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THE RELATION BETWEEN HOMOTOPY LIMITS AND
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by Hanns THIEMANN
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RÉSUMÉ. On montre qu’il existe une equivalence d’homo-
topie faible naturelle entre le complexe singulier de forme
S(Y) et holim Y, ou Y est une ANR approximation d’un

espace compact metrisable Y (Th6or6me 1). La preuve uti-

lise les propri6t6s universelles du complexe singulier de

forme et de la limite homotopique.

0. INTRODUCTION.

Let Com be the category of compact metrizable spaces,
then for any Y E Com and ANR approximation Y of Y (cf. Defini-
tion 1.1) we have the homotopy limit holim Y [3,4] and the geo-
metric realization of the shape singular complex |S(Y) | 111. The

purpose of this paper is to provide proofs of the following
theorems:

THBORBM 1. There exists a weak homotopj- equivalence

which is natural in the following sense: Let If] E Comh(Y’Z) be

the homotopj- class of a continuous mapping fE Com(Y,Z), then

there e.,cists an induced

(cf . §2.a) suclz that

holds.

THBORBM 2. A compact metric space Y is of’ the same shape as
a CW space iff qy is a homotopi, equivalence.
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The proofs are based entirely on universal properties of

the functors holim and S(.) rather than on any explicit con-

structions. However in order to verify one direction of Theorem
2 we need a strengthened version of (6) (the necessary link bet-

ween shape theory and the homotopy limit) the proof of which
is deferrred to an Appendix.

In §1 we collect some results on strong shape theory; §2
is devoted to the homotopy limit and the shape singular com-
plex, while §3 contains the proofs of Theorems 1 and 2.

REMARK 1. The author of [7] introduces the complex 0160c(Y)
which turns out to be homotopy equivalent to S(Y). As a con-

sequence from Theorem 1, Problem 2’ in [7] has an affirmative
answer.

REMARK 2. Apart from Theorem 2 there exist various other re-

sults concerning the stability of compacta (see e.g. [5]).

1. STRONG SHAPE THEORY.

Strong shape (for arbitrary, resp. compact metric spaces)
was introduced independently and by different methods by F.W.
Bauer [1], and D.A. Edwards and H.M. Hastings 161. In the

meantime it has turned out that for compact metric spaces, on

the homotopy level, both approaches to strong shape theory are
equivalent, i.e., we have a natural isomorphism

([8], Remark 3 .1, 3 . 3 ) where Toph and ssh denote the strong
shape categories of [1] and [6].

We note here that Toph ( X, Y ) consists of homotopy clas-
ses of strong shape morphisms !’E Top ( X, Y ) (which are defined
to be 2-functors f: Py-Px, Py and Px being 2-categories of
ANR spaces over X resp. Y (cf. [1,2]).

We need:

1.1. DEFINITION. Let Y be a compact metric space, then an ANR
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approximation of Y is a tower

of ANR subspaces of some space Q D Y satisfying

Observe that for every compactum an ANR approximation
exists (e.g. [1], p. 31, Example 1).

1.2. PROPOSITION, Suppose we have Y E Com and an ANR ap-

proximation Y of Y, then we obtain a bijection (CW = category
of CW spaces):

(2) Toph ( X , Y ) = Ho-pro-Top ( c( X ) , Y ) , X E Com or X E C W,

which is natural with respect to continuous mappings in the

first variable (c ( X ) denoting the trivial pro-object associated

with X).

PROOF. a) Let X be a compact metrizable space, X an arbitrary
ANR approximation; then we have the following natural bijec-
tions :

As a result the bijection (2) follows from (1), (3) and (4).

b) If X is a CW space then (3) serves as a definition

for ssh(X,Y) (setting X = c(X)). The proof of (2) consists in an

immediate translation of the proof of ( 1 ) given in [8].

2. REMARKS ON holim AND THE SHAPE SINGULAR COMPLEX.

a) The homotopy limit.
The homotopy limit for an inverse system Y has been introduced
by A. K. Bousfield and D. M. Kan in 131 as a substitute for the

(non-existing) inverse limit in the homotopy category. More spe-
cifically we need the following natural bijection:
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i. e. , the homotopy limit

is a right adjoint to the functor

Let Y be a compact metrizable space, Y any ANR ap-

proximation of Y (Definition 1.1), then it turns out that the ho-

motopy type of holim Y does not depend on the choice of Y. Let

f E Com (Y,Z) be continuous, then we find a morphism

(only depending on the homotopy class of f) which induces a

homotopy class

The bijection 

which is natural with respect to continuous mappings is an im-

mediate consequence of (2) and (5).

b) The shape singular complex.
The strong shape category Top operates with individual strong
shape morphisms (rather than with their homotopy classes). This

turns out to be essential for establishing a shape singular com-
plex S(Y), Y E Top ; in complete analogy to the classical case an

n-simplex o-n E S (Y)n is a shape morphism o-n E Top(An,Y) . Equip-
ped with the ordinary boundary and degeneracy operators

S : Top - SE ( = category of Kan complexes)

becomes a functor and there is a natural transformation

Let P be a CW space, then lby induces a natural bijection

While the injectivity of Z-,)y. follows by standard arguments of

ordinary homotopy theory, the surjectivity is the subject of [1],
Theorem 3.6.
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3. PROOFS.

Proof of Theorem 1.

Suppose X is either a CW space or compact metric, then (6)

ensures the existence of a mapping

We observe that:

1. 1] is natural with respect to continuous maps
and 2. according to (7) n is a bijection whenever X E CW.
So we are allowed to choose

rendering the following diagram commutative

a) qy is a weak homotopy equivalence. Since because of
(9) qy induces the bijection 77P, Y (P E CW) the result follows
from [9], Chapter IV, 7.17.

b) qy is natural. Let f E Com(Y,Z) be continuous, then we
show: 

We have 

and

The naturality of cp implies

Because (5. is natural we have
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rp|0160(Y)|,holimZ (holim f.[qy]) = rp|S(Y)|,holimZ ([qZ][|S(f)|]).
The assertion follows now since rp|S( )|,holimZ is injective.

Proof of Theorem 2.

a) Suppose that qy is a homotopy equivalence, then (!5y)*
in (9) turns out to be a bijection for X E Com or X E CW, which
implies that wy is a shape equivalence.

b) Assume that Y is of the same shape as a CW space P,
then wY : ( S (Y ) ( -&#x3E; Y is a shape equivalence. On the other hand (6’)
in the Appendix yields a commutative diagram (9) but now also
for X E Top. So (qy)* is a bijection (for all admissible X, in

particular for X = holim Y) and the assertion follows from the
Yoneda Lemma.

4. APPENDIX.

The following Proposition 4.1 asserts that (6) in §2 is al-

so valid for any X E Top. The proof does not depend on 14,6,81.
Proposition 4.1 is needed in the proof of Theorem 2.

PROPOSITION 4.1. Let Y E Com be a space, Y any ANR approvi-
mation of Y, then for all spaces X E Top one has a natural bi-

jection

The proof uses the following notations:

1. To each tower Y there exists a tower

with Hurewicz-fibrations pn as bonding maps. Moreover there

are SDR-mappings an (i.e., one has a mapping rn : Y n -&#x3E; Yn with

rnan = 1 and a homotopy anrn = 1 rel an) fitting into the com-
mutative diagram (10) hereafter (cf. [6], §4.3; [4], 2.5).

2. The objects of the category To are defined to be towers

A morphisms
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is defined to be a sequence of mappings fn: Xn -&#x3E; Yn and homo-
topies rpn : unfn+1 N fnçn (cf. 121). The related homotopy cate-

gory TopNh is established by using mappings

as homotopies.

Proof of Proposition 4.1.

Step 1. We have a natural bijection

PROOF. It is well-known [1,2] that every f E Top(X ,Y), Y E Com,
is induced up to homotopy by a functor T: P’Y -&#x3E; Px ( Py being in

the terminology of [I] a st-category). This fact reveals itself

simply as a reformulation of (11).

Step 2. We have a natural bijection

PROOF. We associate with {an:Yn -&#x3E; Yn}E pro-Top(Y,y) (cf. (10) )
a morphism

(1= stationary homotopy) in TopN(Y,Y) and conclude:

LEMMA 4.2. [a] e TopNh (Y, Y ) is an isomorphism.
PROOF. Since an is an SDP-mapping, we find a homotopy wn:

anrn = 1 rel an (for suitable rn, satisfying rnan= 1). It turns out

that r : = {(rn,rnpnwn+1)} becomes a homotopy inverse of a :

The relation ra = 1 is immediate. The verification of ar = 1 in

TopN consists in the detection of mappings Hn: Y n+ 1X Ix I -&#x3E; Yn
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satisfying

on the boundary. This mapping Bn : Y n+1 x bd (I x I ) -&#x3E; Y n is homo-

topic to B’n: Y n + 1 x bd (I x I ) -&#x3E; Y n defined by

which obviously admits an extension over Yn+ 1 x I x I, furnishing
us with the required Hn- The homotopy H: 5 r = 1 is nothing
else than H - {(wn, Hn) ) .

The assertion (12) follows because the required bijection is

induced by a.

Step 3. We have a natural bijection

PROOF. According to [61, 4.2.10 we have holim Y = lim Y (lim=
inverse limit). Suppose that

then we define an assignment

as follows: We set go - fo Since p 0 is a Hurewicz fibration we
can lift the homotopy cp o : pof * f o - go thus obtaining a I&#x3E; 0 :
XXI - Y and set g = I&#x3E;0(. ,1 ) . The construction of g is now

performed by induction on n. The assignment

respects (by virtually the same argument) homotopies so that
we come to an assignment

There exists an immediate transformation

inducing a

The proof of k 03BC = 1, 03BC k = 1 is now purely technical.

As a result Proposition 4.1 follows from (11)-(13).
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