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FUNCTORS BETWEEN HOMOTOPY

by Luciano STRAMACCIA1

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATEGORIQUES

VOL. XXXI -2 (1990)

RESUME. Dans cet article, on considbre des categories C
munies d’une notion d’homotopie, sous la forme d’une
structure de I-cat6gorie au sens de Baues, engendr6e par
un foncteur cylindre I, et on étudie la pr-eservation des

propri6t6s d’homotopie relativement 6 un foncteur S: C-A.
en particulier lorsque S est un reflecteur-. Le cas d’un

proréflecteur est aussi examiné.

INTRODUCTION.

There are various ways to introduce a homotop) notion in

a category C, all related to the concept of inodel category of

Quillen 191. Most notably , those due to Brown 121 and. more re-
cently , to Baues [1]. seem to be very interesting and more ma-
nageable than the original one. Howevet- there exist, up to au-
thor’s knowledge. a certain lack in the literature concerning
subcategories and comparison of homotopy structures.

In this papei- we are concerned with categories endowed
with the structure of an I-category in the sense of [1]. which is

generated by a cylinder functor I on it [1,6]. We studn the pre-
servation of homotopy- properties by means of a functor S from
C to A. In particular, we are interested in the case where S is a

reflector, which means that A is a full subcategorB of C and S
is left adjoint to the embedding functor T: A-C. Also the case
of a proreflector’ P is considered.

1. PRELIMINARIES.

Let C be a category and let 1 be a class of morphisms of
C which we call "weak equivalences". A new category C[z-1]
can be constructed by formally inverting weak equivalences.
C[Z-1] has the same objects as C and is defined bN the follo-

wing pt-operties :

1. Work partially, supported by funcls (-1-0%) of M.P.I., Italy.
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(i) There is a functor PZ :C -C[E-1] which is the identity on
objects and which inverts all weak equivalences, that is. P,(s) is

an isomorphism in C[Z-1], for every s E 1.

(ii) If G: C -D is a functor which inverts all weak equivalen-
ces, then there is a unique functor G*: C[Z-1]- D such that

G*PZ=G.
C[Z-1] always exists, but its description is particularly nice

whenever 1 admits a "calculus of left fractions" in C 131.

Let A be another category endowed with a notion of weak
equivalence and let A be the class of such weak equivalences. A
functor F: C -A can be extended to a functor F-+-: C[Z-1]-A[A-1]
iff F preserves weak equivalences, that is F(Z) C A. In such a

case F* is the unique functor with F’. PA = P.F. F’ acts on

objects as F does.

PROPOSITION 1.1 (cf. [2]. p. 426). Let T: A- C and S : C -A be
functors which preserve weak equivalences. If S is left ad join t
to T , then S* is left adjoint to T*.

DBFINITION 1.2. a) A cylinder functor for a categor) C is a

functor I: C - C together with natural transformations

such that o-.e0=o-. e1 = identity.
Two morphisms f.g E C(X.Y) are homotopic, written f =g

. whenever there is a "homotopy" H: I(X)-Y with H’eo(X)= f
and H.e1(X) = g . Shortly H: f=g .

b) Once a cylinder functor is given for C. one can define a

morphism t : C(X.Y) to be a H/eak equivalence when it has a

homotop) inverse. that is there exists an

s E C(X.Y) such that s.t = lx and t.s= ly.
Let 1 be the class of such weak equivalences in C.

The cy linder functor I is said to be generating for C

(compare [6]) whenever (C. I.*) is an I-category in the sense of
Baues [1]. with respect to the classes 1 of weak equivalences
above and the class r of cofibr-ations, defined bv the usual

homotopy extension property . Let us denote bj the initial

object of C.

Whenevet- I is generating, the class E of weak equivalen-
ces admits a calculus of left fractions in C and the category
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C[Z-1] = HoC is called the homotopy categol) of C with respect
to I. For every pair of objects X. Y of C, HoC(X.Y) = [X.Y] is

the set of homotopy classes of morphisms X-Y in C.

c) Let J = (J. d0. d1.d) and I= (I,e0, e1,o-) be cylinder functors
for the categories A and C. respectively. We saN that F: C -A

respects the cvlinder functors whenever the following hold:
(i) F.I = J-F.
(ii) a) F.ei = di.F. i=0.1: b) F.o-=d.F.

2. FUNCTORS PRESERVING CYLINDERS.

It is easily seen that a functor F: C -A which respects
the cylinder f u nctors preserves homotopies: in particular F pre-
serves weak equivalences and induces a uniquely determined
functor HoF : HoC =y HoA between the homotopy categories.

The converse is not true in general: the simplest example
is perhaps a constant functor TOP-TOP which induces a con-

stant functor between the homotopy categories. but does not

preserve homotopies. We wish to study this situation in detail.
in the case where A is a reflective subcategor) of C with inclu-
sion T such that T. I = I.T and reflector S which preserves weak

equivalences.
Let us denote by a: 1-T.S the unit of this adjunction:

then by the universal property of the reflection there exists a

unique morphism tx which renders the following diagram com-
mutative :

Assume now that I is a generating cylinder functor for C.
For every object X a C. there exists the pushout

As for notations, let us also consider the following com-
mutative diagrams
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from which it follows that o-x.o-x = (lx,lx) is the folding map
forX. 

LEMMA 2.1. For ever:" X E C the following holds:
(il tx-S(e0(X)) = eo(S(X)); in particular tx is a weak equi-

valence.

PROOF. Consider the diagram

where the left square is commutative. By the universal property
of the reflection, there exists a unique morphism hx such that

Hence the following diagram is also commutative:
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and this forces hx= eo(S(X)). Finall)

Hence tx.S(e0(X)) = eo(S(X)). tx is a weak equivalence since

eo(X) is, for ever) X, and S preserves weak equivalences.
Part (ii) forlows from the second diagram. applying the

functor S. Part (iii) follows from (i) considering the diagram:

( iv ) Consider again a diagiani:

The outer square is commutative since a is a natural transfor-
mation. Square (1) commutes since o- is a natural transformation.

Triangle (?) commutes bN assumption. Let us prove that triangle
(3) is also commutative:

B) the universal property of the reflection it follows that

o-S(X).tx = S(o-x).
Let us observe that the previous lemma implies that the

following diagram is commutative:
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In (111. §,Sa. p. 112) a diagram similar to the above is con-
structed in order to prove via a "weak lifting" L=(h.j) of it,
that the correspondence

given bN (L*.S)(H)= L"(S(H)), carries (homotopy classes of) ho-

motopies to (homotopy classes of) homotopies. A condition on a

general functor S. for L* to be a bijection is that S be compati-
ble with pushouts of the form X+X (see [1]). In case S is a

reflector, as we do assume, the work above allows us to obtain
the following

THEOREM 2.2. L*= (tX*)-1.

In other words L* is a bijection. which may be restated bN
saying that the reflector S "respects the cylinder f unctor up to

homotopy".
Let us observe that the phrase "S respects the cylinder

functor" above is not correct since A has not its own cylinder
functor as well. To be precise we put the following definitions.

DEFINITION 2.3. a) A full subcategor) A of C is called a homo-

topj subcategory (h-subcategory. for short) whenever I(A) EA.
for every A E A.

In other words, A is a h-subcategory of C when the res-
triction of I to A is a cylinder functor for A itself.

Let us denote by HoA the category obtained by foi-malin
inverting the weak equivalences of C that are contained in A.
HoA is the full subcategory of Ho C having the same objects as

A.
b) Let now I and J be cylinder functors for C and .A., respec-

tively . let again S: C -A be left adjoint to T : A- C and assume
that T respects the cylinder functors.

We saN that the functor S: C -A respects homotopies
whenever the correspondence

is onto. for ever) A E A. Then S respects homotopies iff tx is a

section. as one easih verifies.

PROPOSITION 2.4. Let A be an epireflective h-subcategory of C
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with reflector S : C -A which respects homotopies. If I preserves

epimorphisms then S respects the cv linder- functor and Ho S :

HOA-HO C is a reflector.

We note that. since the epimorphisms in C = TOP are the
onto continuous maps, then, whenever S is the epireflector of a
full subcategory A in TOP. which contains the unit interval I.
the following statements are equivalent (cf. 1101 Th. 1.2):

i) S(XxI) = S(X) I. f or every space X.

ii) S respects homotopies.
iii) S takes homotopic maps to homotopic maps.

HoS: HoTOP--4HoA is a reflector whenever these hold.

It is shown in [10] that ever% quotient reflective subcate-

gor) A of TOP such that I E A satisfies the conditions above.
This can be obtained from the following more general result.

using Theorem 3.5 of Schwarz 191.

PROPOSITION 2.5. Let C be a rmonotopol ogical category with a

cilindei- functor - I H’ here I is an exponential object of C: Let
A be a quotient reflective subcategory of C such that I E A. Then
the reflector S respects the cylinder functor and HoS is still a

refl ector.

3. THE HOMOTOPY STRUCTURE.

Let us recall from [4.5] that the Cylinder functor I indu-
ces on C a semicubical homotopy si-stern QI:C.C-K. For every
X,Y E C. QI(X.Y) is the semicubical complex having C(I"(X). Y) as
the set of n-cubes. where I0(X)= X and. for everB n&#x3E;1.
In(X) = I(In-1(X)) . Face and degeneracy operators are defined.

i-espectiveln. by the following:

Ein= C(Ii-1(ea(In-1(X).1y) and §jn = C(Ij-1(o-(In+1-j(X).).1y)
s =0.1. The edge of a (p E C(I"X.Y) is defined to be

For every pair X. Y E C. we can construct the fundamental

gr-oupoid rI,(X.Y). Its objects are the O-cubes of QI (X.Y) . while
a morphism f - g in nj(X.Y) is an equivalence class [a] of
1-cubes with Da = (f.g), with respect to the fol lowing relation :
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if a.B E C(IX.Y). then a E whenever a p E (I2X.Y) exists, in

such a way that

The fundaniental groupoid mav also be considered as a functors

flj : C . C -Grd .

If f: X-Y is a homotopy equivalence in C, there are indu-
ced natural transformations

which are natural equivalences of groupoids. for every Z C.

Moreover. any functor F: C - A which respects the cylin-
der functors (I for C and J for A) induces a natural transfor-
mation ITI(X.Y)-ITj(F(X).F(Y)). In fact. F preserves homotopies.
hence it takes ??-cubes to n-cubes. and also it preserves the

equivalence of 1-cubes. as one verifies with a short calculation.

THEOREM 3.1. Let S : C - A be left adjoint to T : A- C amd assu-
nie that the) respect the cv limder- functors. Then

(i) S preserves weak equivalences and cofibratiol1s:
(ii) Fol- evei-s A t A and X t C. there is an isomorphism of

g ro LI po ids IT I (X.T (A)) nj(S(X).A).
PROOF. For (i) we have onij to 5hoBB that S preserves cofibra-
tions. Let i: Y-X be a cofibration in C and consider a morphisms
b: S(X)-B and a homotopy 4;:JS(Y)--?B in A. such that ydo(S(Y))
= b-S(i). Consider the commutative diagram.

There evists a homotopy (1): I(X)-T(B) in C. such that

The n is a homotopy in A such that
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Moreover

It follows that S(i):S(Y)- S(X) is a cofibration in A. Part (ii)
follows from the discussion above and Proposition 2.3.

4. A GENERAliZATION.

We wish to consider now the case of proreflectors. Such
functors arise in Shape Theory [7] and are a weakened form of
reflectors. Here one deals with the procategory ProC of the gi-
ven category C. whose objects are the inverse systems of ob-

jects of C of the form X = (XL .PAÀ .A). The cylinder functor I

on C extends naturally to Pro C bv taking IX = (IXL.IpLL.A).
Let A be a full subcategory of C. then a proreflector P:

C-ProA is a functor which assigns to every X C an inverse

system X E ProA and a morphism X-X in Pro C which is initial
with respect to every other morphism X-Y . Y E ProA.

We refer to [7.8.11] for the definition of a procategory
and related concepts.

Let us recall [11] that A is proreflective in C bv means of
P iff ProA is reflective in ProC by means of the functor P* gi-
ven bN the composition of the extension of P to the procatego-
ries. ProP: Pro C - Pro ProA. with the inverse limit functor

invlim : Pro Pro A - ProA.

Recently Porter 181 has shown that the right homotopy
category HoProC of ProC is that obtained b% formally inverting
the level homotopy equivalences in ProC. A level morphism in

ProC is a morphism between inverse systems indeed over the
same directed set, which is actuall) a natural transformation.

THEOREM 4.1. Let A be a prore.flective h-subcategort of C.
tvith proreflector P : C - Pro A. If P respects the Cylinder func-
tors. then Ho ProA is reflective in HoProC b) means of HoP.

PROOF. We have onin to show that P* takes level homotopy
equivalences in ProC to level holnotopy equivalences in Pro A.
Let f: X-Y be a level homotopy equivalence in ProC: then
ProP(f) is an inverse system of homotopy equivalences in ProA.

Finall) P (f) is a level homotopy equivalence in ProA. To see
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this one can look at the evplicit description of the functor P.
as given in ([11]. 2.6) and making use of the reindexing theo-

rem ([7]. 3.3. Ch. 1),
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