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A NOTE ON GIRARD QUANTALES
by Kimmo I. ROSENTHAL*
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voL. XXXI-1 (1990)

ReSUMa. Les quantales de Girard s’introduisent dans la

s6mantique pour la logique lin6aire au sens introduit par
J. Y. Girard. Les liens entre quantales et logique lin6aire
(non commutative) ont ete precises par D. Yetter. Cette
note établit quelques r6sultats sur les quantales de Gi-

rard, en particulier en caract6risant le type Ie plus general
de quantale de Girard et en clarifiant leur relation avec

les algébres de Boole compl6tes.

INTRODUCTION.

In [4], J. Y. Girard introduced a new system of logic called
"linear logic", which it is hoped will provide a suitable logical
underpinning for the study of parallelism in computer science.

This logic involves a linear negation operator ( )1, wich gives
the logic a Boolean (classical) flavor. In developing what he
calls the phase semantics for linear logic, Girard considers
certain partially ordered monoids, which turn out to be quanta-
les. Quantales were introduced by Mulvey [7] as a possible
approach to a constructive foundation for quantum meachanics.
(It should be pointed out that similar algebraic structures ap-
pear much earlier in the literature.) Quantales have been exten-
sively studied by Niefield and Rosenthal in 161. Recently, Yetter
[8] has clarified the use of quantales in studying linear logic
and he has introduced the term Girard quantale.

In this note we shall make a few observations about
Girard quantales and tie up some loose ends, as well as clarify
some examples. In particular, we shall point out that Girard’s

phase quantales are in fact the most general type of Girard

quantale, in that every Girard quantale is isomorphic to a phase
quantale. We also characterize when the phase quantale con-

struction yields a complete Boolean algebra and indicate how

every (unital) quantale can be embedded in a Girard quantale.
Finally, we point out how the minimal completion of a Boolean

algebra and the Dedekind completion of a partially ordered

group are related to Girard quantales.
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GIRARD QUANTALES.
We begin with some definitions.

DEFUNITION 1. A quantale is d complete ladite Q together with 
an associative binary operation &#x26; satisfying

a&#x26;(sup a ba) = sup«(a &#x26; ba) and (sup a b a)&#x26;a = sup a (ba &#x26;a) 
for all a E Q, {ba } C Q.

Note that since a &#x26; - and -&#x26;a are sup-preserving, they have

right adjoints, denoted --o - an --0 - respectively.

Examples of quantales include frames (and hence complete
Boolean algebras) and various ideal lattices of rings and

C*-algebras. For more details and references, the reader is re-

f erred to [6].

DEFINITION 2. If Q, Q’ are quantales, a function f: Q-Q’ is a

homomorphism iff it preserves sups and &#x26;.

We do not require that a homomorphism preserve the top
element T (as was done in C6J). A surjective homomorphism will

automatically preserve top elements. The category of quantales
and homomorphisms will be denoted Quant.

A quantale Q is called unital iff there is an element 1
such that 1 &#x26;a - a - a &#x26; 1 for all a EQ. We shall denote the cate-
gory of unital quantales and homomorphisms by UnQuant.

The following example is central to the discussion of Gi-
rard quantales. Let M be a monoid, written multiplicatively, and
let P(M) denote the power set of M. P(M) is a quantale with

Unions play the role of sups and

and

If f: M-Q is a monoid homomorphism with Q a quantale, then

f : PM-&#x3E; Q defined by f(A)=snp a c A f(a) is a quantale homomor-
phism. If Mon denotes the category of monoids and monoid ho-
momorphisms, this construction describes the left adjoint to the
forgetful functor Unouant - Mon.

We need a few more definitions to get started.
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DEFINITION 3. Let Q be a quantale. d E Q is called a dualizing
element iff

Note that c is cyclic is equivalent to a 1&#x26;.. &#x26; an  c iff

a6(1) &#x26; . . . &#x26; 6(n)  c for all cyclic permutations o of {1,2,... ,n}.

We adopt the following terminology from Yetter 181.

DEFINITION 4. A quantale Q is called a Girard quantale iff it

has a cyclic dualizing element d.

We shall denote 0 d = a --0 d by a -fl d or more

frequently a 1. Note that a = all and a  b1 if f b  a 1; ( ) 1 is what
Girard calls "linear negation" in his linear logic 141. Thus, a

Girard quantale has a "Boolean" aspect to it and a fundamental

example of a Girard quantale is a complete Boolean algebra.

PROPOSITION 1. Let Q be a Girard quantale with cy.clic duali-

zing element d. Let a. b E Q. Then:

PROOF. For (1), if c E Q,

c  (a&#x26; b1)1 iff a&#x26; b1  c- iff c&#x26;a&#x26; b1  d iff c&#x26;a s (b1)1 .

By uniqueness of adjoints, this proves that

(2) is proved sim ilarly, and then (3) and (4) follow from (1) and
(2) respectively. 

COROLLARY. A Giiard quantale is unital with unit d 1.

PROOF. If a E Q, by (3) above

d’&#x26;a = a is proved similarly using (4). 

MAIN EXAMPLE. In considering the semantics of his linear logic
[4], Girard considers the following type of quantale. Let M be a
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commutative monoid and let D c M . If A c M, let

Girard calls the elements of M "phases" and A e P(M) is called a
"fact" iff A = Al l . It follows that { A E P( M) L A = A11} is a Girard

quantale with dualizing element D. If A, are facts, A&#x26;DB =
(A&#x26;B)11 and if (Ai) is a collection of facts, sup;A; _ (U;A; )11.

To make the situation non-commutative, we could allow
M to be non-commutative and require that D is cyclic in P(M).
One can easily see that this amounts to ab E D iff ba E D for all

a , b E M . We shall denote the quantale thus constructed by
P(M)D and shall call it a phase quantale.

Phase quantales are constructed according to a general
procedure for producing Girard quantales as quotients in Quant,
as observed by Yetter [8]. We shall add to this observation by
pointing out that in fact these are the only possible Girard

quotients of a given quantale. First we need to recall a defini-
tion.

DEFINn7ON 5. Let Q be a quantale. A closure operator j
is a quantic nucleus iff j(a ) &#x26; j( b)  j(a&#x26; b) for all a, b E Q.

wi th 
If j is a quantic nucleus, Qj ={a E Q l j(a) = a} is a quantale

with

a &#x26; j b = j(a&#x26; b) and SUPj a j = j(sup a j) for a , b E Qj, tai) c Qj.
The Qj are precisely the quotients in Quant and were extensively
studied in [6]. There, it is also pointed out (Prop. 2.6) that:

(*) if Q is a unital quantale, j is a quantic nucleus iff

for all a, b E Q.

THEOREM 1. Let Q be a uni tal quantale and 1 e t j be a quantic
nucleus on Q . Then, Qj is a Girard quantale iff j is of the
form (- --o d)2013o d for a c.yclic element d of Q.
PROOF.= This appears in [8] and is straightforward.

- Suppose Qj is a Girard quantale with cyclic dualizing
element d = j( d) . By (*), since

it follows that

thus d is in fact cyclic in Q. Also, by (*), if a E Q,
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The special case of this result, where "unital quantale" is

replaced by "frame" and "Girard quantale" is replaced by "com-
plete Boolean algebra" is well known. (See [5], Exer. 11.2.4 (ii).)

Every phase quantale P(M)D is obtained by this construc-
tion by considering the quantic nucleus (--oD) ---o D on P(M).
In 181, one is left with the impression that due to Theorem 1,
there might be more general Girard quantales than phase quan-
tales. Howevei-, this is not the case.

THEOREM 2. If Q is a Girard quantale, then it is isomorphic to
a phase quantale.
PROOF. Let d be a cyclic dualizing element of Q. Let us view Q
as a monoid (forgetting its order structure), and let

We shall show that Q =P(Q)D. Let A C Q and let a = supA.

q&#x26; c 5. d iff q 5. cl for all c E A. It follows that q E A1 iff q 5. a J..
Thus A1 = (a 1) J. So, A11=(all)j = a4,. Hence, A is a fact iff
A = a 1 , where a = sup A.
Define e : Q-P(Q)D by e(a) = a j. e is clearly bi jective and preser-
ves sups. (Note e(T) = Q.)

Let us consider some examples. As mentioned before,
complete Boolean algebras are examples of Girard quantales. In
this case d = 0 (the bottom element), however that is not suffi-
cient to guarantee that one has a Boolean algebra. A lot de-

pends on the choice of D c M in the phase quantale construc-
tion.

It is easy to see that D1 = D---o D is a submonoid of M.
D will be the bottom element of P(M)D iff D1 = M. The follo-

wing proposition can be easily established.

PROPOSITION 2. D is the bottom element of P(M)D iff D is an
ideal of M . In this case. every fact A is also an ideal of M .

Thus, in this situation we are considering quantales of
ideals of the monoid M. To determine when such a quantale is
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in fact a complete Boolean algebra, we need to recall a defin-
tion from [6].

DBFINITION 6. If Q is a quantale a Q its semiprime iff b&#x26;b a 

implies b s a for all b E Q.

If every element of Q is two-sided (that is

then the semiprime elements form the largest quotient of Q
which is a frame. This clearly holds if M = D1.

THEOREM 3. If Q is a unital quantale in which e vers element is
two-sided and if d is a ci-clic element, then Qj is a frame where

j = (- --0 d ) -o d, iff d is semiprime.
PROOF. This is the content of Theorem 4.3 in [6] adapted to this
particular context. 

COROLLARY 3.1. If M is a monoid and D C M then P(M) D is a

complete Boolean algebra iff D is a semiprime ideal of M (iff D
is semiprime in P(M)).

PROOF. By Proposition 2, in this context we have that P(M)D =
Idl(M)D where Idl(M) is the subquantale of P(M) consisting of
the ideals of M. Thus we can apply Proposition 2 and Theorem
3. A frame is a Girard quantale iff it is a complete Boolean al-

gebra.

REMARKS. 1. If M =Z under multiplication, we obtain the result
that given n E Z, the divisors of n form a complete Boolean al-

gebra iff nZ is a radical ideal of Z, i.e., n has no repeated pri-
me factors.

2. If Q is a Girard quantale with dualizing element 0, then

by Corollary 3.1, Q is a complete Boolean algebra iff Q has no
nilpotents, i.e., a&#x26;a t 0 for a # 0.

3. The Boolean algebra one obtains from a semiprime ideal

may be trivial. If D is a prime ideal of M

then P(M)D = {D, M}.

Another type of interesting Girard quantale is one in

which the dualizing object d is self-dual. Thus, d1 = d and hence
d is also the unit for &#x26;. It is not hard to see that D is self-
dual in P(M)D iff D is a submonoid of M. We shall see that
such quantales arise in completing partially ordered abelian
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groups.
We have mentioned before that one should view Girard

quantales as the "Boolean" quantales. It is a well known theo-
rem that every frame can be embedded in a complete Boolean

algebra [5]. The analogous result for quantales and Girard quan-
tales is easier to prove and follows a general construction of
Chu’s for *-autonomous categories 121. We have made the ne-

cessary adjustments for the non-commutative case.

THEOREM 4. Let Q be a unital quantale. Then, there exists a

Girard quantale Q and an embedding : Q- Q of quantales.
PROOF. Let Q=QxQoP. Thus, elements of Q are (a,a’) of ele-
ments of Q and the ordering is

Let A = (a,a’) , B = (b, b’). Define

and

Let

iff

iff

iff

iff

One similarly checks that A&#x26;13 C iff B A -r-0 C. Q is clearly
complete since Q is. Let D = (T,1) . One can check that if we have
A = (a .a’) , then

Thus, D is a cyclic dualizing element.
Define E:Q-&#x3E;Q by s (a) = (a,T).

s is one-to-one and clearly preserves sups and thus is an em-

bedding of quantales.. ·

Note that if L is a frame, then the dualizing element of L
is self-dual since T = 1, and therefore D = (1,1). Then, E(L)= N D L .
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Also, we get that every frame can be obtained from a Girard

quantale by a coclosure operator satisfying the strong Girard
axiom for his "of course" modal operator 141. The idempotent
elements of L f UI1U d frame containing E(L) and are characteri-
zed as pairs (a, b) with a - b = b (where - is implication in L).

Finally, we wish to point out the following construction.
If we remove the completeness assumption from Definition 1 for
a quantale, we get what might be called a *-autonomous poset.
These are the partially ordered examples of *-autonomous cate-
gories, in the terminology of Barr [1]. Two primary examples of
*-autonomous posets are any Boolean algebra B and any partial-
ly ordered group G. Note that in G,

and

Let Q be a *-autonomous poset with cyclic dualizing ele-
ment d. Consider D= d4 and form the Girard quantale P(Q) D.
As in Theorem 2, one can easily establish that a 4 is a fact for
all l a E Q and thus we have an embedding e: Q-P(Q)D given by
e(a) = at. If A C Q, let L(A) and U(A) denote the set of all
lower bounds of A and the set of all upper bounds of A, res-

pectively.

PROPOSITION 3. Let Q be a *-autonomous poset with c.fclic
dualizing element d. Let D = d4,. Then. A C Q belongs to P(Q)D
(that is A = All) iff A= L(U(A)).

thus Thus

Hence,

It is not hard to show that if B is a Boolean algebra, this
construction yields the minimal completion of B (in the sense of
[5]), also known as the Macneille completion. If G is a partially
ordered group, then our construction gives rise to the Dedekind

completion of G 131.
Thus, there are many interesting examples of Girard quan-

tales arising in mathematics and some further study of them as
well as their connection with linear logic may prove useful.
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