !

" 1
B: A*B B AxB

g being the inclusion homomorphism of B in the free product.

n
Let x;, ;. z;cA*B. with [[[x;.3,;1z7 ¢ AA*B; then

1

sflin, o020 =1
1
and
Miny Az = TIOn;y 1z 8 (TTB ;B B2z A L =
TIEBN ;BN ) ™I By (B Y 1Bz (Bz) "z (T [BN;.Py;182,T) 1
= 1mod(A*B)anA*B. because (By;) " 1v;cKerp = AA*B,

Note that if g=0. we get
AA*BN[A+B.A+B] = [AA*B. A+BI.
It should be emphasized that these results are true for any va-
riety (not only Abelian groups and Abelian groups of exponent

q) as shown by Modi [21. page 109], under the unneeded hypo-
thesis of A and B being free groups.

PROPOSITION 5.6. With the notations of 5.2. if A=(RNS)'*S.
B=(RNS)'*R. ® is the variety of Abelian groups of exponent q
and V is its verbal subgroup functor. then

(Xg#q AX0) N(Xg#,BX0)
Trg(AXONBX0))((TNAX0)ugBX0)((TNBX0)=,AX0)

LgVa(a,y) =

(Xgn g AX0) N BX0
(Tag(AX0NBX0))[(TNAX0), BX01[(TNBX0), AX0]
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PROOE. Application of the functor V,:Gr,—Gr to the simplicial
resolution of («.vy) vields the simplicial group :

V2\ D 1 I{) 2”@0 |
l 0 2(d -du dy4.0) 0

The Moore chain complex associated with this simplicial group
is

- — M, = Ker(vz(dl,d“,le,O)—, M, = V2( (

\ [P0 ‘))

0

and the homology group of this complex in M; is the group
LgVaola.y). Calculation of the groups Mgy and M, shows that

M; = Ker(Vag)i1Ker (V(g) = VXgiiKeragiKer(g
= VXN URNS)'+SIXOARNS)' + R)X0,
M, = VX NnKeraKerp,i1Kerd,
= VIURNS)'+R+SHIT) NKera,iKerfs;iKerd,.
Thus
VX1 (RNS) +S)X0 M ((RNS) + R) X0
LOV2(CX.Y) =

dg(VIURNS) +R+S)+T) 1 KeraynKerfiKerd,)
Furthermore.
dg(VIURNS)'+R+8)+T) i1 Ker aqKer(iKerd,)
= [T.KeragiiKer3gl-{TrKerag.Ker(gl [T Ker(g.Kerogl:
“(UTNKeragiKerfgleg(TnKeragiiKerfg)).

In fact. let [t.\] be a generator of any of the first three fac-
tors of the right hand side. then

dolt .z = [t A1 where t'«T and \ « Xg—+ XgtT = X,

Furthermore. t : TNKeroagiKerfg: then dg(t'l= t9 We thus
have an inclusion.
Conversely. since Kerd,; = TX1. from Lemma 5.5 we obtain

VIURNS)' +R18)+T) NKer ayiKerf i Kerd,) =

{CURMS) ¥R¥S) w.T')un'“RmS).‘R'S)*T”) NKer o Kerfy .
If

3 el (URNS)IRIS) i TIag THROSTRISITY e o, Kerfy

then. from Lemma 5.4.

11 X
B I TR R T NP (T FHL
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with

tiotgi toj. taieT ;e (RNSY+R+S. ;=41 agd) = 1. p4(3) = 1.
But '

a3 = Tt ) ag(nPI% Tlog(ey 1) (ogl e ) T agl e 5;))'9

where (ag(t))’ and xg(\) denote the elements

T 25 RAS 4+ (RAS) 4—— R (RASY
¢ ——--- e — (g (£)) ====~ — lagle))
and
(RNS)'+R+S R — R+(RNS)
N\ mmmemeees — agl\) —==———-- — agl\).
also

61()) = H[(EU(CI”'BU( \i)]Oi' [(po(t1‘))'(ﬁﬁ( t2i))‘].(ﬁﬂ(t3i)).q
with (Bg(¢))" and [g(\) as above.
If we consider the canonical injection

(RISt R 4+—— (RNS)'+R*S
we have

do(3) = dg)agdy) = TIEe; n17 Ly t0,20E 59
Tl (e ag(x 1% [lagleg ) Lagl tx) 1 (aglt ;9.
Since [t;. A1, [ty;.t5;1. t3;¢T and
Lag(t; ) ag(n)1%, Lagley ) (aglt))]. aglts; ) « KeragiiKerfyg.
the following congruences mod. [T.KeragiiKerfgl hold:
do(y) =TI0; 2 1% Dlag(e)) g pI1%i Lty 5,1
C Llog(eg ) (agl e T-(E3;)9. (oglty;)) T
= TT0e; 0370 Dlogle) cag(apI®ieLe g t5; 1
“Dlagl ey ) (og( )] (3 (agltg;0)9.

If we consider the homomorphism

Xg - Ll i - QY
T RNS —+— T R+ (RNS)
t = e - do(t)
then. for t:T. \«¢(RNS)'+RtS, we get
(og( ). \"log(\)Bgln) e KeragiiKerf,.
LBV ag(e)™ Hag(e))'t ¢ T Kerag and agly) ¢ Kerfg:
thus. the following congruences

mod. [T.KeragnKerfigl [T Kerag.Kerfgl
hold:
Lend = [tag)pgt BN tag(n)"INT = Leoag(\)pg(V) 1

[enT-Lag(e)) . agiI= [t agiIBg(N)I-Haglt)) . ag()] =
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= [tag(VITEBa(VIFO™  [ag(£), ag(v] =
=[t.ag(n)] [og(e)) ag(N1-[eBg(N)T=[lag(t)) t.ag(n)1-[t.Bglx)]=
Lag(t)ogl )™ Haglt)) t.ag(x)1-[¢t, Ba(n)]
Lag(t).aglx)I-[t.Bglx)].
[tgt5] [laglty) (agltnr))] =
= [tqt5] - Llog(ty) aglex) lag(tx))™ (agltx))] =
[tgto] [laglty) agltax)l - Llaglt ), (aglt))™ Haglty)']
[lagltq)ogltx)l-[ty,Boltx)] = [t,.Bgltx)d Laglty), aglty)l,
(tlag(ENIT = (tlag(t)) aglt) lag(e)T = (tlag(t)) ag(t) HUaglt)D
Thus
dg(y) = TTlag(ty), ag(x)I% [, Bo(x )1 [t y;.Boltn)]
Taglty). aglts)d- (tglaglts)) aglts) " DT (agltz;)) 9.
Since [t.Bg( V)] [t4,Pgltx)] talag(ts)agltz)™?) ¢TN Keroag, and
Cag(t), og(x)]. Lag(ty aglts)laglts) ¢ KerBg, we get
dg(y) = TTlagley), aglx)I%  Log(ty,), aglt) I (aglts;)9:
Lty BolNpI% Lt Boltn)]: (ta(ag(ts)) agles;) 19 =
Tlag( ). ag(xpI°F Lagley ), oglty) - (aglts; )
TIC; BolxpI% Lt ;. Bl (ta;(agts)) aglts;)”1)a,
But considering the homomorphism
1
14: R¥(RNS) — R (RMNSY+RYS.

i

ag(t2) =

then
Mlagle). agapl®-Loglty ). aglt)I-ag(tz; N = 14l (i) =1
and consequently
do(3) =TT Lt; BolapI% Lt ;. Bolta)] (Eailaglts)) aglts;) D
mod. [T.KeragNKerfgl [TNKerag.Kerfyl.
Furthermore, since B43) = 1. we get:
do(3) = dg ) TIL PG E) Bl NP7 (Bt ) (Bolta)) T (Bgltz))
but [£.8g()1° [£4.Bgl )%, t3logltz) aglts) e TNKerayg.
[BglE) . Bgln )1°. [(Bglty)) . (Bglex))']. (Bglts) «Kerfy,
and then
do() =TT LE;. Lol TRl  BolxpI% [t 4;,Bolts)]-
LBgltg ) (Bl T (t3ilagts)) - aglts) T (Bglts)))9
 mod. [T.KeragKerfgol [TNKerag, Kerpgl.
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Similarly.
[£.Bg(x)1°% [(Bg(t))'.BglN)1° =
= [Ro(8),Bg( )1 [t.agBglxNI® = [Bg(t).Bg(x)1°.
[tBglts )1 T(BolE)) . (Boltx))] = [tyBolty )1-L(Bglty) . Bolt)] =
= [tnag(Bg(t )] [Bglty), Bgltx)l = [Bglt,),Bolts)]

mod. [T . KeragNKerBgl [TNKer By, Keragl.
Finally. since

tlog( ) ag(t)"1(Bg(e)) Bg(t)"te TNKeragNKerByg. Bol(t) c Kerag,
we obtain the following congruences:
(t- (gt aglt) 1 (Bg(e))9
=(t-(og(e) og(t)™ 1 (Bgle)) -Bglt)™ LBgleNT =
= (tfaglt) agle) 1 (Bg(e) Bl NI (BN = (Bg(eNT
mod. [TNKerBg, Keragl.((TNKeragNKerBg)sg(TNKer ByNKerag)),
and therefore
do(3)=TIURgEN)  Bo(npPI% [Pglt 1), Polt )] (Bl
mod. [T.KeragNKerfgl-ITN Kerag. KerBgl [TNKerfg.Keragl:
‘(TN KeragNKerfgleg(TNKerPgN Keragl).
If now we consider the homomorphism
(zy)

15: S*(RNS) S (RNS)'+R48S.

we have dg(3) =t,(B{1)) = 1. and consequently.
dg(v) e [T.KeragNKerBgel-[TNKerag.KerBgl [TNKerfy.Keragl
‘(TN KeragNKerpfglag(TNKeragN Kerfy)).
The result now follows from Lemma 5.5 and
Kerag=AX0, Kerfy =BX0,

REMARK S5.7. Note that
[T.KeragNKerBgl-[TN Keragy. KerBgl [TNKerBq, Keragl:

‘(TN KeragNKerfBgleg(TNKerBghn Kerag)) =
(Tog(KeragNKerBg)) ((TN Kerag)eg KerBg) ((TNKerBgugKerag)
(Tag(KeragNKerfg))-[TNKerag, KerBgl -ITNKerBg.Keragl:
and it is the smallest subgroup containing

[T.KeragNKerBgl. [TNKerag. Kerfgl. [TNKerBy.Keragl
and the elements t9. with ge¢IN and t<TNKeragnKer(3y.
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PROPOSITION 5.8. Under the hypothesis of Proposition 5.6:
i) Lg95(c.y) = (MNN)/(MegN).
ii)

T Q (~ .\
Y TR TR

TN(Xg#,AX0) " BX0
{T= g(AX0NBX0))[TNAX0. BX0I[TNB X0, AX0]

PROOF. ii) It is a consequence of Propositions 5.1 and 5.6.
i) From Proposition 5.1. since

Lolala.y) = Ixta.y) = KeraNKerf = MINN,

and Lg9,(a.y) is a quotient of (X,JﬁqAXU)ﬂ B0, it is sufficient
to show that

dg(Xgeg AX0) N BX0) = MagN.
Let m e M. n eN. te MNN. Then there exist
r «¢R. seS and k¢RNS. such that s(r)=m. z(s)=n and (k) = ¢.

Then
dollr.slk' =I[m.nlt9:

therefore [r.s]-k'9 ¢ (XuanXU)l‘lBXU since r<B. s<A. A< (ANB).
Let ¢ (quqAxﬂ)ﬂ BX0. Then. from Lemma 5.4.

n
v = [l la;.r;1-la . a5;1 (a3)9 with Pgly) =1.
i=1

If we consider sj: S—G. we get

1 = ¢jbgly) = TIlejPglay).cjlolas))1-(cjfglazN9
so that

du(_‘) = du(_‘)‘(EjBu(_\ ))—1 = H[do(ai).du(rl‘)]'

'[Sjﬁu(aﬁ)SjBU(a1i)—1du(au).Sng(azi)Ej(ju(a2i)—1du(azi)]‘

(ejBglas) cjbolas) tdglag )9 (TTLejfglay). sjbglas) ] (cjBglag)) DL
Then. since dg(a). =jBgla)eN. dgl(r)eM. cjBgla) 'dgla)c MNN.
we have dg(y) e« MagN. -

6.

In this section we obtain the long exact sequence of ho-
mology with coefficients in Z,. associated to a surjective group
homomorphism.

PROPOSITION 6.1. Let N be a normal subgroup of a group G
and we consider M=G. Then we have the exact sequence:
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- HZ%, (G) = HL{G/N) = L,_9ay) — HI(G) — -
- HUG) — HUG/N) — Lp,la.y) — HUG) — HIG/N) —
LY,(e.y) = HYG) — HYG/N) - 0
where (a.y) denotes the object of the Rinehart categor) Gr:

[ed

G G/N

8 3

0 —Tev 0

PROOF. Since G/M = 0. the result follows from Proposition +.4.

LEMMA 6.2. Let N be a normal subgroup of a group G. =: F+G
a free presentation of G. S the kernel of

az: F | G —¢ G/N

and T the kernel of | il ):S"*F—=G. Then

(xg.Yg) (ag.vg) — (. v)
that is
T — S
Y '
0, S F—2a \ng ~
Ag =(1 J w o | xe
G ] G/N

du _(53/) BD T

0 0 $

is an €, -projective presentation of («.y) in the Rinehart categor
Gl'z.

PROOF. oy and 7yg are projective objects in Gr, and. since
(Bg.d9g):xg—~Yg is an epimorphism in Gry. we have that («g.vq) is
a projective object in Gr,. Furthermore. since (ag.yg)—(a.y) is an
epimorphism in Gr, we get the result.

LEMMA 6.3. With the same notation as above. the first two

terms of a simplicial resolution of (a.v) in the Rinehart categor:
Gr, are
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. | .
(S'+F)+T' m—m———}— F+S
‘HN

ol

[
0
where
@y = agrap. do= () di=(g) dlﬂ:(lj)' du=(b).

PROOF. This is a particular case of Proposition 5.2, ii.

PROPOSITION 6.4. With the same notation as above:

((S'*F)gS'S™F) '
(T gSS'F)(S'+Fra o (TNS S"'F))
PROOF. From Proposition 5.6. we have

LoVy(a,y) =

LgVy(a.y) =
- (S'xF)ug Kerag) NKer By _
(Teg (KerogNKerfg))-[TN Kerag. KerBgl-ITNKerBg. Keragl
The result follows from
Kerag = S'S*F and Kerfy=S''F.

PROPOSITION 6.5. With the same notation as above:
i) Lg3a,y)= N/(Ns#gG) ,

i) TN(S *F)u gS'S*P
(TagSS*F)(S VP s g(TNS S*F))

PROOF. This is a consequence of Propositions 5.8 and 6.4.

L9, (a,y)=

7.
In this section we obtain Hopf formula for HY and a

"kind of" Hopf formula for HF(G).

PROPOSITION 7.1. Let G be a group.
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a free presentation of G. and T the kernel of (f) R'+F—F. Then
i) HI(G) = (RN(FegF))/(RegF).
ii) -
TN((R'+F)agRR*F)
(Ta gRE*F) (R ¥F ug (TNRTF))
PROOF. As in Section 6 we have the following diagram

F—2%+—-F/R=G

0 ——0
From Proposition 6.1, since HJ(F) = 0, n22, we get

H3(F/R) = Ker(Lg9,(a,y)=HI(G)) and HF(G) = L la.y).
Thus
i) HJ(G) = Ker(R/(RegF)—=F/(FagF)) = (RN(FrgF))/(RegF).
ii) Since, in this case. Ker(F=F/R)=R we have the result by
Proposition 6.5.ii.

HZ(G) =

8.

In this section we prove that for the particular case of (g
=0) and only a subgroup NJG (M=G) we have that LgV,la.y)
coincides with the exterior product NAG (Proposition 8.3) and
therefore V=Ker(l.J:NAG=G) [6. Corollary 4.61 coincides with
L,V,la,y) (Corollary 8.15).

Moreover, in Remark 8.16 we show that the expression of
H;(G) in Proposition 7.1 is a particular case of Theorem 1 of [3].

Let & be a variety of Abelian groups. N a normal sub-
group of G and ((,8) =(a,y) the following object of the category
of Rinehart Gr,:

G

o

OGN —2— 0

Then. by Proposition 3.15. we have
= L,,+1Vy (¥) 2 L, V(3,8 = L, Vyla) = L,V (y) = -
Since L,,,V4{y)=0, n20 and (8,8) = (a,Y), we have
L, Voto,y) =L,V o).
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REMARK 8.1. If N is a normal subgroup of G and if we consider
o«:G=G/N and : F~G a free presentation of G. letting S be the

kernel of az: F~G—=G/N and T the kernel of (SE'):S'!»F#G (Propo-
sition 6.4. for g =0) ’
[S'S*F. S'+F]

Ly V() = — — .
o (sS*F 11 1TnsSYE .84 F]

DEFINITION 8.2. Brown & Loday in [5.6]1 introduce the tensor
product M®N and the exterior product MAN for two groups M
and N equipped with an action of M on the left of N and an
action of N on the left of M. It is always understood that a
group acts on itself by conjugation: 3¥=\3\"1

In the particular case of M and N being two normal sub-
groups of G we can consider that the actions of M on N and of
N on M are by conjugation. and therefore: the tensor product
M®N is the group generated by symbols m®n. m « M. n « N.
with relations

(@) mm'en = (m™en™(men).
(b) menn = (men)(m7en",
for all m.m' <M. n.n" ¢N.

The (non-Abelian) exterior product MAN is obtained from
the tensor product M®N by imposing the additional relations
tet = 1 for all ¢t ¢« MININ. the image of a general element men
in MAN is written man.

PROPOSITION 8.3. Let N be a normal subgroup of G and consi-
der a: G=G/N. Then LgV fa) = NAG.

To prove this result we will construct two homomor-
phisms. inverse to each other. ¥:NAG-LyVa) (Corollary 8.7)
and 1:LgV (a)=NAG (Corollary 8.14).

LEMMA 8.4. With the same notations as in 8.1. let u:G=F be a
section of ¢ (i.e.. u is a map such that zu=lg). For each ne<N
we have u(n)<S. and we consider N—S—=S' given by n—u(n).
Then

[S'S*F S'xF]

(sSS*FT1.rTnS S 'F.8 1 F1

h:N-G— LgVyla) =

given by
hin.g) = [u(n).u(g)1-H. where H = [S'S"F . T1.1Tns S"F.§'+F1

is a crossed pairing (or biderivation) L6. Definition 2.2].
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PROOF. h(nn,.g) = Lulnyny).u(g)l-H =
= [u(n ) ulny) (wlnP'uln)) tulnny) u(g)1-H

u(ni)'w(n2)’

= [u(n)'u(ny) )" plnyn,) (gl ‘Lutn'ulny) u(g)l-H

= [pln)'plny)'. plg)l-H

because
w(n)uny) ) P ulnny) « TNSS™F,
So . .
h(nyngg) = [ulny) Y (@) * "1 [u(n " .u(g)1- H
= [, u (D) " 1un 7 u(g™ g™ (g "]
lu(n'.u(g)l-H
= [u(n," Y W@ [piny .u(g)l-H
since
w1 (a9 TS SHF un, Y 8STF
and u(g™ (g "V T
then
h(nn,.g) = hinyt . g™\ - hinyg).
Analogously

hin.g.g) = hin.g) h(n8l. g, 81).
taking into account that
u(n8N) = ()" 8 TNSS'F y(n8Y gS"F
and w(g £ g8V T.

REMARK 8.5. h is independent of the p we choose. for if v is
also a section. then for each g <G. (vig) tu(g) e«T: and for n
in N. ()" w(m) e TNS'S*F. This way

u(m).w(g)1-H = Iv(n)'vim~ Y u(n).u(g)l-H =
[vin) = tu(n) . w(@) 1V [u(n) . vig)vig) u(g)1-H = [vin).vig)l-H
as (W) " w(m) e TNS'S*F v e SS*F (g lu(g) e T.
COROLLARY 8.6. The biderivation h:N <G—LgV a) determines a
group homomorphism
h*:N&G—LgV o) such that h'(neg) = [utn).u(g)l-H. [6]
COROLLARY 8.7. h":N®G—LyV (o) determines a homomorphism
¥Y:NAG—LgVla) such that ¥(nag) = [u(m.u(g)l-H.
PROOF. [t is enough to realize that
h'(nen) = [u(n) .w(n)l-H =
= [p(n)' . w(m) () " tu(n)1-H = [p(n) .u(n)1-H,
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as w(m' "% SS*F u(n)""'w(n) ¢T and therefore h'(n®n)e¢ H and

h* induces Y.

REMARK 8.8. Let S’ and F be eroups and consider their frea
product S'+F. If

=1 s F,c1sS'FsvFI,
i=1
then
[TF;=1. [Is;<[S,S].
PROPOSITION 8.9. With the notations of 8.1. let

d= ) VF=G. (): S F-S". A ¢SS™F 5 ¢S'(F.

Then [x,)1 = H s;f; and we have

d(\)Ad(\)
=1 - / 1 1
=i£11((d<11_‘[ s )Ad(/I_'[ £ ))((d(II:fis )Ad(lnlf N71)(d(g) o ad(g)n)
in NAG.

PROPOSITION 8.10. With the same notations. if H[s1,.32,]—- 1
s'yi- S¢S, we have =1

M disy)ndiss) = 1 in NAG.
i=1

PROOF. The map
[S,S] = S'AS'. [s'y.85] -— s'jash

is an isomorphism [11. Proposition 2]. Moreover

S'AS' = NAG. s'yas’y == d(s'Iadlsy)
is a group homomorphism.
COROLLARY 8.11. If
1 . im . s
H [S'li‘szi] = 'HI[S 3,'.54‘-]

i=

i=1
then we have

n
It (dis'y)ndisy) = TTidis3)nd(s7y).
i=1 i=1

11
As a consequence. for xn = [[[s'y;.s%;]. we denote by @(x)
i=1

1
the element I'-[(d(s'l,-)/\d(s'z,)) of NAG

i=1
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PROPOSITION 8.12. With the above notations we have the follo-
wing ¢:[SS*F S vF1-NAG so that. for [[s;f;<[SS*F S'xF],

@(Hs F)= H((d(l‘[s )Ad(an((d(Hs ),\d(Hf)) 1). ep(H s%)

is a group homomorphism.
PROOF. ¢ defines a mapping since cp(H s;) is uniquely determi-

ned. Moreover. denoting d(s’) = n;, d(f,)— g;. we have

k ¢
cp(H sif;) cp( H s'~f1)

t i i
(((Hn)A(Hg,n ((Hn)A(H g V) T WIT npac [T g

j=1 i=k+1 j=k+1 j=k+1

x5

i

=i

Tl mpal T g 1)k (H Dol H »

- n s S
J—k+le1-k+ Ej e ¢ i

as for r.r«eNAG we have rrir-1= r*" [, Proposntnon 2.3

As a consequence, from 'I'[lf =1 it follows H i = Higl-.
i= =k j=

and using that for ny.n,.neN. geG,

(npg@nong)™ WP =(nnng)nnng) L
we have -

Kk t k
(P(H S'I'fi)(p( I-I S.if") = (P(( H S"'f,')( ﬁ S"'fi)).
i=1 i=k+1 i=1 i=k+1

REMARK 8.13. From Proposition 8.9 it follows that, for
\iGS‘S‘*F. _"'€S.*F. i =1.....k. 0i=_+_1.

K o K o
e(ITIx;. 3% = TT(d(xp)ad(yN°E.
i=1 i=1

COROLLARY B8.14. The map Y of Cor. 8.7 is an isomorphism.

PROOEF. With the notation of 8.1 we have that
eUSSYF T1. (TS S*F 8% F) =

because. if » ¢T. then d(x)=1 and matl = 1. 1ag = 1. Therefore

we have a 1:LgV{a)=NAG induced by ¢. It is clear now that 1
is the required inverse of VY.

This result ends the proof of Proposition 8.3.

COROLLARY 8.15 ([5). Corollary 3). For any given free presenta-

tion of G. a:F—G. if R=Kera and T the kernel of ({):R"F-‘F.
then we have
H3(G) ~ Ker([,1: RAF - F) =

- "7 -



BARJA & RODRIGUEZ

TNIRR*F R+F]
L% (a) = . : :
o1 RRET1.(TARRFR'vF]
PROOF. We have the following commutative diagram

L () ———— LgV,(a) ————— [N.G]

i

V——— NAG —  [N.G]

T

and since t is an isomorphism. V ~ L% (a).

REMARK 8.16. Brown & Ellis in [3. Theorem 11 give the follow-
ing expression for H,(G).

Let R,.....R,, be normal subgroups of a group F such that
F/ [T R; = G. and for each proper subset A of <{n>=1{l.....n} the

1=isn
groups )
C_ [lAI+1UA[+2 if A*Q

HAF/TIR). r = [y P

are trivial (for example. these groups F/ HAR,- are free). Then
there is an isomorphism "

n
Hpe (G = () R;NIF.F1/ Il)ITDA[iDAR,-.“{sziII.

Our expression for H3(G) in Proposition 7.1 (for g=0) is a
particular case of Brown & Ellis's result because

TNRR'F T R
RR'F RVF F
R > F F/R# G

is a commutative diagram whose rows and columns are short
exact sequences. and therefore

G ~ R*F/T-(R®*F) and R*F/T ~ F » RvF/RF*F
are free groups. Moreover
TAR®'FNIRVFRYFT TNIRRF R F] .
(RRFT1.0TRRFRF1 (RRFTI(TARR'FRYF

- 18 -
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MATHEMATICAL SYMBOLS USED:

—— Morphism or functor

——— Monomorphism or injective function

—— Normal monomorphism

——+ Surjective function or element of a projective class of epi-

morphisms in a categor)

Degeneracy operators of a simplicial object

(g) Induced morphism from a free product by « and
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