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FINITARY FIBRATIONS

by Grzegorz JARZEMBSKI

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

CATÉGORIQUES

voz. XXX-2 (1989)

RÉSUMÉ. Dans cet article, on caractérise les categories
concr6tes repr6sentables comme categories de mod6les de

theories universelles finitaires, purement relationnelles,
sans egalite. Le principal theoreme assure que 1’existence

d’une representation du premier ordre de cette sorte 6qui-
vaut a 1’existence de topologies convenables sur les fibres

d’une certaine cat6gorie concrete.

The classical Beck-Linton Theorem ([5] p. 142) characteri-

zing concrete categories representable by varieties of total alge-
bras became the pattern for categorists investigating connections
between classes of concrete categories and categories of models
of first order theories of prescribed kinds. A general discussion
summarizing results on this area has been presented in [8].

The present paper continues these investigations. We cha-
racterize here concrete categories concretely isomorphic to cate-
gories of models of universal (1) -, L_J£)- and

Lww(Z)-theories without equality [81, where 7- is a finitary rela-
tional signature. A concept of fibration is introduced in order to

get a convenient categorical framework for our considerations.
An important aspect of the investigated problem is that

the considered categories are not assumed to be concretely
complete. Thus the desired characterizations need completely
new methods of analysis of the considered categories. The most
important observation seems to be that the existence of an

-representation is equivalent to the existence of suitable

topologizations of fibres of a given fibration. We hope that the
results presented in this paper will be useful for more general
investigations of representation problems in the inexplorable
area of non-concretely complete concrete categories.

We would like to thank J. Rosicky for the generosity with
which he shared with us results contained in his preprint [9].

One of the examples of this paper, cited here in the last sec-
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tion. inspired us to consider the problem solved here. We also

wish to thank J. Adamek and J. Rosicky for an interesting dis-

cussion which helped us to improve the final version of the

paper.

1. PRELIMINARIES.

For all unexplained concepts of category theory we refer
the reader to C3J. By a concrete category we will understand a

category C equipped with a forgetful functor U:C-Set into the

category of sets such that the following two conditions are sa-
tisfied :

(1) U is transportable, that is if A E C, X is a set and

f:U(A)-X is a bijection, then there is B E C and an isomor-

phism g: A-B in C such that U(B) = X and U(g) = f.

(2) U is amnestic, that is if A, B E C and f: A-B is an

isomorphism such that U(A) = U(B) and U(f) = idU(A), then A = B
and f = idA .

In what follows, we will often identify a morphism g:
A-B with its underlying function U(g) . We say that the map-
ping g: U(A) -U(B) is a morphism from A to B.

A concrete category (C,U) will be often denoted briefly
by C. Two concrete categories C,D are concretely isomorphic if
there exists an isomorphism F: C-&#x3E;D which commutes with the

corresponding underlying functors.
Each pair ( f: X -&#x3E; U(A), A) is called a U-morphism. Each

g : B -&#x3E; A in C such that U(g) = f is said to be a lift of (f, A). A
C-morphism g: A -&#x3E; B is called initial if a function h: U(D) -&#x3E; U(B)
is a C-morphism from D to B whenever U(g) o h is a morphism
from D to A.

DEFINITION 1.1. A concrete category (C,U) is called a fibration
iff the following holds:

(i) U is fibre small, i.e., for each set X the collection

is a set. 

(ii) Each U-morphism has an initial lift.

Fibrations in the sense defined above form a subclass of
"fibrations with split cleavages" in the sense of Gray ([2] p. 32).
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On the other hand, the introduced concept generalizes the Wy-
ler’s notion of a topological category [101. Namely, a given
fibration (C,U) is a topological category iff it is concretely
complete.

BASIC EXAMPLES. Let | E N) be an arbitrary but fixed fi-

nitary relational signature (we do not exclude 0-ary relation

symbols). By MOD £ we shall denote the category of all 7--mo-

dels. Empty models are admitted. Because of the presence of

0-ary relation symbols, there may be more than one empty (i.e.,
with the empty carrier) £-model.

MODE considered together with the obvious underlying
functor Uy: MODE --Set is a topological category, hence a

fibration. A 1-homomorphism

is a UZ-initial morphism if for every relation symbol r E Ln E I
and a E An, then 5 E E rA C An provided that h a E rB C Bn; i.e., iff

h is a strong L-homomorphism in the sense of [1].

A class WC MODE is said to be initially closed iff for
each UZ-initial homomorphism h: A -&#x3E; B, A E W provided that

B E W.

In what follows, whenever we will discuss classes of re-

lational systems of a given signature L, we will identify them
with the corresponding full subcategories of MOD£.

Clearly, for every initially closed class W C MOD L, the

concrete category (W, U=UZ|W) is a fibration.

DBFINmON 1.2. A fibration (C,U) is said to be weaklj- finitary
iff it is concretely isomorphic to some initially closed full sub-

category of finitary relational systems.

2. CLASSIFICATION OF RTEAKLY FINITARY FIBRATIONS.

Initially closed classes of relational systems (and hence

weakly finitary fibrations, too) have their natural classification
related to their logical description. As before, let Z = (Zn | n E N)
be an arbitrary but fixed finitary relational signature. Let Var be

a proper class of variables.

Following [81, we shall denote by Loo oo(Z) the language
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such that atomic Loo oo(Z)-formulas are strings of the forms:
(i) x = y, where x,y E Var ,
(it) r(x) , with r E Zn and x = (x1, x2,...., xn) E Varn

and with quantifier-free formulas defined as follows:
(iii) An atomic formula is a quantifier-free formula,
(iv) If ç, ç are quantifier-free formulas, then ç =&#x3E; ç, ~ç are

quantifier-free formulas,
(v) If 0 is a non-empty set of quantifier-free formulas,

then ^I&#x3E; and VI&#x3E; are quantifier-free formulas.

We restrict ourselves to quantifier-free formulas only, but
this restricted version of Loo oo(Z) is rich enough for our purpo-
ses. Moreover, the formulas we shall use will not contain non-
trivial equalities. So, in the sequel, we shall simply write "for-

mula" instead of "quantifier-free formula without non-trivial

equalities".

Let A E MOD Z. The notion of satisfaction of a given for-

mula cp with variables in a set V C Var at a valuation

h : V-&#x3E;UZ(A) is defined as usual. We say that A satisf ies 9 if A
satisfies at an arbitrary valuation of variables occurring in p.

Finally, for a given class 0 of formulas, by MOD I&#x3E; we denote

the class of all 1-models satisfying each formula cp in I&#x3E;.

Notice that in the terminology of [8], MOD I&#x3E; is precisely
the class of models of the universal Loo oo(Z)-theory

(V denotes the universal quantifier).

LBMMA 2.1. For each class I&#x3E; of Loo oo(Z)-formulas, MODI&#x3E; is an

initially closed class. Conversely, for each initially closed class
W C MOD 7- there eJ’t(ists a class I&#x3E; of Loo oo(Z)-formulas such that

W = MOD I&#x3E; .

PROOF. Recall that all formulas we consider are without non-

trivial equalities. We omit the routine verification of the first

assertion. We prove the second. If W is empty, then

Assume that W is a non-empty initially closed class. For each

cardinal number a we choose a set Xa C Var such that

card Xa=a. Next for each 7--model with the carrier Xa,
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and such that X E W let

and finally let

We claim that

Let A E W. Let a an arbitrary but fixed cardinal number

and let h: Xa -&#x3E;UZ (A) . Let dom h be the domain of the initial

lift of ( h, A) . W is initially closed, hence dom h E W and conse-
quently,

Clearly, A satisfies the formula Dg dam 11 under the valuation h.

This proves

If B E MOD{ça}, then for every h : X -&#x3E; UZ(B) the domain of the

initial lift of (h,B) is in W. It easily implies that B E W . ·

The language L__(£) contains among other sublanguages
the language Loow(Z) and the usual first language Lww(Z). Na-
mely, a formula cp is an -formula if the set of variables

occurring in 9 is finite. o is an -formula if it does not

contain neither infinite conjunctions nor infinite disjunctions.
Recall the following well known facts:

LEMMA 2.1. Let W c MOD Z be an arbitrar.y initially closed class.
(i) W = M 0 D (D, where each cp in 0 is an Loow(Z)-formula if

W has a finite character 141, that is, together with all finite

submodels of a given Z-model X, it must contain X.

(ii) W = MOD I&#x3E;, where each cp in O is an Lww (Z)-formula
(that is W is a uni versa ll)’ aviomatizable class in the usual sen-

se) if W is closed under formation of ultraproducts.

This leads to the following classification of weakly finita-

ry fibrations:

DEFINITION 2.3. A weakly finitary fibration (C,U) is called fi-

nitary (strongly finitary) iff it is concretely isomorphic to an
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initially closed class W of finitary relational systems such that

W has finite character (W is universally axiomatizable).

3. WEAKLY FINITARY AND FINITARY FIBRATIONS.

In this section we characterize weakly finitary and finitary
fibrations in categorical terms.

For each fibration (C,U) we shall denote by In C the sub-
category of U-initial morphisms while

U’ = UIInC: InC -&#x3E; Set.

By a direct system in C we mean every functor D: (1,5) -C
where (I,) is a directed poset considered to be a category in

the usual way. By an initial subobject of a given C-object A
with the carrier Y C U (A) we mean the C-object B such that B is

the domain of the initial lift of the identity embedding (m:

Y - U (A), A).
For a given set X we shall denote by Fin X the direct

system of all finite subsets of X. The direct system in InC

consisting of all initial finite subobjects of a given C-object A
is denoted by

Notice that initial subobjects in MOD£ are simply submodels of
a given model.

Recall that U:C-Set is said to reflect direct colimits

provided that whenever D: ( I, ) -&#x3E; C is a direct system and

is a cocone over D such that (UA, U wi) is a colimit of UD in

Set, then (A, (wi)) is a colimit of D.

THEOREM 3.1. The following two conditions are equivalent for
any fibration (C,LI):

(i) C is weakly finitar.y;
(ii) U’: In C -4Set reflects direct colimits and the embedding

In C -&#x3E; C preserves them.

PROOF. Obviously, (MOD Z, UZ) satisfies (ii) for every finitary
relational signature Z. One can easily show that (ii) is also sa-

tisfied for each initially closed class W C MOD L. This proves
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(i) =&#x3E; (ii) .
(ii) =&#x3E; ( i ) : Let n = { 0,1, ... , n-1} for each natural number n.

For a given fibration C satisfying (ii) we consider the finitary si-

gnature

where, for each n E N,

and

Let R: C -&#x3E; MOD Z (C) be the concrete functor such that for each

A in C,

where, for each d: n-U(A) and r D E Z(C)n ,
in

Clearly, R is well defined. Now we show that R is full. Let h:

R(A) -R(B) and let Af be a finite initial subobject of A with the
embedding m: Af -&#x3E; A. Since U is transportable, there exists an

isomorphism I:D- Af such that U(D)=n for some n E N . h is a

Z (C)-homomorphism, hence, in particular,
if mi E rD , then h m i E rD’

It means that if m i : D -&#x3E; A, then hm i : D -&#x3E; B. This proves that

hm : A f -&#x3E; B in C for an arbitrary Af E Fin U(A). By the assumption
each A in C is a colimit of the direct system

Hence h: A -&#x3E; B in C.

It remains to show that R(C) is an initially closed class.

Let h: (X, (rD)) -&#x3E; R(A) be UL(C)-initial and let B be the domain

of the initial lift of ( h, A) in C. We claim that R(B) = (X,(rD)).
Indeed, for every r D E E (C)n and d : n -&#x3E; X=U(B), we have d E rD
iff d: D-B, iff h d: D -&#x3E; A since h: B-A is U-initial. Next hd:

D -&#x3E; A iff hd E r A. Finally, we obtain hd E rt- iff d E rD becau-
se h : (X, (rD) ) -&#x3E; A is UZ(C)-initial. Thus rD = A

The functor U: C -&#x3E; Set is said to create direct colimits if

for each direct system D: (1,5) -C with a colimit

of UD in Set there exists a unique family
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such that U(A) = A, U(wi) = w; for i E I and, moreover, (A, ( wi) )
is a colimit of D in C.

THBORBM 3.2. For each fibration (C,U) the following two con-
ditions are equivalent:

(i) C is finitary :
(ii) U’: In C-Set creates direct colimits and the identity

embedding In C -&#x3E; C preserves them.

PROOF. As in the proof of the preceding theorem note at first

that (MOD Z, UZ) satisfies (ii) above for an arbitrary finitary si-

gnature E. Next note that for an initially closed class

W C MOD 7-, W has finite character iff W is closed under forma-
tion of colimits of direct systems consisting of initial homo-

morphisms only. This immediately proves (i) =&#x3E; (ii).
To show the converse, consider again the functor R:

C -&#x3E; MOD Z (C) defined in Theorem 3.1. R(C) C MC)D 7- (C) is an

initially closed class. Since U’:InC-Set creates direct coli-

mits, R(C) is closed under formation of colimits of direct sys-

tems consisting of initial homomorphisms only. Hence R(C) has

finite character. ·

4. STRONGLY FINITARY FIBRATIONS.

As we have shown in the preceding section, in order to

characterize finitary and weakly finitary fibrations, it is enough
to examine elementary properties of the corresponding under-

lying functor. Our main problem - characterization of strongly
finitary fibrations- needs more subtle methods. Namely, it needs

an analysis of ordered structures of fibres of the considered
fibration.

For the discussion we introduce the following notation.

For a given fibration (C,U) and a set X, FcX denotes the U-fi-
bre over X, i.e.,

considered as the poset such that, for A, B E F C X,

in

For each function f : X -&#x3E; Y, FcF: FeY -FX is the function assi-

gning to each A E FcY the domain of the initial lift of (f, A).
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We shall also use the concept of a Priestley space [7] : a

Priestley space is an ordered compact topological space (X, , T)
which is totoally order-disconnected, that is, given points x, y E X

with x y, there exists a T-clopen increasing set F such that

A E F and y 9 F (F C X is said to be increasing if

A morphism of Priestley spaces will mean a continuous and or-

der preserving map.

THEOREM 4.1. A finitary fibration (C,U) is strongly finitary iff
for every n E N, Fcn maJ’ be equipped with a structure of a

Priestley space in such a waj, that for each h: m-n, Fch is a

morphism of Priestle,yr spaces.

PROOF. Necessity : For an arbitrary finitary relation signature 7-

and every n E N , FMODyn is an algebraic lattice; a model with

carrier n is a compact element of FMODZn if only finitely many
of its relations are non-empty. Note also that for each function
f between finite sets, FMODZf preserves arbitrary infima and

suprema of direct sets.

Every algebraic lattice L becomes a Priestley space if it is

given the Lawson topology X(L) on L with the open subbase

consisting of the sets ’f k ( k compact in L) and LB1’ x (N E L)
[7]. Then each function between algebraic lattices h: L -&#x3E; L1 pre-

serving arbitrary infima and suprema of directed sets becomes a
continuous map from (L,X(L)) to (L1,À(Lt».

Thus for every finitary relational signature L, MODE sa-
tisfies the required condition.

Let us consider an atomic formula pCx), where

and let h: Var -&#x3E; m for some m E N, h(Xj) = aj for i = 1,2,...,n.
Consider the model

where
and

Then, clearly

is precisely the set of all models with carrier m satisfying p(N-)
at the valuation h. mp is compact, hence ’f mp is clopen in the

Lawson topology. This implies that the set
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is closed. In the same way one can show that

is closed for each relation symbol p. Consequently, for each

-formula cp of the form

the set

is a closed set. But every formula without equalities is equiva-
lent to some formula of the form above. So finally, one can

deduce that for every class W = MOD {ç k|k E K) , where every
cPk is an Lww(Z)-formula without equalities, the set

is a closed subset of the Priestley space

Hence Fwm with the induced topology is a Priestley space. This
proves necessity.

Sufficiency : Assume that a finitary fibration (C,U) satisfies the

required condition. For every n E N let C1(n) denote the family of
all clopen, increasing subsets of the Priestley space FCn = (Fcn,
Tn). Let Z=(Zn | n E N) be a finitary relational signature such

that for every n E N,

We define a concrete functor H : C -&#x3E; MOD Z by the rule

where for every F E C1 ( n ) and d : n -&#x3E; U( A) , d E rAf provided that the
domain of the initial lift of (d,A) is in F, that is, Fcd(A) E F.

We show that H is full. If h: H(A) - H(B), then h d E rB
when d E rAF, that is, Fc d(A) E F impl ies that

By the total order disconnectedness,
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In particular for every finite subobject A of U(A) with the

identity embedding m : Af-A,

But it means precisely that h m : Af -B in C, where Af is the

initial subobject of A with carrier Af . But C is finitary, hence,
by Theorem 3.2,

Thus h : A -&#x3E; B in C.

In a similar way one can show that H is an embedding,
that is for A,B E C, A = B provided that H(A) = H(B) .

Let us consider the set I&#x3E; of all Lww(Z)-formulas of the
following forms (for every n E N, x E Varn) :

for such that

for every and

for every and d : m -&#x3E; n such that

It is a routine to check that H(C) C MOD I&#x3E;. Since C is fi-

nitary, H(C) has finite character (Theorem 3.2). Hence in order
to show the opposite inclusion it is enough to prove that every
finite model from MOD I&#x3E; is in H(C). Let A = (n,(rAF)) E MOD 0.
Consider the set

for every s uch that B E F.}.

I(A) is non-empty. Otherwise,

where every G(B) E C1(n) and idn E rAG (B) By compactness,
for some

Then (0) and (4) lead us to a contradiction. Note that for every
F E Cl (n) ,
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(+) idn E rAF if f F contains some B such that B E I(A).

The right-to-lef t implication is trivial. For the converse, assume

F n I (A) = O, that is for each B E F there is E(B) E C1 (n) such that
idn E rAE(B). Then

for some

This contradicts (1) and (4). This proves (+).

Assume that I (A) has a greatest element B . Then, by (+),

because F is increasing. Now, using (4), one can show that for
each m E N, G E C1 ( m) and d: m-n,

But this means precisely that H ( B) = A.
So it remains to show that I(A) has a greatest element.

Let

and F contains some

By compactness and (3), D is non-empty. We claim that D n I (A)
is non-empty. Otherwise, for every B in D there exists D(B)
in C1(n) such that B E D (B) and idn E rAD (B). Then

By compactness, there exist B1, ... , Bk E I(A), Bk+1, ... , Bs E D and

F(B 1),..., F (Bk ) E Cl(n) such that BjEF(Bj) for i = 1,2,...,k and

idn E r A for every i = 1.2...., k. By (3), idn E rA. and, conse-

quently, idn E rA for some j,k  s . This is a contradiction.

Thus D n I (A) -| O . Now by total order disconnectedness, one can

easily show that D n I (A) is a singleton and its unique element is

the greatest element of I (A) . ·

5. REMARKS AND EXAMPLES.

1. For each fibration (C,U) the assignment

determines a contravariant functor Fc: Set°P-Pos into the ca-
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tegory of posets and order preserving functions. We call this

functor the theory of (C,U). Using this concept, one can sum-
marize the results of the present paper in the following short

form:

PROPOSITION S.1 . Let be an arbitraij, fibration. Then
(i) C is weakly finitary iff for each set X, F C X is an

initial subobject of lim(FCX-’ I Xf E Fin X) .

(ii) C is finitary’ iff for each set X,

(iii) C is stronglJ’ finitary iff it is finitary and the restric-
tion of its theory Fc to the subcategory of finite sets, FC:
Setfop -&#x3E; Pos has a factoriza tion

where P is the category of Priestle.y spaces and Û is the ob-

vious forgetful functor.

2. Each functor

determines a fibration (Fib (S) ,U ) such that objects of Fib(S) are

pairs (A, ! ) where A is a set and i E S (A), while h : (A, i ) -&#x3E; ( B, j ) if
h : A -&#x3E; B and i  S h ( j ) . The composition in Fib(S) is the composi-
tion in Set. Then S is (naturally isomorphic to) the theory of

Fib(S) and vice versa; for each fibration C, C and Fib(Fc) are

concretely isomorphic.

3. Consider the category Grph of oriented graphs without
isolated vertices, U: Grph-Set sends each graph to its set of
arrows. Grph is a fibration. The corresponding theory assigns to

each set X the algebraic lattice of all equivalences on X x {0,1}.
Hence Grph is strongly finitary. Notice that the full subcatego-
ry of Grph consisting of all finite graphs is a weakly finitary
but not a finitary fibration.

4. Each functor-structured category S(H) for H: Set- Set
[6] is a topological category, hence a fibration. The theory cor-
responding to S(H) assigns to each set X the lattice of all sub-

sets of H(X). Hence S(H) is finitary iff, for each set X,
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But then S(H) is strongly finitary because every lattices 2H(X) is

an algebraic lattice. Hence for functor-structured categories the

notion of finitary and strongly finitary fibration coincide.

S. If a meet-semilattice with a greatest element is the

carrier of a Priestley space, then it must be a complete lattice

171. Let A be such a semilattice but not a complete lattice and
let S A: Set-Pos be a constant functor, i.e.,

for each set X and each function f. Then Fib(SA) is finitary but
not strongly finitary.

The mentioned property of semilattices leads us to the

following result:

PROPOSITION S.2 . Each strongly finitary fibration with all con-
crete finite products is a topological category.
PROOF. It is not hard to verify that a fibration C has concrete
finite products iff the correponding theory Fc has the factoriza-
tion :

where Slat is the category of meet-semilattices with a greatest
element, and functions preserving finite infima. Since C is stron-
gly finitary, every Fc n is the carrier of a Priestley space, hence
it is a complete lattice. Thus Fc has the factorization

where Clat is the category of complete lattices and functions

preserving infima. From this it easily follows that C is concre-

tely complete, that is, C is a topological category.

6. Let (C, U) be a weakly finitary topological category. It

is easily checked that the functor R: C -&#x3E; MOD Z(C) defined in

Theorem 3.1 preserves and reflects products. Hence each weakly
finitary topological category is representable by initially closed
classes of relational systems which is also closed under forma-
tion of products.
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But there exist strongly finitary topological categories
which are not representable by quasi-varieties of models, i.e.,
classes of models of strict Hom theories. Note that if

W c MOD Z is initially closed and a quasi-variety, then W is also

closed under formation of colimits of direct systems. This im-

plies that for every n E N, FWn is an algebraic lattice. Thus for
each topological category C representable by a quasi-variety of
finitary relational systems, Fcn must be an algebraic lattice for

every n E N .

Now let A be a complete lattice but not an algebraic lat-

tice, such that the dual lattice A’P is an algebraic lattice. Then

(A, k (Aop) ) is a Priestley space. Consider the topological cate-

gory Fib (SA) , where

is the constant functor determined by A (compare 5). Each fibre
of Fib (SA) is isomorphic to A. Hence Fib (SA) is strongly finitary
but it is not isomorphic to any quasi-variety of finitary relatio-
nal systems.

7. The last example is due to Rosicky [9]. Let M be an

arbitrary infinite set. The comma-category Seti M considered to-
gether with the obvious forgetful functor is a finitary fibration.
For every n E N, the fibre in Setl M over n is the set Mn with
the trivial order. Let M = ( M, T) be an arbitrary Boolean space
with the carrier M. Then M as well as every power of M is a

Priestley space. Now it is easy to conclude that the hypotheses
of Theorem 4.1 are satisfied, that is SetLM is a strongly finita-

ry fibration.
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